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1. Concepts and Tools 

In this chapter, we’ll introduce the key Microsoft Windows operating system concepts and 
terms we’ll be using throughout this book, such as the Windows API, processes, threads, virtual 
memory, kernel mode and user mode, objects, handles, security, and the registry. We’ll also 
introduce the tools that you can use to explore Windows internals, such as the kernel debugger, the 
Reliability and Performance Monitor, and key tools from Windows Sysinternals 
(www.microsoft.com/technet/sysinternals). In addition, we’ll explain how you can use the 
Windows Driver Kit (WDK) and the Windows Software Development Kit (SDK) as resources for 
finding further information on Windows internals.  

Be sure that you understand everything in this chapter—the remainder of the book is written 
assuming that you do. 

1.1 Windows Operating System Versions 

This book covers the two most recent versions of the Microsoft Windows operating system 
based on the Windows NT code base: Windows Vista (32-bit and 64-bit versions) and Windows 
Server 2008 (32-bit and 64-bit versions). Unless specifically stated, the text applies to all versions. 
As background information, Table 1-1 lists the releases of the Windows NT code base, their 
internal version number, and the external product name. 
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1.2 Foundation Concepts and Terms 

In the course of this book, we’ll be referring to some structures and concepts that might be 
unfamiliar to some readers. In this section, we’ll define the terms we’ll be using throughout.. 

You should become familiar with them before proceeding to subsequent chapters. 

1.2.1 Windows API 

The Windows application programming interface (API) is the system programming interface 
to the Windows operating system family. Prior to the introduction of 64-bit versions of Windows 
XP and Windows Server 2003, the programming interface to the 32-bit versions of the Windows 
operating systems was called the Win32 API, to distinguish it from the original 16-bit Windows 
API, which was the programming interface to the original 16-bit versions of Windows. In this 
book, the term Windows API refers to both the 32-bit and 64-bit programming interfaces to 
Windows Vista and Windows Server 2008. 

Note The Windows API is described in the Windows Software Development Kit (SDK) 
documentation.(See the section “Windows Software Development Kit” later in this chapter.) This 
documentation is available for free viewing online at www.msdn.microsoft.com. It is also 
included with all subscription levels to the Microsoft Developer Network (MSDN), Microsoft’s 
support program for developers. For more information, see www.msdn.microsoft.com. An 
excellent description of how to program the Windows base API is the book Windows via C/C++, 
Fifth Edition by Jeffrey Richter and Christophe Nasarre (Microsoft Press, 2007). 

The Windows API consists of thousands of callable functions, which are divided into the 
following major categories: 

■ Base Services 

■ Component Services 

■ User Interface Services 

■ Graphics and Multimedia Services 

■ Messaging and Collaboration 

■ Networking 

■ Web Services 

This book focuses on the internals of the key base services, such as processes and threads, 
memory management, I/O, and security. 

What about .Net? 
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The .NET Framework consists of a library of classes called the Framework Class Library 
(FCL) and a Common Language Runtime (CLR) that provides a managed code execution 
environment with features such as just-in-time compilation, type verification, garbage collection, 
and code access security. By offering these features, the CLR provides a development 
environment that improves programmer productivity and reduces common programming errors. 
For an excellent description of the .NET Framework and its core architecture, see CLR via C#, 
Second Edition by Jeffrey Richter (Microsoft Press,2006). 

The CLR is implemented as a classic COM server whose code resides in a standard user 
mode Windows DLL. In fact, all components of the .NET Framework are implemented as 
standard user-mode Windows DLLs layered over unmanaged Windows API functions. (None of 
the .NET Framework runs in kernel mode.) Figure 1-1 illustrates the relationship between these 
components: 

 

History of the Win32 API 

Interestingly, Win32 wasn’t slated to be the original programming interface to Microsoft 
Windows NT. Because the Windows NT project started as a replacement for OS/2 version 2, the 
primary programming interface was the 32-bit OS/2 Presentation Manager API. A year into the 
project, however, Microsoft Windows 3.0 hit the market and took off. As a result, Microsoft 
changed direction and made Windows NT the future replacement for the Windows family of 
products as opposed to the replacement for OS/2. It was at this juncture that the need to specify 
the Windows API arose—before this, the Windows API existed only as a 16-bit interface. 
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Although the Windows API would introduce many new functions that hadn’t been available 
on Windows 3.1, Microsoft decided to make the new API compatible with the 16-bit Windows 
API function names, semantics, and use of data types whenever possible to ease the burden of 
porting existing 16-bit Windows applications to Windows NT. So those of you who are looking at 
the Windows API for the first time and wondering why many function names and interfaces seem 
inconsistent should keep in mind that one reason for the inconsistency was to ensure that the 
Windows API is compatible with the old 16-bit Windows API. 

1.2.2 Services, Functions, and Routines 

Several terms in the Windows user and programming documentation have different meanings 
in different contexts. For example, the word service can refer to a callable routine in the operating 
system, a device driver, or a server process. The following list describes what certain terms mean 
in this book:  

■Windows API functions Documented, callable subroutines in the Windows API. Examples 
include CreateProcess, CreateFile, and GetMessage. 

■ Native system services (or executive system services) The undocumented, underlying 
services in the operating system that are callable from user mode. For example, 
NtCreateProcessEx is the internal system service the Windows CreateProcess function calls to 
create a new process. (For a definition of native functions, see the section “System Service 
Dispatching” in Chapter 3.) 

■ Kernel support functions (or routines) Subroutines inside the Windows operating system 
that can be called only from kernel mode (defined later in this chapter). For example, 
ExAllocatePoolWithTag is the routine that device drivers call to allocate memory from the 
Windows system heaps (called pools). 

■ Windows services Processes started by the Windows service control manager. (Although 
the registry defines Windows device drivers as “services,” we don’t refer to them as such in this 
book.) For example, the Task Scheduler service runs in a user-mode process that supports the at 
command (which is similar to the UNIX commands at or cron). 

■ DLLs (dynamic-link libraries) A set of callable subroutines linked together as a binary file 
that can be dynamically loaded by applications that use the subroutines. Examples include 
Msvcrt.dll (the C run-time library) and Kernel32.dll (one of the Windows API subsystem 
libraries). Windows user-mode components and applications use DLLs extensively. The 
advantage DLLs provide over static libraries is that applications can share DLLs, and Windows 
ensures that there is only one in-memory copy of a DLL’s code among the applications that are 
referencing it. 

1.2.3 Processes, Threads, and Jobs 
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Several terms in the Windows user and programming documentation have different meanings 
in different contexts. For example, the word service can refer  

Although programs and processes appear similar on the surface, they are fundamentally 
different. A program is a static sequence of instructions, whereas a process is a container for a set 
of resources used when executing the instance of the program. At the highest level of abstraction, 
a Windows process comprises the following: 

■ A private virtual address space, which is a set of virtual memory addresses that the process 
can use 

■ An executable program, which defines initial code and data and is mapped into the 
process’s virtual address space 

■ A list of open handles to various system resources, such as semaphores, communication 
ports, and files, that are accessible to all threads in the process 

■ A security context called an access token that identifies the user, security groups, privileges, 
User Access Control (UAC) virtualization state, session, and limited user account state associated 
with the process 

■ A unique identifier called a process ID (internally part of an identifier called a client ID)  

■ At least one thread of execution (although an “empty” process is possible, it is not useful) 

Each process also points to its parent or creator process. However, if the parent exits, this 
information is not updated. Therefore, it is possible for a process to point to a nonexistent parent. 
This is not a problem, as nothing relies on this information being present. The following 
experiment illustrates this case. 

EXPERIMENT: Viewing the Process Tree  

One unique attribute about a process that most tools don’t display is the parent or creator 
process ID. You can retrieve this value with the Performance Monitor (or programmatically) by 
querying the Creating Process ID. The Tlist.exe tool (in the Debugging 

Tools for Windows) can show the process tree by using the /t switch. Here’s an example of 
output from tlist /t: 

1. C:\>tlist /t   
2. System Process (0)   
3. System (4)   
4. smss.exe (480)   
5. csrss.exe (548)   
6. wininit.exe (612)   
7. services.exe (656)   
8. svchost.exe (848)   
9. svchost.exe (880)   
10. svchost.exe (924)   
11. svchost.exe (980)   
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12. audiodg.exe (1040)   
13. svchost.exe (1108)   
14. dwm.exe (123)   
15. svchost.exe (96)   
16. taskeng.exe (604)   
17. tasking.exe (1532)   
18. SLsvc.exe (1814)   
19. svchost.exe (2988)   
20. lsass.exe (672)   
21. lsm.exe (680)   
22. csrss.exe (624)   
23. winlogon.exe (824)   
24. explorer.exe (724) Program Manager   
25. WINWORD.EXE (3512) WinInt5E_Chapter01.doc [Compatibility Mode]  

- Microsoft Word   
26. cmd.exe (3936) Command Prompt - tlist /t   
27. tlist.exe (1344)  

The list indents each process to show its parent/child relationship. Processes whose parents 
aren’t alive are left-justified (as is Explorer.exe in the preceding example) because even if a 
grandparent process exists, there’s no way to find that relationship. Windows maintains only the 
creator process ID, not a link back to the creator of the creator, and so forth. 

To demonstrate the fact that Windows doesn’t keep track of more than just the parent process 
ID, follow these steps: 

1. Open a Command Prompt window. 
2. Type start cmd (which starts a second command prompt). 
3. Bring up Task Manager. 
4. Switch to the second command prompt. 
5. Type mspaint (which runs Microsoft Paint). 
6. Click the intermediate (second) Command Prompt window. 
7. Type exit. (Notice that Paint remains.) 
8. Switch to Task Manager. 
9. Click the Applications tab. 
10. Right-click on the Command Prompt task, and select Go To Process. 
11. Click on the Cmd.exe process highlighted in blue. 
12. Right-click on this process, and select End Process Tree. 
13. Click Yes in the Task Manager Warning message box. 

The first Command Prompt window will disappear, but you should still see the Paint window 
because it was the grandchild of the command prompt process you terminated; and because the 
intermediate process (the parent of Paint) was terminated, there was no link between the parent 
and the grandchild.  

A number of tools for viewing (and modifying) processes and process information are 
available. The following experiments illustrate the various views of process information you can 
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obtain with some of these tools. These tools are included within Windows itself and within the 
Debugging Tools for Windows, the Windows SDK, and from Sysinternals. Many of these tools 
show overlapping subsets of the core process and thread information, sometimes identified by 
different names. 

Probably the most widely used tool to examine process activity is Task Manager. 
(Interestingly, there is no such thing as a “task” in the Windows kernel, so Task Manager is really 
a tool to manage processes.) The following experiment shows the difference between what Task 
Manager lists as applications and processes. 

EXPERIMENT: Viewing Process information with Task Manager 

The built-in Windows Task Manager provides a quick list of the processes running on the 
system. You can start Task Manager in one of three ways: (1) press Ctrl+Shift+Esc, (2) right-click 
on the taskbar and select Task Manager, or (3) press Ctrl+Alt+Delete and click the Task Manager 
button. Once Task Manager has started, click the Processes tab to see the list of running processes. 
Notice that processes are identified by the name of the image of which they are an instance. 
Unlike some objects in Windows, processes can’t be given global names. To display additional 
details, choose Select Columns from the View menu and select additional columns to be added, as 
shown here: 

Although what you see in the Task Manager Processes tab is clearly a list of processes, what 
the Applications tab displays isn’t as obvious. The Applications tab lists the top-level visible 
windows on all the desktops in the interactive window station. (By default, there are two desktop 
objects—you can create more by using the Windows CreateDesktop function.) The Status column 
indicates whether or not the thread that owns the window is in a Windows message wait state. 
“Running” means the thread is waiting for windowing input; “Not Responding” means the thread 
isn’t waiting for windowing input (for example, the thread might be running or waiting for I/O or 
some Windows synchronization object). 

From the Applications tab, you can match a task to the process that owns the thread that owns 
the task window by right-clicking on the task name and choosing Go To Process. 
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Process Explorer, from Sysinternals, shows more details about processes and threads than 
any other available tool, which is why you will see it used in a number of experiments throughout 
the book. The following are some of the unique things that Process Explorer shows or enables: 

■ Full path name for the image being executed 

■ Process security token (list of groups and privileges, virtualization state, and session) 

■ Highlighting to show changes in the process and thread list 

■ List of services inside service-hosting processes, including display name and description 

■ Processes that are part of a job and job details 

■ Processes running .NET applications and .NET-specific details (such as the list of app 
domains and CLR performance counters) 

■ Start time for processes and threads 

■ Complete list of memory-mapped files (not just DLLs) 

■ Ability to suspend a process 

■ Ability to kill an individual thread 

■ Easy identification of which processes were consuming the most CPU time over a period 
of time (The Reliability and Performance Monitor can display process CPU utilization for a given 
set of processes, but it won’t automatically show processes created after the performance 
monitoring session has started–only a manual trace in binary output format can do that.) 

Process Explorer also provides easy access to information in one place, such as: 

■ Process tree (with ability to collapse parts of the tree) 

■ Open handles in a process (including unnamed handles) without prior setup (The Microsoft 
tools to show open handles require the setting of a systemwide flag and a reboot before they can 
be used.) 

■ List of DLLs (and memory-mapped files) in a process  

■ Thread activity within a process 

■ User-mode thread stacks (including mapping of addresses to names using the debugging 
tools’ symbol engine) 

■ Kernel-mode thread stacks for system threads (including mapping of addresses to names 
using the debugging tools’ symbol engine) 

■ Context switch delta (a better representation of CPU activity, as explained in Chapter 5) 

■ Time stamp counter (an even better representation of precise CPU activity, as explained in 
Chapter 5) 

■ 64-bit vs. 32-bit image type 

■ Integrity level 
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■ Virtualization state 

■ Kernel memory (paged and nonpaged pool) limits (other tools show only current size) 

An introductory experiment using Process Explorer follows. 

EXPERIMENT:  Viewing Process Details with Process explorer 

Download the latest version of Process Explorer from Sysinternals and run it. The first time 
you run it, you will receive a message that symbols are not currently configured. If properly 
configured, Process Explorer can access symbol information to display the symbolic name of the 
thread start function and functions on its call stack (available by double-clicking on a process and 
clicking on the Threads tab). This is useful for identifying what threads are doing within a process. 
To access symbols, you must have the Debugging Tools for Windows installed (described later in 
this chapter). Then click on Options, choose Configure Symbols, and fill in the appropriate 
symbols path. For example: 

  

In the preceding example, the on-demand symbol server is being used to access symbols and 
a copy of the symbol files is being stored on the local machine in the c:\symbols folder. For more 
information on configuring use of the symbol server, see www.microsoft.com/whdc/dev tools 
/debugging/debugstart.mspx. 

When Process Explorer starts, it shows by default the process list on the top half and the open 
handles for the currently selected process on the bottom half. It also shows tooltips for four kinds 
of hosting processes: 

■ The running services inside a service-hosting process (Svchost.exe) if you hover your 
mouse over the name 

■ The running COM object tasks part of a Taskeng.exe process  

■ The target of a Rundll32.exe process (used for things such as Control Panel items) 

■ The COM object being hosted inside a Dllhost.exe process 

Here are a few steps to walk you through some basic capabilities of Process Explorer:  
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1. Turn off the lower pane by deselecting View, Show Lower Pane. (The lower pane can 
show open handles or mapped DLLs and memory-mapped files—these are explored in Chapters 3 
and 9.) 

2. Notice that processes hosting services are highlighted by default in pink. Your own 
processes are highlighted in blue. (These colors can be configured.) 

3. Hover your mouse pointer over the image name for processes, and notice the full path 
displayed by the tooltip. 

4. Click on View, Select Columns, and add the image path. 

5. Sort on the process column, and notice the tree view disappears. (You can either display 
tree view or sort by any of the columns shown.) Click again to sort from Z to A. Then click again, 
and the display returns to tree view. 

6. Deselect View, Show Processes From All Users to show only your processes. 

    7. Go to Options, Difference Highlight Duration, and change the value to 5 seconds. Then 
launch a new process (anything), and notice the new process highlighted in green for 5 seconds. 
Exit this new process, and notice the process is highlighted in red for 5 seconds before 
disappearing from the display. This can be useful to see processes being created and exiting on 
your system. 

8. Finally, double-click on a process and explore the various tabs available from the process 
properties display. (These will be referenced in various experiments throughout the book where 
the information being shown is being explained.)  

A thread is the entity within a process that Windows schedules for execution. Without it, the 
process’s program can’t run. A thread includes the following essential components: 
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■ The contents of a set of CPU registers representing the state of the processor. 

■ Two stacks, one for the thread to use while executing in kernel mode and one for executing 
in user mode. 

■ A private storage area called thread-local storage (TLS) for use by subsystems, run-time 
libraries, and DLLs. 

■ A unique identifier called a thread ID (also internally called a client ID—process IDs and 
thread IDs are generated out of the same namespace, so they never overlap). 

■ Threads sometimes have their own security context that is often used by multithreaded 
server applications that impersonate the security context of the clients that they serve. 

The volatile registers, stacks, and private storage area are called the thread’s context. Because 
this information is different for each machine architecture that Windows runs on, this structure, by 
necessity, is architecture-specific. The Windows GetThreadContext function provides access to 
this architecture-specific information (called the CONTEXT block). 

Fibers vs. Threads 

Fibers allow an application to schedule its own “threads” of execution rather than rely on the 
priority-based scheduling mechanism built into Windows. Fibers are often called “lightweight” 
threads, and in terms of scheduling, they’re invisible to the kernel because they’re implemented in 
user mode in Kernel32.dll. To use fibers, a call is first made to the Windows 
ConvertThreadToFiber function. This function converts the thread to a running fiber. Afterward, 
the newly converted fiber can create additional fibers with the CreateFiber function. (Each fiber 
can have its own set of fibers.) Unlike a thread, however, a fiber doesn’t begin execution until it’s 
manually selected through a call to the SwitchToFiber function. The new fiber runs until it exits or 
until it calls SwitchToFiber, again selecting another fiber to run. For more information, see the 
Windows SDK documentation on fiber functions. 

Although threads have their own execution context, every thread within a process shares the 
process’s virtual address space (in addition to the rest of the resources belonging to the process), 
meaning that all the threads in a process can write to and read from each other’s memory. Threads 
cannot accidentally reference the address space of another process, however, unless the other 
process makes available part of its private address space as a shared memory section (called a file 
mapping object in the Windows API) or unless one process has the right to open another process 
to use cross-process memory functions such as ReadProcessMemory and WriteProcessMemory. 

In addition to a private address space and one or more threads, each process has a security 
identification and a list of open handles to objects such as files, shared memory sections, or one of 
the synchronization objects such as mutexes, events, or semaphores, as illustrated in Figure 1-2. 

Every process has a security context that is stored in an object called an access token. The 
process access token contains the security identification and credentials for the process. By default, 
threads don’t have their own access token, but they can obtain one, thus allowing individual 
threads to impersonate the security context of another process—including processes running on a 
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remote Windows system—without affecting other threads in the process. (See Chapter 6 for more 
details on process and thread security.) 

The virtual address descriptors (VADs) are data structures that the memory manager uses to 
keep track of the virtual addresses the process is using. These data structures are described in more 
depth in Chapter 9. 

Windows provides an extension to the process model called a job. A job object’s main 
function is to allow groups of processes to be managed and manipulated as a unit. A job object 
allows control of certain attributes and provides limits for the process or processes associated with 
the job. It also records basic accounting information for all processes associated with the job and 
for all processes that were associated with the job but have since terminated. In some ways, the 
job object compensates for the lack of a structured process tree in Windows—yet in many ways it 
is more powerful than a UNIX-style process tree. 

    You’ll find out much more about the internal structure of jobs, processes and threads, the 
mechanics of process and thread creation, and the thread-scheduling algorithms in Chapter 5. 

To a callable routine in the operating system, a device driver, or a server process. The 
following list describes what certain terms mean in this book:  

■Windows API functions Documented, callable subroutines in the Windows API. Examples 
include CreateProcess, CreateFile, and GetMessage. 

■ Native system services (or executive system services) The undocumented, underlying 
services in the operating system that are callable from user mode. For example, 
NtCreateProcessEx is the internal system service the Windows CreateProcess function calls to 
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create a new process. (For a definition of native functions, see the section “System Service 
Dispatching” in Chapter 3.) 

■ Kernel support functions (or routines) Subroutines inside the Windows operating system 
that can be called only from kernel mode (defined later in this chapter). For example, 
ExAllocatePoolWithTag is the routine that device drivers call to allocate memory from the 
Windows system heaps (called pools). 

■ Windows services Processes started by the Windows service control manager. (Although 
the registry defines Windows device drivers as “services,” we don’t refer to them as such in this 
book.) For example, the Task Scheduler service runs in a user-mode process that supports the at 
command (which is similar to the UNIX commands at or cron). 

■ DLLs (dynamic-link libraries) A set of callable subroutines linked together as a binary file 
that can be dynamically loaded by applications that use the subroutines. Examples include 
Msvcrt.dll (the C run-time library) and Kernel32.dll (one of the Windows API subsystem 
libraries). Windows user-mode components and applications use DLLs extensively. The 
advantage DLLs provide over static libraries is that applications can share DLLs, and Windows 
ensures that there is only one in-memory copy of a DLL’s code among the applications that are 
referencing it. 

1.2.4 Virtual Memory 

Windows implements a virtual memory system based on a flat (linear) address space that 
provides each process with the illusion of having its own large, private address space. Virtual 
memory provides a logical view of memory that might not correspond to its physical layout. At 
run time, the memory manager, with assistance from hardware, translates, or maps, the virtual 
addresses into physical addresses, where the data is actually stored. By controlling the protection 
and mapping, the operating system can ensure that individual processes don’t bump into one 
another or overwrite operating system data. Figure 1-3 illustrates three virtually contiguous pages 
mapped to three discontiguous pages in physical memory. 
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    Because most systems have much less physical memory than the total virtual memory in use 
by the running processes, the memory manager transfers, or pages, some of the memory contents 
to disk. Paging data to disk frees physical memory so that it can be used for other processes or for 
the operating system itself. When a thread accesses a virtual address that has been paged to disk, 
the virtual memory manager loads the information back into memory from disk. Applications 
don’t have to be altered in any way to take advantage of paging because hardware support enables 
the memory manager to page without the knowledge or assistance of processes or threads. 

The size of the virtual address space varies for each hardware platform. On 32-bit x86 
systems, the total virtual address space has a theoretical maximum of 4 GB. By default, Windows 
allocates half this address space (the lower half of the 4-GB virtual address space, from 
x00000000 through x7FFFFFFF) to processes for their unique private storage and uses the other 
half (the upper half, addresses x80000000 through xFFFFFFFF) for its own protected operating 
system memory utilization. The mappings of the lower half change to reflect the virtual address 
space of the currently executing process, but the mappings of the upper half always consist of the 
operating system’s virtual memory. Windows Vista and Windows Server 2008 support boot-time 
options (the increaseuserva qualifier in the Boot Configuration Database (BCD), described in 
Chapter 13) that give processes running specially marked programs (the large address space aware 
flag must be set in the header of the executable image) the ability to use up to 3 GB of private 
address space (leaving 1 GB for the operating system).  

This option allows applications such as database servers to keep larger portions of a database 
in the process address space, thus reducing the need to map subset views of the database. Figure 
1-4 shows the two virtual address space layouts supported by 32-bit Windows. 
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Although 3 GB is better than 2 GB, it’s still not enough virtual address space to map very 
large (multigigabyte) databases. To address this need on 32-bit systems, Windows provides a 
mechanism called Address Windowing Extension (AWE), which allows a 32-bit application to 
allocate up to 64 GB of physical memory and then map views, or windows, into its 2-GB virtual 
address space. Although using AWE puts the burden of managing mappings of virtual to physical 
memory on the programmer, it does address the need of being able to directly access more 
physical memory than can be mapped at any one time in a 32-bit process address space.64-bit 
Windows provides a much larger address space for processes: 7152 GB on IA-64 systems and 
8192 GB on x64 systems. Figure 1-5 shows a simplified view of the 64-bit system address space 
layouts. (For a detailed description, see Chapter 9.) Note that these sizes do not represent the 
architectural limits for these platforms. Sixty-four bits of address space is over 17 billion GB, but 
current 64-bit hardware limits this to smaller values. And Windows implementation limits in the 
current versions of 64-bit Windows reduce this to 8192 GB (8 TB). 

  

Details of the implementation of the memory manager, including how address translation 
works and how Windows manages physical memory, are described in Chapter 9.  
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1.2.5 Kernel Mode vs. User Mode 

To protect user applications from accessing and/or modifying critical operating system data, 
Windows uses two processor access modes (even if the processor on which Windows is running 
supports more than two): user mode and kernel mode. User application code runs in user mode, 
whereas operating system code (such as system services and device drivers) runs in kernel mode. 
Kernel mode refers to a mode of execution in a processor that grants access to all system memory 
and all CPU instructions. By providing the operating system software with a higher privilege level 
than the application software has, the processor provides a necessary foundation for operating 
system designers to ensure that a misbehaving application can’t disrupt the stability of the system 
as a whole.  

Note The architecture of the x86 and x64 processor defines four privilege levels, or rings, to 
protect system code and data from being overwritten either inadvertently or maliciously by code 
of lesser privilege. Windows uses privilege level 0 (or ring 0) for kernel mode and privilege level 
3 (or ring 3) for user mode. The reason Windows uses only two levels is that some hardware 
architectures that were supported in the past (such as Compaq Alpha and Silicon Graphics MIPS) 
implemented only two privilege levels. 

Although each Windows process has its own private memory space, the kernel-mode 
operating system and device driver code share a single virtual address space. Each page in virtual 
memory is tagged as to what access mode the processor must be in to read and/or write the page. 
Pages in system space can be accessed only from kernel mode, whereas all pages in the user 
address space are accessible from user mode. Read-only pages (such as those that contain static 
data) are not writable from any mode. Additionally, on processors that support no-execute 
memory protection, Windows marks pages containing data as nonexecutable, thus preventing 
inadvertent code execution in data areas. 

Thirty-two-bit Windows doesn’t provide any protection to private read/write system memory 
being used by components running in kernel mode. In other words, once in kernel mode, operating 
system and device driver code has complete access to system space memory and can bypass 
Windows security to access objects. Because the bulk of the Windows operating system code runs 
in kernel mode, it is vital that components that run in kernel mode be carefully designed and tested 
to ensure that they don’t violate system security and cause system instability. 

This lack of protection also emphasizes the need to take care when loading a third-party 
device driver, because once in kernel mode the software has complete access to all operating 
system data. This vulnerability was one of the reasons behind the driver-signing mechanism 
introduced in Windows, which warns the user if an attempt is made to add an unauthorized 
(unsigned) driver. (See Chapter 7 for more information on driver signing.) Also, a mechanism 
called Driver Verifier helps device driver writers to find bugs (such as buffer overruns or memory 
leaks) that can cause security or reliability issues. Driver Verifier is explained in Chapter 9. 

Additionally, also on 64-bit versions of Windows, the kernel mode code signing (KMCS) 
policy dictates that 64-bit device drivers must be signed with a cryptographic key assigned by one 
of the major code certification authorities. Unlike 32-bit versions of Windows, the user cannot 
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explicitly force the installation of an unsigned driver, even as an administrator (unless this 
restriction is disabled manually at boot time by pressing F8 and choosing the advanced boot 
option Disable Driver Signature Enforcement).  

As you’ll see in Chapter 2, user applications switch from user mode to kernel mode when 
they make a system service call. For example, a Windows ReadFile function eventually needs to 
call the internal Windows routine that actually handles reading data from a file. That routine, 
because it accesses internal system data structures, must run in kernel mode. The transition from 
user mode to kernel mode is accomplished by the use of a special processor instruction that causes 
the processor to switch to kernel mode. The operating system traps this instruction, notices that a 
system service is being requested, validates the arguments the thread passed to the system function, 
and then executes the internal function. Before returning control to the user thread, the processor 
mode is switched back to user mode. In this way, the operating system protects itself and its data 
from perusal and modification by user processes. 

Note A transition from user mode to kernel mode (and back) does not affect thread 
scheduling per se—a mode transition is not a context switch. Further details on system service 
dispatching are included in Chapter 3. 

Thus, it’s normal for a user thread to spend part of its time executing in user mode and part in 
kernel mode. In fact, because the bulk of the graphics and windowing system also runs in kernel 
mode, graphics-intensive applications spend more of their time in kernel mode than in user mode. 
An easy way to test this is to run a graphics-intensive application such as Microsoft Paint or 
Microsoft Chess Titans and watch the time split between user mode and kernel mode using one of 
the performance counters listed in Table 1-2. 

 EXPERIMENT: Kernel Mode vs. user Mode 
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You can use the Reliability and Performance Monitor to see how much time your system 
spends executing in kernel mode vs. in user mode. Follow these steps: 

1. Run the Reliability and Performance Monitor by opening the Start menu and selecting 
Programs/Administrative Tools/Reliability and Performance Monitor. Choose the Performance 
Monitor view. 

2. Click the Add button (+) on the toolbar. 

3. With the Processor performance object selected, click the % Privileged Time counter and, 
while holding down the Ctrl key, click the % User Time counter. 

4. Click Add, and then click Close. 

5. Move the mouse rapidly back and forth. You should notice, similar to the illustration 
below, the % Privileged Time line going up when you move the mouse around, reflecting the time 
spent servicing the mouse interrupts and the time spent in the graphics part of the windowing 
system (which, as explained in Chapter 2, runs primarily as a device driver in kernel mode). 

6. When you’re finished, just close the tool. 

You can also quickly see this activity by using Task Manager. Just click the Performance tab, 
and then select Show Kernel Times from the View menu. The CPU usage bar will show total CPU 
usage in green and kernel-mode time in red. 

    To see how the Reliability and Performance Monitor itself uses kernel time and user time, run 
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it again, but add the individual Process counters % User Time and % Privileged Time for every 
process in the system: 

1. If it’s not already running, run the Reliability and Performance Monitor again. (If it is 
already running, start with a blank display by clicking the New Counter Set button on the toolbar.) 

2. Click the Add button (+) on the toolbar. 

3. Change the performance object to Process. 

4. Select the % Privileged Time and % User Time counters. 

5. Select all processes in the Instance box (except the _Total process). 

6. Click Add, and then click Close. 

7. Move the mouse rapidly back and forth. 

8. Press Ctrl+H to turn on highlighting mode. This highlights the currently selected counter 
in black. 

9. Scroll through the counters at the bottom of the display to identify the processes whose 
threads were running when you moved the mouse, and note whether they were running in user 
mode or kernel mode. 

You should see the Reliability and Performance Monitor process (by looking in the Instance 
column for the mmc process) kernel-mode and user-mode time go up when you move the mouse 
because it is executing application code in user mode and calling Windows functions that run in 
kernel mode. You’ll also notice kernel-mode thread ac tivity in a process named csrss when you 
move the mouse. This activity occurs because the Windows subsystem’s kernel-mode raw input 
thread, which handles keyboard and mouse input, is attached to this process. (See Chapter 2 for 
more information about system threads.) Finally, the process named Idle that you see spending 
nearly 100 percent of its time in kernel mode isn’t really a process—it’s a fake process used to 
account for idle CPU cycles. As you can observe from the mode in which the threads in the Idle 
process run, when Windows has nothing to do, it does it in kernel mode. 

1.2.6 Terminal Services and Multiple Sessions 

Terminal Services refers to the support in Windows for multiple interactive user sessions on a 
single system. With Windows Terminal Services, a remote user can establish a session on another 
machine, log in, and run applications on the server. The server transmits thegraphical user 
interface to the client, and the client transmits the user’s input back to the server. (Similar to the X 
Window System, Windows Vista and Windows Server 2008 permit running individual 
applications on a server system with the display remoted to the client instead of remoting the 
entire desktop.)  

The first session is considered the services session, or session zero, and contains system 
service–hosting processes (explained in further detail in Chapter 4). The first login session at the 
physical console of the machine is session one, and additional sessions can be created through the 
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use of the remote desktop connection program (Mstsc.exe) or through the use of fast user 
switching (described later). 

Windows Vista permits a single remote user to connect to the machine, but if someone is 
logged in at the console, the workstation is locked (that is, someone can be using the system either 
locally or remotely, but not at the same time). Windows Vista Home Premium and Ultimate 
editions allow one interactive session and up to four Media Center Extender sessions. 

Windows Server 2008 supports two simultaneous remote connections. (This is to facilitate 
remote management—for example, use of management tools that require being logged in to the 
machine being managed.) Windows Server 2008 Standard and Datacenter editions can support 
more than two sessions if appropriately licensed and configured as a terminal server. 

Although Windows Vista editions other than Media Center do not support multiple remote 
desktop connections, they do support multiple sessions created locally through a feature called fast 
user switching. When a user chooses to disconnect their session instead of log off (for example, by 
clicking Start, clicking Log Off, and choosing Switch User or by holding down the Windows key 
and pressing L), the current session (that is, the processes running in that session and all the 
session-wide data structures that describe the session) remains in the system and the system 
returns to the main logon screen. If a new user logs in, a new session is created. 

For applications that want to be aware of running in a terminal server session, there are a set 
of Windows APIs for programmatically detecting that as well as for controlling various aspects of 
Terminal Services. (See the Windows SDK for details.)  

Chapter 2 describes briefly how sessions are created and has some experiments showing how 
to view session information with various tools, including the kernel debugger. The “Object 
Manager” section in Chapter 3 describes how the system namespace for objects is instantiated on 
a per-session basis and how applications that need to be aware of other instances of themselves on 
the same system can accomplish that. Finally, Chapter 9 covers how the  memory manager sets 
up and manages session-wide data. 

1.2.7 Objects and Handles 

In the Windows operating system, an object is a single, run-time instance of a statically 
defined object type. An object type comprises a system-defined data type, functions that operate 
on instances of the data type, and a set of object attributes. If you write Windows applications, you 
might encounter process, thread, file, and event objects, to name just a few examples. These 
objects are based on lower-level objects that Windows creates and manages.  

In Windows, a process is an instance of the process object type, a file is an instance of the file 
object type, and so on. 

An object attribute is a field of data in an object that partially defines the object’s state. An 
object of type process, for example, would have attributes that include the process ID, a base 
scheduling priority, and a pointer to an access token object. Object methods, the means for 
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manipulating objects, usually read or change the object attributes. For example, the open method 
for a process would accept a process identifier as input and return a pointer to the object as output. 

Note Although there is a parameter named ObjectAttributes that a caller supplies when 
creating an object using either the Windows API or native object services, that parameter 
shouldn’t be confused with the more general meaning of the term as used in this book. 

The most fundamental difference between an object and an ordinary data structure is that the 
internal structure of an object is opaque. You must call an object service to get data out of an 
object or to put data into it. You can’t directly read or change data inside an object. This difference 
separates the underlying implementation of the object from code that merely uses it, a technique 
that allows object implementations to be changed easily over time. 

Objects, through the help of a kernel component called the object manager, provide a 
convenient means for accomplishing the following four important operating system tasks: 

■ Providing human-readable names for system resources 

■ Sharing resources and data among processes 

■ Protecting resources from unauthorized access 

■ Reference tracking, which allows the system to know when an object is no longer in use so 
that it can be automatically deallocated 

Not all data structures in the Windows operating system are objects. Only data that needs to 
be shared, protected, named, or made visible to user-mode programs (via system services) is 
placed in objects. Structures used by only one component of the operating system to implement 
internal functions are not objects. Objects and handles (references to an instance of an object) are 
discussed in more detail in Chapter 3. 

1.2.8 Security 

Windows was designed from the start to be secure and to meet the requirements of various 
formal government and industry security ratings, such as the Common Criteria for Information 
Technology Security Evaluation (CCITSE) specification. Achieving a governmentapproved 
security rating allows an operating system to compete in that arena. Of course, many of these 
required capabilities are advantageous features for any multiuser system.  

The core security capabilities of Windows include discretionary (need-to-know) and 
mandatory integrity protection for all shareable system objects (such as files, directories, processes, 
threads, and so forth), security auditing (for accountability of subjects, or users and the actions 
they initiate), user authentication at logon, and the prevention of one user from accessing 
uninitialized resources (such as free memory or disk space) that another user has deallocated. 

Windows has three forms of access control over objects. The first form—discretionary access 
control—is the protection mechanism that most people think of when they think of operating 
system security. It’s the method by which owners of objects (such as files or printers) grant or 
deny access to others. When users log in, they are given a set of security credentials, or a security 
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context. When they attempt to access objects, their security context is compared to the access 
control list on the object they are trying to access to determine whether they have permission to 
perform the requested operation. 

Privileged access control is necessary for those times when discretionary access control isn’t 
enough. It’s a method of ensuring that someone can get to protected objects if the owner isn’t 
available. For example, if an employee leaves a company, the administrator needs a way to gain 
access to files that might have been accessible only to that employee. In that case, under Windows, 
the administrator can take ownership of the file so that you can manage its rights as necessary. 

Finally, mandatory integrity control is required when an additional level of security control is 
required to protect objects that are being accessed from within the same user account. It’s used 
both to isolate Protected Mode Internet Explorer from a user’s configuration and to protect objects 
created by an elevated administrator account from access by a nonelevated administrator account. 
(See Chapter 6 for more information on User Account Control—UAC.) 

Security pervades the interface of the Windows API. The Windows subsystem implements 
object-based security in the same way the operating system does; the Windows subsystem protects 
shared Windows objects from unauthorized access by placing Windows security descriptors on 
them. The first time an application tries to access a shared object, the Windows subsystem verifies 
the application’s right to do so. If the security check succeeds, the Windows subsystem allows the 
application to proceed. 

The Windows subsystem implements object security on a number of shared objects, some of 
which were built on top of native Windows objects. The Windows objects include desktop objects, 
window objects, menu objects, files, processes, threads, and several synchronization objects. 

For a comprehensive description of Windows security, see Chapter 6. 

1.2.9 Registry 

If you’ve worked at all with Windows operating systems, you’ve probably heard about or 
looked at the registry. You can’t talk much about Windows internals without referring to the 
registry because it’s the system database that contains the information required to boot and 
configure the system, systemwide software settings that control the operation of Windows, the 
security database, and per-user configuration settings (such as which screen saver to use).  

In addition, the registry is a window into in-memory volatile data, such as the current 
hardware state of the system (what device drivers are loaded, the resources they are using, and so 
on) as well as the Windows performance counters. The performance counters, which aren’t 
actually “in” the registry, are accessed through the registry functions. See Chapter 4 for more on 
how performance counter information is accessed from the registry. 

Although many Windows users and administrators will never need to look directly into the 
registry (because you can view or change most configuration settings with standard administrative 
utilities), it is still a useful source of Windows internals information because it contains many 
settings that affect system performance and behavior. (If you decide to directly change registry 
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settings, you must exercise extreme caution; any changes might adversely affect system 
performance or, worse, cause the system to fail to boot successfully.) You’ll find references to 
individual registry keys throughout this book as they pertain to the component being described. 
Most registry keys referred to in this book are under HKEY_LOCAL_MACHINE, which we’ll 
abbreviate throughout as HKLM. 

For further information on the registry and its internal structure, see Chapter 4. 

1.2.10 Unicode 

Windows differs from most other operating systems in that most internal text strings are 
stored and processed as 16-bit-wide Unicode characters. Unicode is an international character set 
standard that defines unique 16-bit values for most of the world’s known character sets. (For more 
information about Unicode, see www.unicode.org as well as the programming documentation in 
the MSDN Library.) 

Because many applications deal with 8-bit (single-byte) ANSI character strings, Windows 
functions that accept string parameters have two entry points: a Unicode (wide, 16-bit) andan 
ANSI (narrow, 8-bit) version. The Windows 95, Windows 98, and Windows Millennium Edition 
implementations of Windows don’t implement all the Unicode interfaces to all the Windows 
functions, so applications designed to run on one of these operating systems as well as Windows 
Vista and Windows Server 2008 typically use the narrow versions. If you call the narrow version 
of a Windows function, input string parameters are converted to Unicode before being processed 
by the system and output parameters are converted from Unicode to ANSI before being returned 
to the application. Thus, if you have an older service or piece of code that you need to run on 
Windows but this code is written using ANSI character text strings, Windows will convert the 
ANSI characters into Unicode for its own use. However, Windows never converts the data inside 
files—it’s up to the application to decide whether to store data as Unicode or as ANSI.  

Regardless of language, all versions of Windows contain the same functions. Instead of 
having separate language versions, Windows has a single worldwide binary so that a single 
installation can support multiple languages (by adding various language packs). Applications can 
also take advantage of Windows functions that allow single worldwide application binaries that 
can support multiple languages. 

1.3 Digging into Windows internals 

Although much of the information in this book is based on reading the Windows source code 
and talking to the developers, you don’t have to take everything on faith. Many details about the 
internals of Windows can be exposed and demonstrated by using a variety of available tools, such 
as those that come with Windows and the Windows debugging tools. These tool packages are 
briefly described later in this section. 
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To encourage your exploration of Windows internals, we’ve included “Experiment” sidebars 
throughout the book that describe steps you can take to examine a particular aspect of Windows 
internal behavior. (You already saw a few of these sections earlier in this chapter.) 

We encourage you to try these experiments so that you can see in action many of the 
internals topics described in this book. 

Table 1-3 shows a list of the principal tools used in this book and where they come from. 

1.3.1 Reliability and Performance Monitor 

We’ll refer to the Reliability and Performance Monitor found in the Administrative Tools 
folder on the Start menu (or via Control Panel) throughout this book; specifically, we’ll focus on 
the Performance Monitor and Resource Monitor. The Performance Monitor has three functions: 
system monitoring, viewing performance counter logs, and setting alerts (by using data collector 
sets, which also contain performance counter logs and trace and configuration data). For 
simplicity, when we refer to the Performance Monitor, we are referring to the System Monitor 
function within the tool. 

The Performance Monitor can provide more information about how your system is operating 
than any other single utility. It includes hundreds of counters for various objects. For each major 
topic described in this book, a table of the relevant Windows performance counters is included. 

The Performance Monitor contains a brief description for each counter. To see the 
descriptions, select a counter in the Add Counters window and select the Show Description check 
box. 

Although all the low-level system monitoring we’ll do in this book can be done with the 
Performance Monitor, Windows Vista also includes a Resource Monitor utility that shows four 
primary system resources: CPU, Disk, Network, and Memory. In their basic states, these resources 
are displayed with the same level of information that you would find in Task Manager. However, 
they also provide columns that can be expanded for more information.  
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When expanded, the CPU column displays information about per-process CPU usage, just 
like Task Manager. However, it adds a column for average CPU usage, which can give you a 
better idea of which processes are most active. The Disk column, on the other hand, displays 
per-fileinformation for I/Os in a way that makes it easy to identify the most accessed, written to, 
or read from files on the system. 

The Networking column displays the active network connections and which processes own 
them, as well as how much data is going through them. This information makes it possible to see 
background network activity that might be hard to detect otherwise. Finally, the Memory column 
displays much of the same information that one can obtain with Task Manager, but it is organized 
for the entire system. 
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Note that all the Windows performance counters are accessible programmatically. The 
section “HKEY_PERFORMANCE_DATA” in Chapter 4 has a brief description of the 
components involved in retrieving performance counters through the Windows API. 

1.3.2 Kernel Debugging 

Kernel debugging means examining internal kernel data structures and/or stepping through 
functions in the kernel. It is a useful way to investigate Windows internals because you can 
display internal system information not available through any other tools and get a clearer idea of 
code flows within the kernel.  

Kernel debugging can be performed with a variety of tools: the Debugging Tools for 
Windows from Microsoft, LiveKD from Sysinternals, or Syser Debugger from www.sysersoft. 
com . However, we’ll focus on the Windows debugging tools because they are the only supported 
way to perform kernel debugging on Windows. Before describing these tools, let’s examine a set 
of files that you’ll need in order to perform any type of kernel debugging. 

Symbols for Kernel Debugging 

Symbol files contain the names of functions and variables. They are generated by the linker 
and used by debuggers to reference and display these names during a debug session. This 
information is not usually stored in the binary image because it is not needed to execute the code. 
This means that binaries are smaller and faster. However, this means that when debugging, you 
must make sure that the debugger can access the symbol files that are associated with the images 
you are referencing during a debugging session.  

To use any of the kernel debugging tools to examine internal Windows kernel data structures 
(such as the process list, thread blocks, loaded driver list, memory usage information, and so on), 
you must have the correct symbol files for at least the kernel image, Ntoskrnl.exe. (The section 
“Architecture Overview” in Chapter 2 explains more about this file.) Symbol table files must 
match the version of the image they were taken from. For example, if you install a Windows 
Service Pack or hot fix that updates the kernel, you must obtain the matching, updated symbol 
files for at least the kernel image; otherwise, you’ll get a symbol error when you try to start the 
kernel debugger. 

While it is possible to download and install symbols for various versions of Windows, 
updated symbols for hot fixes are not always available. The easiest solution to obtain the correct 
version of symbols for debugging is to use the Microsoft on-demand symbol server by using a 
special syntax for the symbol path that you specify in the debugger. For example, the following 
symbol path causes the debugging tools to load required symbols from the Internet 

symbol server and keep a local copy in the c:\symbols folder: 

1. srv*c:\symbols*http://msdl.microsoft.com/download/symbols  

For detailed instructions on how to use the symbol server, see the debugging tools help file or 
the Web page www.microsoft.com/whdc/devtools/debugging/debugstart.mspx. 



 28

Debugging Tools for Windows 

The Debugging Tools for Windows package contains advanced debugging tools used in this 
book to explore Windows internals. You can find the latest 32-bit version at www.microsoft.com 
/whdc/devtools/debugging/installx86.mspx and the latest 64-bit version at www.microsoft.com 
whdc/devtools/debugging/install64bit.mspx. These tools can be used to debug user-mode 
processes as well as the kernel. (See the following sidebar.) 

Note The Debugging Tools for Windows are updated frequently and released independently 
of Windows operating system versions, so check often for new versions. 

USER-Mode Debugging 

The debugging tools can also be used to attach to a user-mode process and examine and/or 
change process memory. There are two options when attaching to a process: 

■ invasive Unless specified otherwise, when you attach to a running process, the 
DebugActiveProcess Windows function is used to establish a connection between the debugger 
and the debugee. This permits examining and/or changing process memory, setting breakpoints, 
and performing other debugging functions. Windows allows you to stop debugging without killing 
the target process, as long as the debugger is detached, not killed. 

■ Noninvasive With this option, the debugger simply opens the process with the 
OpenProcess function. It does not attach to the process as a debugger. 

This allows you to examine and/or change memory in the target process, but you cannot set 
breakpoints. 

You can also open user-mode process dump files with the debugging tools. User-mode dump 
files are explained in Chapter 3 in the section on exception dispatching. There are two primary 
variants of the Microsoft debuggers that can be used for kernel debugging: a command-line 
version (Kd.exe) and a graphical user interface (GUI) version (Windbg.exe). Both provide the 
same set of commands, so which you choose is a matter of personal preference. You can perform 
three types of kernel debugging with these tools: 

■ Open a crash dump file created as a result of a Windows system crash. (See Chapter 14 for 
more information on crash dumps.) 

■ Connect to a live, running system and examine the system state (or set breakpoints if 
you’re debugging device driver code). This operation requires two computers—a target and a host. 
The target is the system being debugged, and the host is the system running the debugger. The 
target system can be either local (connected to the host via a null modem cable, an IEEE 1394 
cable, or a USB 2.0 cable) or remote (connected to the host via a modem). The target system must 
be booted in debugging mode (either by pressing F8 during the boot process and selecting 
Debugging Mode or by adding the option with the BCDEdit tool). You can also connect through a 
named pipe, which is useful when debugging through a virtual machine product such as Virtual 
PC or VMWare, by exposing the guest operating system’s serial port as a named pipe device. 
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■ Windows systems also allow you to connect to the local system and examine the system 
state. This is called local kernel debugging. To initiate local kernel debugging with WinDbg, open 
the File menu, choose Kernel Debug, click on the Local tab, and then click OK. The target system 
must be booted in debugging mode, a side effect of which is that the Windows decoders for 
protected content, such as MPEG2 DVD movies, will intentionally fault to prevent access to 
content decryption keys. An example output screen is shown in Figure 1-6. Some kernel debugger 
commands do not work when 

used in local kernel debugging mode (such as creating a memory dump with the .dump 
command—however, this can be done with LiveKD, described later in this section). 

   Once connected in kernel debugging mode, you can use one of the many debugger extension 
commands (commands that begin with “!”) to display the contents of internal data structures such 
as threads, processes, I/O request packets, and memory management information. Throughout this 
book, the relevant kernel debugger commands and output are included as they apply to each topic 
being discussed. An excellent companion reference is the Debugger.chm help file, contained in the 
WinDbg installation folder, which documents all the kernel debugger functionality and extensions. 
In addition, the dt (display type) command can format over 1,000 kernel structures because the 
kernel symbol files for Windows contain type information that the debugger can use to format 
structures.  

EXPERIMENT: Displaying Type information for Kernel Structures 
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To display the list of kernel structures whose type information is included in the kernel 
symbols, type dt nt!_* in the kernel debugger. A sample partial output is shown below: 

1. lkd> dt nt!_*   
2. nt!_LIST_ENTRY   
3. nt!_LIST_ENTRY   
4. nt!_IMAGE_NT_HEADERS   
5. nt!_IMAGE_FILE_HEADER   
6. nt!_IMAGE_OPTIONAL_HEADER   
7. nt!_IMAGE_NT_HEADERS   
8. nt!_LARGE_INTEGER  

You can also use the dt command to search for specific structures by using its wildcard 
lookup capability. For example, if you were looking for the structure name for an interrupt object, 
type dt nt!_*interrupt*: 

1. lkd> dt nt!_*interrupt*   
2. nt!_KINTERRUPT   
3. nt!_KINTERRUPT_MODE   
4. nt!_KINTERRUPT_POLARITY   
5. nt!_PCI_HOTPLUG_SLOT_INTERRUPT  

Then, you can use dt to format a specific structure as shown below: 

1. lkd> dt nt!_kinterrupt   
2. nt!_KINTERRUPT   
3. +0x002 Size : Int2B   
4. +0x004 InterruptListEntry : _LIST_ENTRY   
5. +0x00c ServiceRoutine : Ptr32 unsigned char   
6. +0x010 MessageServiceRoutine : Ptr32 unsigned char   
7. +0x014 MessageIndex : Uint4B   
8. +0x018 ServiceContext : Ptr32 Void   
9. +0x01c SpinLock : Uint4B   
10. +0x020 TickCount : Uint4B   
11. +0x024 ActualLock : Ptr32 Uint4B   
12. +0x028 DispatchAddress : Ptr32 void   
13. +0x02c Vector : Uint4B   
14. +0x030 Irql : UChar   
15. +0x031 SynchronizeIrql : UChar   
16. +0x032 FloatingSave : UChar   
17. +0x033 Connected : UChar   
18. +0x034 Number : Char   
19. +0x035 ShareVector : UChar   
20. +0x038 Mode : _KINTERRUPT_MODE   
21. +0x03c Polarity : _KINTERRUPT_POLARITY   
22. +0x040 ServiceCount : Uint4B   
23. +0x044 DispatchCount : Uint4B   
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24. +0x048 Rsvd1 : Uint8B   
25. +0x050 DispatchCode : [135] Uint4B  

Note that dt does not show substructures (structures within structures) by default. To recurse 
through substructures, use the –r switch. For example, using this switch to display the kernel 
interrupt object shows the format of the _LIST_ENTRY structure stored at the InterruptListEntry 
field: 

1. lkd> dt nt!_kinterrupt -r   
2. nt!_KINTERRUPT   
3. +0x000 Type : Int2B   
4. +0x002 Size : Int2B   
5. +0x004 InterruptListEntry : _LIST_ENTRY   
6. +0x000 Flink : Ptr32 _LIST_ENTRY   
7. +0x000 Flink : Ptr32 _LIST_ENTRY   
8. +0x004 Blink : Ptr32 _LIST_ENTRY   
9. +0x004 Blink : Ptr32 _LIST_ENTRY   
10. +0x000 Flink : Ptr32 _LIST_ENTRY   
11. +0x004 Blink : Ptr32 _LIST_ENTRY  

The Debugging Tools for Windows help file also explains how to set up and use the kernel 
debuggers. Additional details on using the kernel debuggers that are aimed primarily at device 
driver writers can be found in the Windows Driver Kit documentation. There are also several 
useful Knowledge Base articles on the kernel debugger. Search for “debugref” in the Windows 
Knowledge Base (an online database of technical articles) on support.microsoft.com. 

LiveKd Tool 

LiveKd is a free tool from Sysinternals that allows you to use the standard Microsoft kernel 
debuggers just described to examine the running system without booting the system in debugging 
mode. This approach might be useful when kernel-level troubleshooting is required on a machine 
that wasn’t booted in debugging mode—certain issues may be hard to reproduce reliably, so a 
reboot with the debug option enabled may not reexhibit the error. 

You run LiveKd just as you would WinDbg or Kd. LiveKd passes any command-line options 
you specify to the debugger you select. By default, LiveKd runs the new command-line kernel 
debugger (Kd). To run WinDbg, specify the –w switch. To see the help files for LiveKd switches, 
specify the –? switch.  

LiveKd presents a simulated crash dump file to the debugger, so you can perform any 
operations in LiveKd that are supported on a crash dump. Because LiveKd is relying on physical 
memory to back the simulated dump, the kernel debugger might run into situations in which data 
structures are in the middle of being changed by the system and are inconsistent. Each time the 
debugger is launched, it starts with a fresh view of the system state. If you want to refresh the 
snapshot, quit the debugger (with the q command), and LiveKd will ask you whether you want to 
start it again. If the debugger enters a loop in printing output, press Ctrl+C to interrupt the output, 
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quit, and rerun it. If it hangs, press Ctrl+Break, which will terminate the debugger process and ask 
you whether you want to run the debugger again. 

1.3.3 Windows Software Development Kit 

The Windows Software Development Kit (SDK) is available as part of the MSDN 
subscription program or can be downloaded for free from www.msdn.microsoft.com. It contains 
the documentation, C header files, and libraries necessary to compile and link Windows 
applications. (Although Microsoft Visual C++ comes with a copy of these header files, the 
versions contained in the Windows SDK always match the latest version of the Windows 
operating systems, whereas the version that comes with Visual C++ might be an older version that 
was current when Visual C++ was released.) From an internals perspective, items of interest in the 
Windows SDK include the Windows API header files (\Program Files\Microsoft SDK\Include) as 
well as some utilities (such as Pstat.exe and Vadump.exe). A few of these tools are also shipped as 
sample source code in both the Windows SDK and the MSDN Library. 

1.3.4 Windows Driver Kit 

The Windows Driver Kit (WDK) is also available through the MSDN subscription program, 
and just like the Windows SDK, it is available for free download. The Windows Driver Kit 
documentation is included in the MSDN Library.  

Although the WDK is aimed at device driver developers, it is an abundant source of 
Windows internals information. For example, while Chapter 7 describes the I/O system 
architecture, driver model, and basic device driver data structures, it does not describe the 
individual kernel support functions in detail. The WDK documentation contains a comprehensive 
description of all the Windows kernel support functions and mechanisms used by device drivers in 
both a tutorial and reference form. 

Besides including the documentation, the WDK contains header files (in particular, ntddk.h, 
ntifs.h, and wdm.h) that define key internal data structures and constants as well as interfaces to 
many internal system routines. These files are useful when exploring Windows internal data 
structures with the kernel debugger because although the general layout and content of these 
structures are shown in this book, detailed field-level descriptions (such as size and data types) are 
not. A number of these data structures (such as object dispatcher headers, wait blocks, events, 
mutants, semaphores, and so on) are, however, fully described in the WDK. 

So if you want to dig into the I/O system and driver model beyond what is presented in this 
book, read the WDK documentation (especially the Kernel-Mode Driver Architecture Design 
Guide and Reference manuals). Another excellent source is Programming the Microsoft Windows 
Driver Model, Second Edition by Walter Oney (Microsoft Press, 2002). 

1.3.5 Sysinternals Tools 
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Many experiments in this book use freeware tools that you can download from Sysinternals. 
Mark Russinovich, coauthor of this book, wrote most of these tools. The most popular tools 
include Process Explorer and Process Monitor. Note that many of these utilities involve the 
installation and execution of kernel-mode device drivers and thus require administrator privileges. 

1.4 Conclusion 

In this chapter, you’ve been introduced to the key Windows technical concepts and terms that 
will be used throughout the book. You’ve also had a glimpse of the many useful tools available for 
digging into Windows internals. Now we’re ready to begin our exploration of the internal design 
of the system, beginning with an overall view of the system architecture and its key components. 
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2. System Architecture 

Now that we’ve covered the terms, concepts, and tools you need to be familiar with, we’re 
ready to start our exploration of the internal design goals and structure of the Microsoft Windows 
operating system. This chapter explains the overall architecture of the system—the key 
components, how they interact with each other, and the context in which they run.  

To provide a framework for understanding the internals of Windows, let’s first review the 
requirements and goals that shaped the original design and specification of the system. 

2.1 Requirements and Design Goals 

The following requirements drove the specification of Windows NT back in 1989:  

■ Provide a true 32-bit, preemptive, reentrant, virtual memory operating system  

■ Run on multiple hardware architectures and platforms 

■ Run and scale well on symmetric multiprocessing systems 

■ Be a great distributed computing platform, both as a network client and as a server 

■ Run most existing 16-bit MS-DOS and Microsoft Windows 3.1 applications 

■ Meet government requirements for POSIX 1003.1 compliance 

■ Meet government and industry requirements for operating system security 

■ Be easily adaptable to the global market by supporting Unicode 

To guide the thousands of decisions that had to be made to create a system that met these 
requirements, the Windows NT design team adopted the following design goals at the beginning 
of the project: 

■ Extensibility The code must be written to comfortably grow and change as market 
requirements change. 

■ Portability The system must be able to run on multiple hardware architectures and must be 
able to move with relative ease to new ones as market demands dictate. 

■ Reliability and robustness The system should protect itself from both internal malfunction 
and external tampering. Applications should not be able to harm the operating system or other 
applications. 

■ Compatibility Although Windows NT should extend existing technology, its user interface 
and APIs should be compatible with older versions of Windows and with MS-DOS. It should also 
interoperate well with other systems, such as UNIX, OS/2, and NetWare. 

■ Performance Within the constraints of the other design goals, the system should be as fast 
and responsive as possible on each hardware platform. 
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As we explore the details of the internal structure and operation of Windows, you’ll see how 
these original design goals and market requirements were woven successfully into the construction 
of the system. But before we start that exploration, let’s examine the overall design model for 
Windows and compare it with other modern operating systems. 

2.2 Operating System Model 

In most multiuser operating systems, applications are separated from the operating system 
itself—the operating system kernel code runs in a privileged processor mode (referred to as kernel 
mode in this book), with access to system data and to the hardware; application code runs in a 
nonprivileged processor mode (called user mode), with a limited set of interfaces available, 
limited access to system data, and no direct access to hardware. When a user-mode program calls 
a system service, the processor traps the call and then switches the calling thread to kernel mode. 
When the system service completes, the operating system switches the thread context back to user 
mode and allows the caller to continue.  

Windows is similar to most UNIX systems in that it’s a monolithic operating system in the 
sense that the bulk of the operating system and device driver code shares the same kernelmode 
protected memory space. This means that any operating system component or device driver can 
potentially corrupt data being used by other operating system components.  

Is Windows a Microkernel-Based System? 

Although some claim it as such, Windows isn’t a microkernel-based operating system in the 
classic definition of microkernels, where the principal operating system components (such as the 
memory manager, process manager, and I/O manager) run as separate processes in their own 
private address spaces, layered on a primitive set of services the microkernel provides. For 
example, the Carnegie Mellon University Mach operating system, a contemporary example of a 
microkernel architecture, implements a minimal kernel that comprises thread scheduling, message 
passing, virtual memory, and device drivers. Everything else, including various APIs, file systems, 
and networking, runs in user mode. However, commercial implementations of the Mach 
microkernel operating system typically run at least all file system, networking, and memory 
management code in kernel mode. The reason is simple: the pure microkernel design is 
commercially impractical because it’s too inefficient. 

Does the fact that so much of Windows runs in kernel mode mean that it’s more susceptible 
to crashes than a true microkernel operating system? Not at all. Consider the following scenario. 
Suppose the file system code of an operating system has a bug that causes it to crash from time to 
time. In a traditional operating system, a bug in kernelmode code such as the memory manager or 
the file system would likely crash the entire operating system. In a pure microkernel operating 
system, such components run in user mode, so theoretically a bug would simply mean that the 
component’s process exits. But in practical terms, the system would crash because recovering 
from the failure of such a critical process would likely be impossible. 
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All these operating system components are, of course, fully protected from errant 
applications because applications don’t have direct access to the code and data of the privileged 
part of the operating system (although they can quickly call other kernel services). This protection 
is one of the reasons that Windows has the reputation for being both robust and stable as an 
application server and as a workstation platform yet fast and nimble from the perspective of core 
operating system services, such as virtual memory management, file I/O, networking, and file and 
print sharing. The kernel-mode components of Windows also embody basic object-oriented design 
principles. For example, they don’t in general reach into one another’s data structures to access 
information maintained by individual components. Instead, they use formal interfaces to pass 
parameters and access and/or modify data structures. 

Despite its pervasive use of objects to represent shared system resources, Windows is not an 
object-oriented system in the strict sense. Most of the operating system code is written in C for 
portability and because C development tools are widely available. C doesn’t directly support 
object-oriented constructs such as dynamic binding of data types, polymorphic functions, or class 
inheritance. Therefore, the C-based implementation of objects in Windows borrows from, but 
doesn’t depend on, features of particular object-oriented languages. 

2.3 Architecture Overview 

With this brief overview of the design goals and packaging of Windows, let’s take a look at 
the key system components that make up its architecture. A simplified version of this architecture 
is shown in Figure 2-1. Keep in mind that this diagram is basic—it doesn’t show everything. (For 
example, the networking components and the various types of device driver layering are not 
shown.) 

    In Figure 2-1, first notice the line dividing the user-mode and kernel-mode parts of the 
Windows operating system. The boxes above the line represent user-mode processes, and the 
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components below the line are kernel-mode operating system services. As mentioned in Chapter 1, 
user-mode threads execute in a protected process address space (although while they are executing 
in kernel mode, they have access to system space). Thus, system support processes, service 
processes, user applications, and environment subsystems each have their own private process 
address space. 

The four basic types of user-mode processes are described as follows: 

■ Fixed (or hardwired) system support processes, such as the logon process and the Session 
Manager, that are not Windows services. (That is, they are not started by the service control 
manager. Chapter 4 describes services in detail.) 

■ Service processes that host Windows services, such as the Task Scheduler and Print 
Spooler services. Services generally have the requirement that they run independently of user 
logons. Many Windows server applications, such as Microsoft SQL Server and Microsoft 
Exchange Server, also include components that run as services. 

■ User applications, which can be one of five types: Windows 32-bit, Windows 64-bit, 
Windows 3.1 16-bit, MS-DOS 16-bit, or POSIX 32-bit. 

■ Environment subsystem server processes, which implement part of the support for the 
operating system environment, or personality presented to the user and programmer. 

Windows NT originally shipped with three environment subsystems: Windows, POSIX, and 
OS/2. However, OS/2 last shipped with Windows 2000. Windows Vista Ultimate and Enterprise 
include support for an enhanced POSIX subsystem called Subsystem for Unix-based Applications 
(SUA). 

In Figure 2-1, notice the “Subsystem DLLs” box below the “Service processes” and “User 
applications” boxes. Under Windows, user applications don’t call the native Windows operating 
system services directly; rather, they go through one or more subsystem dynamiclink libraries 
(DLLs). The role of the subsystem DLLs is to translate a documented function into the appropriate 
internal (and generally undocumented) native system service calls. This translation might or might 
not involve sending a message to the environment subsystem process that is serving the user 
application. 

The kernel-mode components of Windows include the following: 

■ The Windows executive contains the base operating system services, such as memory 
management, process and thread management, security, I/O, networking, and interprocess 
communication. 

■ The Windows kernel consists of low-level operating system functions, such as thread 
scheduling, interrupt and exception dispatching, and  ultiprocessor synchronization. It also 
provides a set of routines and basic objects that the rest of the executive uses to implement 
higher-level constructs. 

■ Device drivers include both hardware device drivers, which translate user I/O function calls 
into specific hardware device I/O requests, as well as file system and network drivers. 
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■ The hardware abstraction layer (HAL) is a layer of code that isolates the kernel, device 
drivers, and the rest of the Windows executive from platform-specific hardware differences (such 
as differences between motherboards). 

■ The windowing and graphics system implements the graphical user interface (GUI) 
functions (better known as the Windows USER and GDI functions), such as dealing with windows, 
user interface controls, and drawing. 

Table 2-1 lists the file names of the core Windows operating system components. (You’ll 
need to know these file names because we’ll be referring to some system files by name.) Each of 
these components is covered in greater detail both later in this chapter and in the chapters that 
follow. 

    Before we dig into the details of these system components, though, let’s examine how 
Windows achieves portability across multiple hardware architectures. 

2.3.1 Portability 

Windows was designed to run on a variety of hardware architectures, including Intel-based 
CISC systems as well as RISC systems. The initial release of Windows NT supported the x86 and 
MIPS architectures. Support for the Digital Equipment Corporation (which was bought by 
Compaq, which later merged with Hewlett-Packard) Alpha AXP was added shortly thereafter. 
(Although Alpha AXP was a 64-bit processor, Windows NT ran in 32-bit mode. During the 
development of Windows 2000, a native 64-bit version was running on Alpha AXP, but this never 
was released.) Support for a fourth processor architecture, the Motorola PowerPC, was added in 
Windows NT 3.51. Because of changing market demands, however, support for the MIPS and 
PowerPC architectures was dropped before development began on Windows 2000.  
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Later, Compaq withdrew support for the Alpha AXP architecture, resulting in Windows 2000 
being supported only on the x86 architecture. Windows XP and Windows Server 2003 added 
support for three 64-bit processor families: the Intel Itanium IA-64 family, the AMD64 family, 
and the Intel 64-bit Extension Technology (EM64T) for x86 (which is compatible with the 
AMD64 architecture, although there are slight differences in instructions supported). The latter 
two processor families are called 64-bit extended systems and in this book are referred to as x64. 
(How Windows runs 32-bit applications on 64-bit Windows is explained in Chapter 3.) 

Windows achieves portability across hardware architectures and platforms in two primary 
ways: 

■ Windows has a layered design, with low-level portions of the system that are 
processorarchitecture-specific or platform-specific isolated into separate modules so that upper 
layers of the system can be shielded from the differences between architectures and among 
hardware platforms. The two key components that provide operating system portability are the 
kernel (contained in Ntoskrnl.exe) and the hardware abstraction layer (or HAL, contained in 
Hal.dll). Both these components are described in more detail later in this chapter. Functions that 
are architecture-specific (such as thread context switching and trap dispatching) are implemented 
in the kernel. Functions that can differ among systems within the same architecture (for example, 
different  motherboards) are implemented in the HAL. The only other component with a 
significant amount of architecture-specific code is the memory manager, but even that is a small 
amount compared to the system as a whole. 

■ The vast majority of Windows is written in C, with some portions in C++. Assembly 
language is used only for those parts of the operating system that need to communicate directly 
with system hardware (such as the interrupt trap handler) or that are extremely 
performance-sensitive (such as context switching). Assembly language code exists not only in the 
kernel and the HAL but also in a few other places within the core operating system (such as the 
routines that implement interlocked instructions as well as onemodule in the local procedure call 
facility), in the kernel-mode part of the Windows 

subsystem, and even in some user-mode libraries, such as the process startup code in Ntdll.dll 
(a system library explained later in this chapter). 

2.3.2 Symmetric Multiprocessing 

Multitasking is the operating system technique for sharing a single processor among multiple 
threads of execution. When a computer has more than one processor, however, it can execute 
multiple threads simultaneously. Thus, whereas a multitasking operating system only appears to 
execute multiple threads at the same time, a multiprocessing operating system actually does it, 
executing one thread on each of its processors. 

As mentioned at the beginning of this chapter, one of the key design goals for Windows was 
that it had to run well on multiprocessor computer systems. Windows is a symmetric 
multiprocessing (SMP) operating system. There is no master processor—the operating system as 
well as user threads can be scheduled to run on any processor. Also, all the processors share just 
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one memory space. This model contrasts with asymmetric multiprocessing (ASMP), in which the 
operating system typically selects one processor to execute operating system kernel code while 
other processors run only user code. The differences in the two multiprocessing models are 
illustrated in Figure 2-2. 

  Windows Vista and Windows Server 2008 also support two modern types of multiprocessor 
systems: hyperthreading and NUMA (non-uniform memory architecture). These are briefly 
mentioned in the following paragraphs. (For a complete, detailed description of the scheduling 
support for these systems, see the thread scheduling section in Chapter 5.) 

Naturally, Windows also natively supports multicore systems—because these systems have 
real physical cores (simply on the same package), the original SMP code in Windows treats them 
as discrete processors, except for certain accounting and identification tasks (such as licensing, 
described shortly) that distinguish between cores on the same processor and cores on different 
sockets. 

Hyperthreading is a technology introduced by Intel that provides many logical processors on 
one physical processor. Each logical processor has its CPU state, but the execution engine and 
onboard cache are shared. This permits one logical CPU to make progress while the other logical 
CPUs are busy (such as performing interrupt processing work, which prevents threads from 
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running on that logical processor). The scheduling algorithms are enhanced to make optimal use 
of multiprocessor hyperthreaded machines, such as by scheduling threads on an idle physical 
processor versus choosing an idle logical  processor on a physical processor whose other logical 
processors are busy.  

In NUMA systems, processors are grouped in smaller units called nodes. Each node has its 
own processors and memory and is connected to the larger system through a cachecoherent 
interconnect bus. Windows on a NUMA system still runs as an SMP system, in that all processors 
have access to all memory—it’s just that node-local memory is faster to reference than memory 
attached to other nodes. The system attempts to improve performance by scheduling threads on 
processors that are in the same node as the memory being used. It attempts to satisfy 
memory-allocation requests from within the node, but will allocate memory from other nodes if 
necessary. 

Although Windows was originally designed to support up to 32 processors, nothing inherent 
in the multiprocessor design limits the number of processors to 32—that number is simply an 
obvious and convenient limit because 32 processors can easily be represented as a bit mask using 
a native 32-bit data type. In fact, the 64-bit versions of Windows support up to 64 processors, 
because the native size of a word on a 64-bit machine is 64 bits. The actual number of supported 
processors depends on the edition of Windows being used. (See Table 2-3.) This number is stored 
in the system license policy file  (\Windows\ServiceProfiles\NetworkService \AppData\Roaming 
\Microsoft\SoftwareLicensing\tokens.dat) as a policy value called “Kernel-MaximumProcessors.” 
(Keep in mind that tampering with that data is a violation of the software license and modifying 
licensing policies to allow the use of more processors involves more than just changing this 
value.) 

As of Windows Vista and Windows Server 2008, there is a unified kernel regardless of 
whether the system is a uniprocessor or multiprocessor machine. This change, compared to earlier 
versions of Windows, which had separate kernels for each machine type, was made both because 
the majority of systems currently sold include at least two cores and because the few 
uniprocessor-only optimizations result in negligible performance improvement.  

However, 32-bit versions of Windows still come in two flavors of the kernel, depending on 
whether PAE is enabled and supported. Because no-execute memory support (known as NX on 
AMD processors and XD on Intel processors) in today’s processors makes use of PAE structures, 
most 32-bit systems use the PAE kernel. On 64-bit Windows systems there is no PAE kernel 
(there isn’t a need for it), so there is only a single kernel image.  

At installation time, the appropriate files are selected and copied to the local %SystemRoot% 
directory. Table 2-2 shows the correspondence of installed file names to their original names on 
the installation media. 



 42

 The rest of the system files that make up Windows (including all utilities, libraries, and device 
drivers) have the same version on all types of systems (that is, they handle multiprocessor 
synchronization and PAE issues correctly). You should use this approach on any software you 
build, whether it is a Windows application or a device driver—keep multiprocessor 
synchronization issues in mind when you design your software, and test the software on 
both  uniprocessor and multiprocessor systems. For legacy applications, Windows implements a 
number of flags to provide backward compatibility. For example, applications need to be 
specifically made “large address aware” for PAE support, and they can also set a “uniprocessor 
only” field in their image if they break on SMP systems. 

EXPERIMENT: Checking Which Ntoskrnl Version You’re Running 

Windows has no utility to show which version of Ntoskrnl you are running. However, an 
Event Log entry is written each time the system boots that does record the type of kernel image 
that loaded (multiprocessor and free vs. checked), as shown in the following screen shot. (From 
the Start menu, select Programs/Administrative Tools/Event Viewer, select Windows 
Logs/System, and then double-click an Event Log entry with an Event ID of 6009, indicating the 
entry was written at the system start.) 
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  This Event Log entry doesn’t indicate whether you booted the PAE version of the kernel image 
that supports more than 4 GB of physical memory (Ntkrnlpa.exe). However, you can tell if you 
booted the PAE kernel by looking at the registry value HKLM\SYSTEM 
\CurrentControlSet\Control\SessionManager\MemoryManagement\PhysicalAddressExtension.    
You can also determine which version of the kernel you’re running by using WinDbg and opening 
a local kernel debugging session. Be sure you have the symbols loaded (enter the .reload 
command), and then type the “list module” command to list details for the kernel image (nt): lm 
mv nt. The output below shows a PAE multiprocessor kernel, as you can tell by the name. 

1. lkd> lm vm nt   

2. start end module name   

3. 82000000 823a1000 nt (pdb symbols)   

4.    c:\programming\symbols\ntkrpamp.pdb\7018E534B06E4A5BB6C63F6F2AA80207 

2\ntkrpamp.pdb   

4. Loaded symbol image file: ntkrpamp.exe   

5. Image path: ntkrpamp.exe   

6. Image name: ntkrpamp.exe   

7. Timestamp: Tue Oct 09 21:46:20 2007 (470C2EEC)   

8. CheckSum: 00366023  

9. ImageSize: 003A1000  

10. File version: 6.0.6000.20697  

11. Product version: 6.0.6000.20697  

12. File flags: 0 (Mask 3F)   
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13. File OS: 40004 NT Win32  

14. File type: 1.0 App   

15. File date: 00000000.00000000  

16. Translations: 0409.04b0  

17. CompanyName: Microsoft Corporation   

18. ProductName: Microsoft® Windows® Operating System   

19. InternalName: ntkrpamp.exe   

20. OriginalFilename: ntkrpamp.exe   

21. ProductVersion: 6.0.6000.20697  

22. FileVersion: 6.0.6000.20697 (vista_ldr.071009-1543)   

23. FileDescription: NT Kernel & System   

24. LegalCopyright: © Microsoft Corporation. All rights reserved. 

2.3.3 Scalability 

One of the key issues with multiprocessor systems is scalability. To run correctly on an SMP 
system, operating system code must adhere to strict guidelines and rules. Resource contention and 
other performance issues are more complicated in multiprocessing systems than in uniprocessor 
systems and must be accounted for in the system’s design. Windows incorporates several features 
that are crucial to its success as a multiprocessor operating system:  

■ The ability to run operating system code on any available processor and on multiple 
processors at the same time 

■ Multiple threads of execution within a single process, each of which can execute 
simultaneously on different processors 

■ Fine-grained synchronization within the kernel (such as spinlocks, queued spinlocks, and 
pushlocks, described in Chapter 3) as well as within device drivers and server processes, which 
allows more components to run concurrently on multiple processors 

■ Programming mechanisms such as I/O completion ports (described in Chapter 7) that 
facilitate the efficient implementation of multithreaded server processes that can scale well on 
multiprocessor systems 

The scalability of the Windows kernel has evolved over time. For example, Windows Server 
2003 has per-CPU scheduling queues, which permit thread scheduling decisions to occur in 
parallel on multiple processors. Multiprocessor thread scheduling details are covered in Chapter 5. 
Further details on multiprocessor synchronization can be found in Chapter 3. 

2.3.4 Differences Between Client and Server Versions 

Windows ships in both client and server retail packages. There are six client versions of 
Windows Vista: Windows Vista Home Basic, Windows Vista Home Premium, Windows Vista 
Business, Windows Vista Ultimate, Windows Vista Enterprise, and Windows Vista Starter. 
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There are five main variants of Windows Server 2008: Windows Web Server 2008, Windows 
Server 2008 Standard, Windows Server 2008 Enterprise, Windows Server 2008 Datacenter, and 
Windows Server 2008 for Itanium-Based Systems. 

Additionally, there are “N” versions of the client that do not include Windows Media Player. 
Finally, the Standard, Enterprise, and Datacenter editions of Windows Server 2008 also include 
“without Hyper-V” editions, which do not include Hyper-V. (Hyper-V virtualization is discussed 
in Chapter 3). 

These versions differ by: 

■ The number of processors supported (in terms of physical packages, not cores) 

■ The amount of physical memory supported 

■ The number of concurrent network connections supported (For example, a maximum of 10 
concurrent connections are allowed to the file and print services in the client version.) 

■ Support for Tablet PC and/or Media Center Edition 

■ Support for features such as BitLocker, DVD burning, Windows Fax and Scan, Backup, 
and more than 100 other configurable licensing policy values 

■ Layered services that come with Windows Server editions that don’t come with the client 
editions (for example, directory services and clustering) 

Table 2-3 lists the differences in memory and processor support for Windows Vista and 
Windows Server 2008. For a detailed comparison chart of the different editions of Windows 
Server 2008, see www.microsoft.com/windowsserver2008/en/us/compare-specs.aspx.  
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Although there are several client and server retail packages of the Windows operating system, 
they share a common set of core system files, including the kernel image, Ntoskrnl.exe (and the 
PAE version, Ntkrnlpa.exe); the HAL libraries; the device drivers; and the base system utilities 
and DLLs. Starting with Windows Vista SP1, these files are identical for all editions of Windows. 

Note Because Windows Vista shipped about a year before Windows Server 2008, there was a 
short period during which the two operating systems had different kernels (development on 
Windows Server 2008 was continuing on an updated version of the Vista kernel). As Windows 
Vista SP1 was being developed, the kernels for the two editions were synced up, and both 
Windows Vista SP1 and Windows Server 2008 launched together, unifying the kernels for the 
first time since Windows 2000. 

With so many different versions of Windows, but with each having the same kernel image, 
how does the system know which edition is booted? By querying the registry values ProductType 
and ProductSuite under the HKLM\SYSTEM\CurrentControlSet\Control\ProductOptions key. 
ProductType is used to distinguish whether the system is a client system or a server system (of any 
flavor). The valid values are listed in Table 2-4. The result is stored in the system global variable 
MmProductType, which can be queried from a device driver using the kernel-mode support 
function MmIsThisAnNtAsSystem, documented in the Windows Driver Kit (WDK). These values 
are loaded into the registry based on the licensing policy file described earlier.  

  A different registry value, ProductPolicy, contains a cached copy of the data inside the 
tokens.dat file, which differentiates between the editions of Windows and the features that they 
enable. If user programs need to determine which edition of Windows is running, they can call the 
Windows VerifyVersionInfo function, documented in the Windows Software Development Kit 
(SDK). Device drivers can call the kernel-mode function RtlGetVersion, documented in the 
WDK. 

So if the core files are essentially the same for the client and server versions, how do the 
systems differ in operation? In short, server systems are by default optimized for system 
throughput as high-performance application servers, whereas the client version, although it has 
server capabilities, is optimized for response time for interactive desktop use. For example, based 
on the product type, several resource allocation decisions are made differently at system boot time, 
such as the size and number of operating system heaps (or pools), the number of internal system 
worker threads, and the size of the system data cache. Also, runtime policy decisions, such as the 
way the memory manager trades off system and process memory demands, differ between the 
server and client editions. Even some thread scheduling details have different default behavior in 
the two families (the default length of the time slice, or thread quantum—see Chapter 5 for 
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details). Where there are significant operational differences in the two products, these are 
highlighted in the pertinent chapters throughout the rest of this book. Unless otherwise noted, 
everything in this book applies to both the client and server versions. 

EXPERIMENT: Determining Features enabled by licensing Policy 

As mentioned earlier, Windows supports more than 100 different features that can be enabled 
through the software licensing mechanism. These policy settings determine the various differences 
not only between a client Windows installation (such as Windows Vista) and a server installation 
(such as Windows Server 2008) but also between each edition (or SKU) of the operating system, 
such as enabling BitLocker support on Ultimate and Enterprise editions of Vista. You can use the 
SlPolicy tool available from Winsider Seminars & Solutions (www.winsiderss.com/tools 
/slpolicy.htm) to display these policy values on your machine. 

Policy settings are organized by a facility, which represents the owner module for which the 
policy applies. You can display a list of all facilities on your system by running Slpolicy.exe with 
the –f switch:  

1. SlPolicy v1.01 - Show Software Licensing Policies   

2. Copyright (C) 2008 Alex Ionescu   

3. www.alex-ionescu.com   

4. Software Licensing Facilities:   

5. Kernel   

6. Licensing and Activation   

7. Core   

You can then add the name of any facility after the switch to display the policy value for that 
facility. For example, to look at the limitations on CPUs and available memory, use the Kernel 
facility. Here’s the expected output on a machine running Windows Vista Ultimate: 

1. C:\>SlPolicy.exe -f Kernel   

2. Slpolicy v1.01 - Show Software Licensing Policies   

3. Copyright (C) 2008 Alex Ionescu   

4. www.alex-ionescu.com   

5. Kernel   

6. ------   

7. Processor Limit: 2  

8. Maximum Memory Allowed (x86): 4096 MB   

9. Maximum Memory Allowed (x64): 131072 MB   

10. Maximum Memory Allowed (IA64): 131072 MB   

11. Maximum Physical Page: 4096  

2.3.5 Checked Build 

There is a special debug version of Windows called the checked build (available only with an 
MSDN Professional or higher subscription). It is a recompilation of the Windows source code 
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with a compile-time flag defined called “DBG” (to cause compile time conditional debugging and 
tracing code to be included). Also, to make it easier to understand the machine code, the 
post-processing of the Windows binaries to optimize code layout for faster execution is not 
performed. (See the section “Performance-Optimized Code” in the Debugging Tools for Windows 
help file.)  

The checked build is provided primarily to aid device driver developers because it performs 
more stringent error checking on kernel-mode functions called by device drivers or other system 
code. For example, if a driver (or some other piece of kernel-mode code) makes an invalid call to 
a system function that is checking parameters (such as acquiring a spinlock at the wrong interrupt 
level), the system will stop execution when the problem is detected rather than allow some data 
structure to be corrupted and the system to possibly crash at a later time. 

EXPERIMENT: Determining If You Are Running the Checked Build 

There is no built-in tool to display whether you are running the checked build or the retail 
build (called the free build). However, this information is available through the “Debug” property 
of the Windows Management Instrumentation (WMI) Win32_OperatingSystem class. The 
following sample Visual Basic script displays this property:  

1. strComputer = "."  
2. Set objWMIService = GetObject("winmgmts:" _ &  
3. "{impersonationLevel=impersonate}!\\" & strComputer &           

  "\root\cimv2")   

4. Set colOperatingSystems = objWMIService.ExecQuery _   
5. ("SELECT * FROM Win32_OperatingSystem")   
6. For Each objOperatingSystem in colOperatingSystems   
7. Wscript.Echo "Caption: " & objOperatingSystem.Caption   
8. Wscript.Echo "Debug: " & objOperatingSystem.Debug   
9. Wscript.Echo "Version: " & objOperatingSystem.Version   
10. Next   

To try this, type in the preceding script and save it as file. The following is the output from 
running the script: 
1. C:\>cscript osversion.vbs   
2. Microsoft (R) Windows Script Host Version 5.7  
3. Copyright (C) Microsoft Corporation. All rights reserved.   
4. Caption: Microsoft Windows Vista   
5. Debug: False   
6. Version: 6.0.6000  
This system is not running the checked build, as the Debug flag shown here says False. Much of 
the additional code in the checked-build binaries is a result of using the ASSERT macro, which is 
defined in the WDK header file Ntddk.h and documented in the WDK documentation. This macro 
tests a condition (such as the validity of a data structure or parameter), and if the expression 
evaluates to FALSE, the macro calls the kernel-mode function RtlAssert, which calls DbgPrintEx 
to send the text of the debug message to a debug message buffer. If a kernel debugger is attached, 
this message is displayed automatically followed by a prompt asking the user what to do about the 
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assertion failure (breakpoint, ignore, terminate process, or terminate thread). If the system wasn’t 
booted with the kernel debugger (using the debug option in the Boot Configuration Database— 
BCD) and no kernel debugger is currently attached, failure of an ASSERT test will bugcheck the 
system. For a list of ASSERT checks made by some of the kernel support routines, see the section 
“Checked Build ASSERTs” in the WDK documentation. 

The checked build is also useful for system administrators because of the additional detailed 
informational tracing that can be enabled for certain components. (For detailed instructions, see 
the Microsoft Knowledge Base Article number 314743, titled HOWTO: Enable Verbose Debug 
Tracing in Various Drivers and Subsystems.) This information output is sent to an internal debug 
message buffer using the DbgPrintEx function referred to earlier. To view the debug messages, 
you can either attach a kernel debugger to the target system (which requires booting the target 
system in debugging mode), use the !dbgprint command while performing local kernel debugging, 
or use the Dbgview.exe tool from Windows Sysinternals (www.microsoft.com/technet/ 
sysinternals). 

You don’t have to install the entire checked build to take advantage of the debug version of 
the operating system. You can just copy the checked version of the kernel image (Ntoskrnl.exe) 
and the appropriate HAL (Hal.dll) to a normal retail installation. The advantage of this approach is 
that device drivers and other kernel code get the rigorous checking of the checked build without 
having to run the slower debug versions of all components in the system. 

For detailed instructions on how to do this, see the section “Installing Just the Checked 
Operating System and HAL” in the WDK documentation. Finally, the checked build can also be 
useful for testing user-mode code only because the timing of the system is different. (This is 
because of the additional checking taking place within the kernel and the fact that the components 
are compiled without optimizations.) Often, multithreaded synchronization bugs are related to 
specific timing conditions. By running your tests on a system running the checked build (or at 
least the checked kernel and HAL), the fact that the timing of the whole system is different might 
cause latent timing bugs to surface that do not occur on a normal retail system. 

2.4 Key System Components 

Now that we’ve looked at the high-level architecture of Windows, let’s delve deeper into the 
internal structure and the role each key operating system component plays. Figure 2-3 is a more 
detailed and complete diagram of the core Windows system architecture and components than was 
shown earlier in the chapter (in Figure 2-1). Note that it still does not show all components 
(networking in particular, which is explained in Chapter 12). 

The following sections elaborate on each major element of this diagram. Chapter 3 explains 
the primary control mechanisms the system uses (such as the object manager, interrupts, and so 
forth). Chapter 13 describes the process of starting and shutting down Windows, and Chapter 4 
details management mechanisms such as the registry, service processes, and Windows 
Management Instrumentation. Then the remaining chapters explore in even more detail the 
internal structure and operation of key areas such as processes and threads, memory management, 
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security, the I/O manager, storage management, the cache manager, the Windows file system 
(NTFS), and networking. 

  

2.4.1 Environment Subsystems and Subsystem DLLs 

Although the basic POSIX subsystem that originally shipped with Windows no longer ships 
with the system, a greatly enhanced version is available on Windows Vista Ultimate and 
Enterprise editions, called Subsystem for Unix-based Applications (SUA [POSIX]), shown in 
Figure 2-3. 

As we’ll explain shortly, the Windows subsystem is special in that Windows can’t run 
without it. (It owns the keyboard, mouse, and display, and it is required to be present even on 
server systems with no interactive users logged in.) In fact, the other two subsystems are 
configured to start on demand, whereas the Windows subsystem must always be running. The 
subsystem startup information is stored under the registry key HKLM\SYSTEM\ 
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CurrentControlSet\Control\Session Manager\SubSystems. Figure 2-4 shows the values under 
this key. 

 The Required value lists the subsystems that load when the system boots. The value has two 
strings: Windows and Debug. The Windows value contains the file specification of the Windows 
subsystem, Csrss.exe, which stands for Client/Server Run-Time Subsystem. (See the Note later in 
this section.) Debug is blank (because it’s used for internal testing) and therefore does nothing. 
The Optional value indicates that the POSIX subsystem will be started on demand. The registry 
value Kmode contains the file name of the kernel-mode portion of the Windows subsystem, 
Win32k.sys (explained later in this chapter).  

The role of an environment subsystem is to expose some subset of the base Windows 
executive system services to application programs. Each subsystem can provide access to different 
subsets of the native services in Windows. That means that some things can be done from an 
application built on one subsystem that can’t be done by an application built on another subsystem. 
For example, a Windows application can’t use the POSIX fork function. 

Each executable image (.exe) is bound to one and only one subsystem. When an image is run, 
the process creation code examines the subsystem type code in the image header so that it can 
notify the proper subsystem of the new process. This type code is specified with the 
/SUBSYSTEM qualifier of the link command in Microsoft Visual C++.  

Note As a historical note, the reason the Windows subsystem process is called Csrss.exe is 
that in the original design of Windows NT, all the subsystems were going to execute as threads 
inside a single systemwide environment subsystem process. When the POSIX and OS/2 
subsystems were removed and put in their own processes, the file name for the Windows 
subsystem process wasn’t changed. 

As mentioned earlier, user applications don’t call Windows system services directly. Instead, 
they go through one or more subsystem DLLs. These libraries export the documented interface 
that the programs linked to that subsystem can call. For example, the Windows subsystem DLLs 
(such as Kernel32.dll, Advapi32.dll, User32.dll, and Gdi32.dll) implement the Windows API 
functions. The POSIX subsystem DLL (Psxdll.dll) implements the POSIX API functions. 
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EXPERIMENT: Viewing the Image Subsystem Type 

You can see the image subsystem type by using the Dependency Walker tool (Depends.exe) 
in the Windows SDK. For example, notice the image types for two different Windows images, 
Notepad.exe (the simple text editor) and Cmd.exe (the Windows command prompt): 

  

This shows that Notepad is a GUI program, while Cmd is a console, or character-based, 
program. And although this implies there are two different subsystems for GUI and 
character-based programs, there is just one Windows subsystem, and GUI programs can have 
consoles, just like console programs can display GUIs.  

When an application calls a function in a subsystem DLL, one of three things can occur: 

■ The function is entirely implemented in user mode inside the subsystem DLL. In other 
words, no message is sent to the environment subsystem process, and no Windows executive 
system services are called. The function is performed in user mode, and the results are returned to 
the caller. Examples of such functions include GetCurrentProcess (which always returns –1, a 
value that is defined to refer to the current process in all process-related functions) and 
GetCurrentProcessId. (The process ID doesn’t change for a running process, so this ID is retrieved 
from a cached location, thus avoiding the need to call into the kernel.) 

■ The function requires one or more calls to the Windows executive. For example, the 
Windows ReadFile and WriteFile functions involve calling the underlying internal (and 
undocumented) Windows I/O system services NtReadFile and NtWriteFile, respectively. 

■ The function requires some work to be done in the environment subsystem process. (The 
environment subsystem processes, running in user mode, are responsible for maintaining the state 
of the client applications running under their control.) In this case, a client/server request is made 
to the environment subsystem via a message sent to the subsystem to perform some operation. The 
subsystem DLL then waits for a reply before returning to the caller. 

Some functions can be a combination of the second and third items just listed, such as the 
Windows CreateProcess and CreateThread functions. 
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Although Windows was designed to support multiple, independent environment subsystems, 
from a practical perspective, having each subsystem implement all the code to handle windowing 
and display I/O would result in a large amount of duplication of system functions that, ultimately, 
would have negatively affected both system size and performance. Because Windows was the 
primary subsystem, the Windows designers decided to locate these basic functions there and have 
the other subsystems call on the Windows subsystem to perform display I/O. Thus, the POSIX 
subsystem calls services in the Windows subsystem to perform display I/O. (In fact, if you 
examine the subsystem type for these images, you’ll see that they are Windows executables.) 

Let’s take a closer look at each of the environment subsystems. 

Windows Subsystem 

The Windows subsystem consists of the following major components: 

■ The environment subsystem process (Csrss.exe) loads three DLLs (Basesrv.dll, Winsrv.dll, 
and Csrsrv.dll) that contain support for: 

❏ Console (text) windows 

❏ Creating and deleting processes and threads 

❏ Portions of the support for 16-bit virtual DOS machine (VDM) processes 

❏ Side-by-Side (SxS)/Fusion and manifest support 

❏ Other miscellaneous functions, such as GetTempFile, DefineDosDevice, 

ExitWindowsEx, and several natural language support functions 

■ The kernel-mode device driver (Win32k.sys) contains: 

❏ The window manager, which controls window displays; manages screen output; collects 
input from keyboard, mouse, and other devices; and passes user messages to applications. 

❏ The Graphics Device Interface (GDI), which is a library of functions for graphics output 
devices. It includes functions for line, text, and figure drawing and for graphics manipulation. 

❏ Wrappers for DirectX support that is implemented in another kernel driver (Dxgkrnl.sys). 

■ Subsystem DLLs (such as Kernel32.dll, Advapi32.dll, User32.dll, and Gdi32.dll) translate 
documented Windows API functions into the appropriate and mostly undocumented kernel-mode 
system service calls to Ntoskrnl.exe and Win32k.sys. 

■ Graphics device drivers are hardware-dependent graphics display drivers, printer drivers, 
and video miniport drivers. 

Applications call the standard USER functions to create user interface controls, such as 
windows and buttons, on the display. The window manager communicates these requests to the 
GDI, which passes them to the graphics device drivers, where they are formatted for the display 
device. A display driver is paired with a video miniport driver to complete video display support. 
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The GDI provides a set of standard two-dimensional functions that let applications 
communicate with graphics devices without knowing anything about the devices. GDI functions 
mediate between applications and graphics devices such as display drivers and printer drivers. The 
GDI interprets application requests for graphic output and sends the requests to graphics display 
drivers. It also provides a standard interface for applications to use varying graphics output 
devices. This interface enables application code to be independent of the hardware devices and 
their drivers. The GDI tailors its messages to the capabilities of the device, often dividing the 
request into manageable parts. For example, some devices can understand directions to draw an 
ellipse; others require the GDI to interpret the command as a series of pixels placed at certain 
coordinates. For more information about the graphics and video driver architecture, see the 
“Design Guide” section of the “Display (Adapters and Monitors)”chapter in the Windows Driver 
Kit. 

Prior to Windows NT 4, the window manager and graphics services were part of the 
usermode Windows subsystem process. In Windows NT 4, the bulk of the windowing and 
graphics code was moved from running in the context of the Windows subsystem process to a set 
of callable services running in kernel mode (in the file Win32k.sys). The primary reason for this 
shift was to improve overall system performance. Having a separate server process that contains 
the Windows graphics subsystem required multiple thread and process context switches, which 
consumed considerable CPU cycles and memory resources even though the original design was 
highly optimized. 

For example, for each thread on the client side there was a dedicated, paired server thread in 
the Windows subsystem process waiting on the client thread for requests. A special interprocess 
communication facility called fast LPC was used to send messages between these threads. Unlike 
normal thread context switches, transitions between paired threads via fast LPC don’t cause a 
rescheduling event in the kernel, thereby enabling the server thread to run for the remaining time 
slice of the client thread before having to take its turn in the kernel’s preemptive thread scheduler. 
Moreover, shared memory buffers were used to allow fast passing of large data structures, such as 
bitmaps, and clients had direct but read-only access to key server data structures to minimize the 
need for thread/process transitions between clients and the Windows server. Also, GDI operations 
were (and still are) batched. Batching means that a series of graphics calls by a Windows 
application aren’t “pushed” over to the server and drawn on the output device until a GDI batching 
queue is filled. You can set the size of the queue by using the Windows GdiSetBatchLimit 
function, and you can flush the queue at any time with GdiFlush. Conversely, read-only properties 
and data structures of GDI, once they were obtained from the Windows subsystem process, were 
cached on the client side for fast subsequent access. 

Despite these optimizations, however, the overall system performance was still not adequate 
for graphics-intensive applications. The obvious solution was to eliminate the need for the 
additional threads and resulting context switches by moving the windowing and graphics system 
into kernel mode. Also, once applications have called into the window manager and the GDI, 
those subsystems can access other Windows executive components directly without the cost of 
user-mode or kernel-mode transitions. This direct access is especially important in the case of the 
GDI calling through video drivers, a process that involves interaction with video hardware at high 
frequencies and high bandwidths. 



 56

So, what remains in the user-mode process part of the Windows subsystem? All the drawing 
and updating for console or text windows are handled by it because console applications have no 
notion of repainting a window. It’s easy to see this activity—simply open a command prompt and 
drag another window over it, and you’ll see the Windows subsystem consuming CPU time as it 
repaints the console window. But other than console window support, only a few Windows 
functions result in sending a message to the Windows subsystem process anymore: process and 
thread creation and termination, network drive letter mapping, and creation of temporary files. In 
general, a running Windows application won’t be causing many, if any, context switches to the 
Windows subsystem process.  

POSIX Subsystem 

POSIX, an acronym loosely defined as “a portable operating system interface based on 
UNIX,” refers to a collection of international standards for UNIX-style operating system 
interfaces. The POSIX standards encourage vendors implementing UNIX-style interfaces to make 
them compatible so that programmers can move their applications easily from one system to 
another. 

Windows initially implemented only one of the many POSIX standards, POSIX.1, formally 
known as ISO/IEC 9945-1:1990 or IEEE POSIX standard 1003.1-1990. This standard was 
included primarily to meet U.S. government procurement requirements set in the mid-tolate 1980s 
that mandated POSIX.1 compliance as specified in Federal Information Processing Standard 
(FIPS) 151-2, developed by the National Institute of Standards and Technology.  

Windows NT 3.5, 3.51, and 4 were formally tested and certified according to FIPS 151-2. 
Because POSIX.1 compliance was a mandatory goal for Windows, the operating system was 
designed to ensure that the required base system support was present to allow for the 
implementation of a POSIX.1 subsystem (such as the fork function, which is implemented in the 
Windows executive, and the support for hard file links in the Windows file system). Windows 
Vista and Windows Server 2008 provide the Windows Subsystem for Unix-based Applications 
(SUA), which includes an enhanced POSIX subsystem environment that provides nearly 2,000 
UNIX functions and 300 UNIX-like tools and utilities. (See http://technet.microsoft.com/en-us 
/library/cc779522.aspx for more information on SUA.) SUA can be enabled on any Windows 
Server 2008 machine, as well as Windows Vista Ultimate and Enterprise editions. 

This enhanced POSIX subsystem assists in porting UNIX applications to Windows because it 
also supports the POSIX.2 standard, which adds many APIs (such as the pthread API) and 
libraries to the bare set that POSIX.1 defined. Additionally, it also adds support for 64-bit binaries 
and, most importantly, mixed-mode support, meaning that for the first time UNIXbased 
applications can call Windows APIs alongside POSIX APIs, greatly alleviating the task of porting 
the application. 

EXPERIMENT: Watching the POSIX Subsystem Start 
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The POSIX subsystem is configured by default to start the first time a POSIX executable is 
run, so you can watch it start by running a POSIX program, such as one of the POSIX utilities that 
comes with SUA. Follow these steps to watch the POSIX subsystem start: 

1. Start a command prompt. 

2. Run Process Explorer and check that the POSIX subsystem isn’t already running (that is, 
that there’s no Psxss.exe process on the system). Make sure Process Explorer is displaying the 
process list in tree view (by pressing Ctrl+T). 

3. Run a POSIX program, such as the C Shell or Korn Shell included with the SUA.  

4. Go back to Process Explorer and notice the new Psxss.exe process that is a child of 
Smss.exe (which, depending on your different highlight duration, might still be highlighted as a 
new process on the display). 

To compile and link a POSIX application in Windows requires the POSIX headers and 
libraries from the Windows SDK. POSIX executables are linked against the POSIX subsystem 
library, Psxdll.dll. Because by default Windows is configured to start the POSIX subsystem on 
demand, the first time you run a POSIX application, the POSIX subsystem process (Psxss.exe) 
must be started. It remains running until the system reboots. (If you kill the POSIX subsystem 
process, you won’t be able to run more POSIX applications until you reboot.) The POSIX image 
itself isn’t run directly—instead, a special support image called Posix.exe is launched, which in 
turn creates a child process to run the POSIX application.  

For more information on how Windows handles running POSIX applications, see the section 
“Flow of CreateProcess” in Chapter 5. 

2.4.2 Ntdll.dll 

Ntdll.dll is a special system support library primarily for the use of subsystem DLLs. It 
contains two types of functions:  

■System service dispatch stubs to Windows executive system services 

■Internal support functions used by subsystems, subsystem DLLs, and other native images 

The first group of functions provides the interface to the Windows executive system services 
that can be called from user mode. There are more than 400 such functions, such as NtCreateFile, 
NtSetEvent, and so on. As noted earlier, most of the capabilities of these functions are accessible 
through the Windows API. (A number are not, however, and are for use within the operating 
system.) 

For each of these functions, Ntdll contains an entry point with the same name. The code 
inside the function contains the architecture-specific instruction that causes a transition into kernel 
mode to invoke the system service dispatcher (explained in more detail in Chapter 3), which, after 
verifying some parameters, calls the actual kernel-mode system service that contains the real code 
inside Ntoskrnl.exe. Ntdll also contains many support functions, such as the image loader 
(functions that start with Ldr), the heap manager, and Windows subsystem process communication 
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functions (functions that start with Csr). Ntdll also contains general run-time library routines 
(functions that start with Rtl), support for user-mode debugging (functions that start with DbgUi) 
and Event Tracing for Windows (functions starting in Etw), and the user-mode asynchronous 
procedure call (APC) dispatcher and exception dispatcher. (APCs and exceptions are explained in 
Chapter 3.) Finally, you’ll find a small subset of the C Run-Time (CRT) routines, limited to those 
routines that are part of the string and standard libraries (such as memcpy, strcpy, itoa, and so on). 

2.4.3 Executive 

The Windows executive is the upper layer of Ntoskrnl.exe. (The kernel is the lower layer.) 
The executive includes the following types of functions: 

■ Functions that are exported and callable from user mode. These functions are called system 
services and are exported via Ntdll. Most of the services are accessible through the Windows API 
or the APIs of another environment subsystem. A few services, however, aren’t available through 
any documented subsystem function. (Examples include LPCs and various query functions such 
as NtQueryInformationProcess, specialized functions such as NtCreatePagingFile, and so on.) 

■ Device driver functions that are called through the use of the DeviceIoControl function. 
This provides a general interface from user mode to kernel mode to call functions in device drivers 
that are not associated with a read or write. 

■ Functions that can be called only from kernel mode that are exported and are documented 
in the WDK. 

■ Functions that are exported and callable from kernel mode but are not documented in the 
WDK (such as the functions called by the boot video driver, which start with Inbv). 

■ Functions that are defined as global symbols but are not exported. These include internal 
support functions called within Ntoskrnl, such as those that start with Iop (internal I/O manager 
support functions) or Mi (internal memory management support functions). 

■ Functions that are internal to a module that are not defined as global symbols. The 
executive contains the following major components, each of which is covered in detail in a 
subsequent chapter of this book: 

■ The configuration manager (explained in Chapter 4) is responsible for implementing and 
managing the system registry. 

■ The process and thread manager (explained in Chapter 5) creates and terminates processes 
and threads. The underlying support for processes and threads is implemented in the Windows 
kernel; the executive adds additional semantics and functions to these lower-level objects. 

■ The security reference monitor (or SRM, described in Chapter 6) enforces security policies 
on the local computer. It guards operating system resources, performing run-time object protection 
and auditing. 

■ The I/O manager (explained in Chapter 7) implements device-independent I/O and is 
responsible for dispatching to the appropriate device drivers for further processing. 
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■ The Plug and Play (PnP) manager (explained in Chapter 7) determines which drivers are 
required to support a particular device and loads those drivers. It retrieves the hardware resource 
requirements for each device during enumeration. Based on the resource requirements of each 
device, the PnP manager assigns the appropriate hardware resources such as I/O ports, IRQs, 
DMA channels, and memory locations. It is also responsible for sending proper event notification 
for device changes (addition or removal of a device) on the system. 

■ The power manager (explained in Chapter 7) coordinates power events and generates 
power management I/O notifications to device drivers. When the system is idle, the power 
manager can be configured to reduce power consumption by putting the CPU to sleep. Changes in 
power consumption by individual devices are handled by device drivers but are coordinated by the 
power manager.  

■ The Windows Driver Model Windows Management Instrumentation routines (explained in 
Chapter 4) enable device drivers to publish performance and configuration information and 
receive commands from the user-mode WMI service. Consumers of WMI information can be on 
the local machine or remote across the network. 

■ The cache manager (explained in Chapter 10) improves the performance of file-based I/O 
by causing recently referenced disk data to reside in main memory for quick access (and by 
deferring disk writes by holding the updates in memory for a short time before sending them to the 
disk). As you’ll see, it does this by using the memory manager’s support for mapped files. 

■ The memory manager (explained in Chapter 9) implements virtual memory, a memory 
management scheme that provides a large, private address space for each process that can exceed 
available physical memory. The memory manager also provides the underlying support for the 
cache manager. 

■ The logical prefetcher and Superfetch (explained in Chapter 9) accelerate system and 
process startup by optimizing the loading of data referenced during the startup of the system or a 
process. In addition, the executive contains four main groups of support functions that are used by 
the executive components just listed. About a third of these support functions are documented in 
the WDK because device drivers also use them. These are the four categories of support functions: 

■ The object manager, which creates, manages, and deletes Windows executive objects nd 
abstract data types that are used to represent operating system resources such s processes, threads, 
and the various synchronization objects. The object manager is xplained in Chapter 3. 

■ The Advanced LPC facility (ALPC, explained in Chapter 3) passes messages between a 
lient process and a server process on the same computer. Among other things, ALPC is sed as a 
local transport for remote procedure call (RPC), an industry-standard communication acility for 
client and server processes across a network. 

■ A broad set of common run-time library functions, such as string processing, arithmetic 
perations, data type conversion, and security structure processing. 

■ Executive support routines, such as system memory allocation (paged and nonpaged ool), 
interlocked memory access, as well as three special types of synchronization bjects: resources, fast 
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mutexes, and pushlocks. The executive also contains a variety of other infrastructure routines, 
some of which we will only mention briefly throughout the book: 

■ The kernel debugger library, which allows debugging of the kernel from a debugger 
supporting KD, a portable protocol supported over a variety of transports (such as USB and IEEE 
1394) and implemented by WinDbg and the Kd.exe utilities. 

■ The user-mode debugging framework, which is responsible for sending events to the 
user-mode debugging API and allowing breakpoints and stepping through code to work, as well as 
for changing contexts of running threads. 

■ The kernel transaction manager, which provides a common, two-phase commit mechanism 
to resource managers, such as the transactional registry (TxR) and transactional NTFS (TxF). 

■ The hypervisor library, part of the Hyper-V stack in Windows Server 2008, provides kernel 
support for the virtual machine environment and optimizes certain parts of the code when the 
system knows it’s running in a client partition (virtual environment). 

■ The errata manager provides workarounds for nonstandard or noncompliant hardware 
devices. 

■ The Driver Verifier implements optional integrity checks of kernel-mode drivers and code. 

■ Event Tracing for Windows provides helper routines for systemwide event tracing for 
kernel-mode and user-mode components. 

■ The Windows diagnostic infrastructure enables intelligent tracing of system activity based 
on diagnostic scenarios. 

■ The Windows hardware error architecture support routines provide a common framework 
for reporting hardware errors. 

■ The file-system runtime library provides common support routines for file system drivers. 

■ The Windows Driver Model Windows Management Instrumentation routines (explained in 
Chapter 4) enable device drivers to publish performance and configuration information and 
receive commands from the user-mode WMI service. Consumers of WMI information can be on 
the local machine or remote across the network. 
■ The cache manager (explained in Chapter 10) improves the performance of file-based I/O by 
causing recently referenced disk data to reside in main memory for quick access (and by deferring 
disk writes by holding the updates in memory for a short time before sending them to the disk). As 
you’ll see, it does this by using the memory manager’s support for mapped files. 
■ The memory manager (explained in Chapter 9) implements virtual memory, a memory 
management scheme that provides a large, private address space for each process that can exceed 
available physical memory. The memory manager also provides the underlying support for the 
cache manager. 
■ The logical prefetcher and Superfetch (explained in Chapter 9) accelerate system and process 
startup by optimizing the loading of data referenced during the startup of the system or a process. 
In addition, the executive contains four main groups of support functions that are used by the 
executive components just listed. About a third of these support functions are documented in the 
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WDK because device drivers also use them. These are the four categories of support functions: 
■ The object manager, which creates, manages, and deletes Windows executive objects nd 
abstract data types that are used to represent operating system resources such s processes, threads, 
and the various synchronization objects. The object manager is xplained in Chapter 3. 
■ The Advanced LPC facility (ALPC, explained in Chapter 3) passes messages between a lient 
process and a server process on the same computer. Among other things, ALPC is sed as a local 
transport for remote procedure call (RPC), an industry-standard communication acility for client 
and server processes across a network. 
■ A broad set of common run-time library functions, such as string processing, arithmetic 
perations, data type conversion, and security structure processing. 
■ Executive support routines, such as system memory allocation (paged and nonpaged ool), 
interlocked memory access, as well as three special types of synchronization bjects: resources, fast 
mutexes, and pushlocks. The executive also contains a variety of other infrastructure routines, 
some of which we will only mention briefly throughout the book: 
■ The kernel debugger library, which allows debugging of the kernel from a debugger supporting 
KD, a portable protocol supported over a variety of transports (such as USB and IEEE 1394) and 
implemented by WinDbg and the Kd.exe utilities. 
■ The user-mode debugging framework, which is responsible for sending events to the user-mode 
debugging API and allowing breakpoints and stepping through code to work, as well as for 
changing contexts of running threads. 
■ The kernel transaction manager, which provides a common, two-phase commit mechanism to 
resource managers, such as the transactional registry (TxR) and transactional NTFS (TxF). 
■ The hypervisor library, part of the Hyper-V stack in Windows Server 2008, provides kernel 
support for the virtual machine environment and optimizes certain parts of the code when the 
system knows it’s running in a client partition (virtual environment). 
■ The errata manager provides workarounds for nonstandard or noncompliant hardware devices. 
■ The Driver Verifier implements optional integrity checks of kernel-mode drivers and code. 
■ Event Tracing for Windows provides helper routines for systemwide event tracing for 
kernel-mode and user-mode components. 
■ The Windows diagnostic infrastructure enables intelligent tracing of system activity based on 
diagnostic scenarios. 
■ The Windows hardware error architecture support routines provide a common framework for 
reporting hardware errors. 
■ The file-system runtime library provides common support routines for file system drivers. 

2.4.4 Kernel 

The kernel consists of a set of functions in Ntoskrnl.exe that provide fundamental 
mechanisms (such as thread scheduling and synchronization services) used by the executive 
components, as well as low-level hardware architecture–dependent support (such as interrupt and 
exception dispatching), that is different on each processor architecture. The kernel code is written 
primarily in C, with assembly code reserved for those tasks that require access to specialized 
processor instructions and registers not easily accessible from C. 
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Like the various executive support functions mentioned in the preceding section, a number of 
functions in the kernel are documented in the WDK (and can be found by searching for functions 
beginning with Ke) because they are needed to implement device drivers.  

Kernel Objects 

The kernel provides a low-level base of well-defined, predictable operating system primitives 
and mechanisms that allow higher-level components of the executive to do what they need to do. 
The kernel separates itself from the rest of the executive by implementing operating system 
mechanisms and avoiding policy making. It leaves nearly all policy decisions to the executive, 
with the exception of thread scheduling and dispatching, which the kernel implements. 

Outside the kernel, the executive represents threads and other shareable resources as objects. 
These objects require some policy overhead, such as object handles to manipulate them, security 
checks to protect them, and resource quotas to be deducted when they are created. This overhead 
is eliminated in the kernel, which implements a set of simpler objects, called kernel objects, that 
help the kernel control central processing and support the creation of executive objects. Most 
executive-level objects encapsulate one or more kernel objects, incorporating their kernel-defined 
attributes. 

One set of kernel objects, called control objects, establishes semantics for controlling various 
operating system functions. This set includes the APC object, the deferred procedure call (DPC) 
object, and several objects the I/O manager uses, such as the interrupt object.  

Another set of kernel objects, known as dispatcher objects, incorporates synchronization 
capabilities that alter or affect thread scheduling. The dispatcher objects include the kernel thread, 
mutex (called mutant internally), event, kernel event pair, semaphore, timer, and waitable timer. 
The executive uses kernel functions to create instances of kernel objects, to manipulate them, and 
to construct the more complex objects it provides to user mode. Objects are explained in more 
detail in Chapter 3, and processes and threads are described in Chapter 5. 

Kernel Processor Control Region and Control Block (KPCR and KPRCB) 

The kernel uses a data structure called the processor control region, or KPCR, to store 
processor-specific data. The KPCR contains basic information such as the processor’s interrupt 
table (IDT), task-state segment (TSS), and global descriptor table (GDT). It also includes the 
interrupt controller state, which it shares with other modules, such as the ACPI driver and the 
HAL. To provide easy access to the KPCR, the kernel stores a pointer to it in the fs register on 
32-bit Windows and in the gs register on an x64 Windows system. On IA64 systems, the KPCR is 
always located at 0xe0000000ffff0000. 

The KPCR also contains an embedded data structure called the kernel processor control 
block (KPRCB). Unlike the KPCR, which is documented for third-party drivers and other internal 
Windows kernel components, the KPRCB is a private structure used only by the kernel code in 
Ntoskrnl.exe. It contains scheduling information such as the current, next, and idle threads 
scheduled for execution on the processor, the dispatcher database for the processor (which 
includes the ready queues for each priority level), the DPC queue, CPU vendor and identifier 
information (model, stepping, speed, feature bits), CPU and NUMA topology (node information, 
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cores per package, logical processors per core, and so on), cache sizes, time accounting 
information (such as the DPC and interrupt time), and more. The KPRCB also contains all the 
statistics for the processor, such as I/O statistics, cache manager statistics (see Chapter 10 for a 
description of these), DPC statistics, and memory manager statistics (see Chapter 9 for more 
information). Finally, the KPRCB is sometimes used to store cache-aligned, per-processor 
structures to optimize memory access, especially on NUMA systems. For example, the nonpaged 
and paged-pool system lookaside lists are stored in the KPRCB. 

EXPERIMENT: Viewing the KPCR and KPRCB 

You can view the contents of the KPCR and KPRCB by using the !pcr and !prcb kernel 
debugger commands. If you don’t include flags, the debugger will display information for CPU 0 
by default; otherwise, you can specify a CPU by adding its number after the command (for 
example, !pcr 2). The following example shows what the output of the !pcr and !prcb commands 
looks like. If the system had pending DPCs, those would also be shown. 

1. lkd> !pcr   

2. KPCR for Processor 0 at 81d09800:  

3. Major 1 Minor 1  

4. NtTib.ExceptionList: 9b31ca3c   

5. NtTib.StackBase: 00000000  

6. NtTib.StackLimit: 00000000  

7. NtTib.SubSystemTib: 80150000  

8. NtTib.Version: 1c47209e   

9. NtTib.UserPointer: 00000001  

10. NtTib.SelfTib: 7ffde000  

11. SelfPcr: 81d09800  

12. Prcb: 81d09920  

13. Irql: 00000002  

14. IRR: 00000000  

15. IDR: ffffffff   

16. InterruptMode: 00000000  

17. IDT: 82fb8400  

18. GDT: 82fb8000  

19. TSS: 80150000  

20. CurrentThread: 86d317e8  

21. NextThread: 00000000  

22. IdleThread: 81d0d640  

23. DpcQueue:   

24. lkd> !prcb   

25. PRCB for Processor 0 at 81d09920:  

26. Current IRQL -- 0  

27. Threads-- Current 86d317e8 Next 00000000 Idle 81d0d640  

28. Number 0 SetMember 1  

29. Interrupt Count -- 294ccce0  
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30. Times -- Dpc 0002a87f Interrupt 00010b87  

31. Kernel 026270a1 User 00140e5e  

You can use the dt command to directly dump the _KPCR and _KPRCB data structures because 
both debugger commands give you the address of the structure (shown in bold for clarity in the 
previous output). For example, if you wanted to determine the speed of the processor, you could 
look at the MHz field with the following command.  
1. lkd> dt _KPRCB 81d09920 MHz   
2. nt!_KPRCB   
3. +0x3c4 MHz : 0xbb4  
4. lkd> ? bb4  
5. Evaluate expression: 2996 = 00000bb4  

On this machine, the processor was running at about 3GHz. 

2.4.5 Hardware Abstraction Layer 

The other major job of the kernel is to abstract or isolate the executive and device drivers 
from variations between the hardware architectures supported by Windows. This job includes 
handling variations in functions such as interrupt handling, exception dispatching, and 
multiprocessor synchronization.  

Even for these hardware-related functions, the design of the kernel attempts to maximize the 
amount of common code. The kernel supports a set of interfaces that are portable and semantically 
identical across architectures. Most of the code that implements these portable interfaces is also 
identical across architectures. 

Some of these interfaces are implemented differently on different architectures, however, or 
some of the interfaces are partially implemented with architecture-specific code. These 
architecturally independent interfaces can be called on any machine, and the semantics of the 
interface will be the same whether or not the code varies by architecture. Some kernel interfaces 
(such as spinlock routines, which are described in Chapter 3) are actually implemented in the HAL 
(described in the next section) because their implementation can vary for systems within the same 
architecture family. 

The kernel also contains a small amount of code with x86-specific interfaces needed to 
support old MS-DOS programs. These x86 interfaces aren’t portable in the sense that they can’t be 
called on a machine based on any other architecture; they won’t be present. This x86-specific code, 
for example, supports calls to manipulate global descriptor tables (GDTs) and local descriptor 
tables (LDTs), hardware features of the x86.  

Other examples of architecture-specific code in the kernel include the interfaces to provide 
translation buffer and CPU cache support. This support requires different code for the different 
architectures because of the way caches are implemented.  

Another example is context switching. Although at a high level the same algorithm is used 
for thread selection and context switching (the context of the previous thread is saved, the context 
of the new thread is loaded, and the new thread is started), there are architectural differences 
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among the implementations on different processors. Because the context is described by the 
processor state (registers and so on), what is saved and loaded varies depending on the 
architecture. 

Hardware Abstraction Layer 

As mentioned at the beginning of this chapter, one of the crucial elements of the Windows 
design is its portability across a variety of hardware platforms. The hardware abstraction layer 
(HAL) is a key part of making this portability possible. The HAL is a loadable kernel-mode 
module (Hal.dll) that provides the low-level interface to the hardware platform on which Windows 
is running. It hides hardware-dependent details such as I/O interfaces, interrupt controllers, and 
multiprocessor communication mechanisms—any functions that are both architecture-specific and 
machine-dependent. 

So rather than access hardware directly, Windows internal components as well as 
user-written device drivers maintain portability by calling the HAL routines when they need 
platform dependent information. For this reason, the HAL routines are documented in the WDK. 
To find out more about the HAL and its use by device drivers, refer to the WDK. 

Although several HALs are included with Windows (as shown in Table 2-5), Windows Vista 
and Windows Server 2008 have the ability to detect at boot-up time which HAL should be used, 
eliminating the problem that existed on earlier versions of Windows when attempting to boot a 
Windows installation on a different kind of system. 

 Note On x64 machines, there is only one HAL image, called Hal.dll. This results from all x64 
machines having the same motherboard configuration, since the processors require ACPI and 
APIC support. Therefore, there is no need to support machines without ACPI or with a standard 
PIC. 

EXPERIMENT: Determining Which HAl You’re Running 

You can determine which version of the HAL you’re running by using WinDbg and opening 
a local kernel debugging session. Be sure you have the symbols loaded (write .reload) and then 
type lm mv hal. For example, the following output is from a system running the ACPI HAL: 

1. lkd> lm vm hal    
2. start end module name   
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3. 823a1000 823d5000 hal (pdb symbols)   
4. c:\programming\symbols\halmacpi.pdb\0D335CFD77384CE695E1748F3

249184B1\halmacpi.pdb 

5. Loaded symbol image file: halmacpi.dll   
6. Image path: halmacpi.dll   
7. Image name: halmacpi.dll   
8. Timestamp: Sat Dec 23 23:05:34 2006 (458DFC8E)   
9. CheckSum: 00035DC3  
10. ImageSize: 00034000  
11. File version: 6.0.6000.16407  
12. Product version: 6.0.6000.16407  
13. File flags: 0 (Mask 3F)   
14. File OS: 40004 NT Win32  
15. File type: 2.0 Dll   
16. File date: 00000000.00000000  
17. Translations: 0409.04b0  
18. CompanyName: Microsoft Corporation   
19. ProductName: Microsoft® Windows® Operating System   
20. InternalName: halmacpi.dll   
21. OriginalFilename: halmacpi.dll   
22. ProductVersion: 6.0.6000.16407  
23. FileVersion: 6.0.6000.16407 (vista_gdr.061223-1640)   
24. FileDescription: Hardware Abstraction Layer DLL   
25. LegalCopyright: © Microsoft Corporation. All rights reserved. 
EXPERIMENT: Viewing NTOSKRNl and HAl Image Dependencies 

You can view the relationship of the kernel and HAL images by examining their export and 
import tables using the Dependency Walker tool (Depends.exe), which is contained in the 
Windows SDK. To examine an image in the Dependency Walker, select Open from the File menu 
to open the desired image file.  

Here is a sample of output you can see by viewing the dependencies of Ntoskrnl using this 
tool: 

Notice that Ntoskrnl is linked against the HAL, which is in turn linked against Ntoskrnl. 
(They both use functions in each other.) Ntoskrnl is also linked to the following binaries: 

■ Pshed.dll, the Platform-Specific Hardware Error Driver. The PSHED provides an 
abstraction of the hardware error reporting facilities of the underlying platform by hiding the 
details of a platform’s error handling mechanisms from the operating system and exposing a 
consistent interface to the Windows operating system. 

■ Bootvid.dll, the Boot Video Driver. Bootvid provides support for the VGA commands 
required to display boot text and the boot logo during startup. On x64 kernels, this library is built 
into the kernel to avoid conflicts with Kernel Patch Protection (KPP). (See Chapter 3 for more 
information on KPP and PatchGuard.) 
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    ■ Kdcom.dll, the Kernel Debugger Protocol (KD) Communications Library, described earlier. 

■ Ci.dll, the code integrity library, described earlier.  

■ Clfs.sys, the common logging file system driver, used, among other things, by the Kernel 
Transaction Manager (KTM). (See Chapter 3 for more information on the KTM.) 

For a detailed description of the information displayed by this tool, see the Dependency 
Walker help file (Depends.hlp). 

2.4.6 Device Drivers 

Although device drivers are explained in detail in Chapter 7, this section provides a brief 
overview of the types of drivers and explains how to list the drivers installed and loaded on your 
system. 

Device drivers are loadable kernel-mode modules (typically ending in .sys) that interface 
between the I/O manager and the relevant hardware. They run in kernel mode in one of three 
contexts: 

■ In the context of the user thread that initiated an I/O function 

■ In the context of a kernel-mode system thread 

■ As a result of an interrupt (and therefore not in the context of any particular process or 
thread—whichever process or thread was current when the interrupt occurred)  
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As stated in the preceding section, device drivers in Windows don’t manipulate hardware 
directly, but rather they call functions in the HAL to interface with the hardware. Drivers are 
typically written in C (sometimes C++) and therefore, with proper use of HAL routines, can be 
source code portable across the CPU architectures supported by Windows and binary portable 
within an architecture family. 

There are several types of device drivers: 

■ Hardware device drivers manipulate hardware (using the HAL) to write output to or 
retrieve input from a physical device or network. There are many types of hardware device drivers, 
such as bus drivers, human interface drivers, mass storage drivers, and so on. 

■ File system drivers are Windows drivers that accept file-oriented I/O requests and translate 
them into I/O requests bound for a particular device. 

■ File system filter drivers, such as those that perform disk mirroring and encryption, 
intercept I/Os and perform some added-value processing before passing the I/O to the next layer. 

■ Network redirectors and servers are file system drivers that transmit file system I/O 
requests to a machine on the network and receive such requests, respectively. 

■ Protocol drivers implement a networking protocol such as TCP/IP, NetBEUI, and 
IPX/SPX. 

■ Kernel streaming filter drivers are chained together to perform signal processing on data 
streams, such as recording or displaying audio and video. 

Because installing a device driver is the only way to add user-written kernel-mode code to 
the system, some programmers have written device drivers simply as a way to access internal 
operating system functions or data structures that are not accessible from user mode (but that are 
documented and supported in the DDK). For example, many of the utilities from Sysinternals 
combine a Windows GUI application and a device driver that is used to gather internal system 
state and call kernel-mode-only accessible functions not accessible from the user-mode Windows 
API. 

Windows Driver Model (WDM) 

Windows 2000 added support for Plug and Play, Power Options, and an extension to the 
Windows NT driver model called the Windows Driver Model (WDM). Windows 2000 and later 
can run legacy Windows NT 4 drivers, but because these don’t support Plug and Play and Power 
Options, systems running these drivers will have reduced capabilities in these two areas. 

From the WDM perspective, there are three kinds of drivers: 

■ A bus driver services a bus controller, adapter, bridge, or any device that has child devices. 
Bus drivers are required drivers, and Microsoft generally provides them; each type of bus (such as 
PCI, PCMCIA, and USB) on a system has one bus driver. Third parties can write bus drivers to 
provide support for new buses, such as VMEbus, Multibus, and Futurebus. 

■ A function driver is the main device driver and provides the operational interface for its 
device. It is a required driver unless the device is used raw (an implementation in which I/O is 
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done by the bus driver and any bus filter drivers, such as SCSI PassThru). A function driver is by 
definition the driver that knows the most about a particular device, and it is usually the only driver 
that accesses device-specific registers. 

■ A filter driver is used to add functionality to a device (or existing driver) or to modify I/O 
requests or responses from other drivers (and is often used to fix hardware that provides incorrect 
information about its hardware resource requirements). Filter drivers are optional and can exist in 
any number, placed above or below a function driver and above a bus driver. Usually, system 
original equipment manufacturers (OEMs) or independent hardware vendors (IHVs) supply filter 
drivers. 

In the WDM driver environment, no single driver controls all aspects of a device: a bus 
driver is concerned with reporting the devices on its bus to the PnP manager, while a function 
driver manipulates the device. 

In most cases, lower-level filter drivers modify the behavior of device hardware. For example, 
if a device reports to its bus driver that it requires 4 I/O ports when it actually requires 16 I/O ports, 
a lower-level, device-specific function filter driver could intercept the list of hardware resources 
reported by the bus driver to the PnP manager and update the count of I/O ports. 

Upper-level filter drivers usually provide added-value features for a device. For example, an 
upper-level device filter driver for a keyboard can enforce additional security checks. 

Interrupt processing is explained in Chapter 3. Further details about the I/O manager, WDM, 
Plug and Play, and Power Options are included in Chapter 7. 

Windows Driver Foundation 

The Windows Driver Foundation (WDF) simplifies Windows driver development by 
providing two frameworks: the Kernel-Mode Driver Framework (KMDF) and the User-Mode 
Driver Framework (UMDF). Developers can use KMDF to write drivers for Windows 2000 SP4 
and later, while UMDF supports Windows XP and later. 

KMDF provides a simple interface to WDM and hides its complexity from the driver writer 
without modifying the underlying bus/function/filter model. KMDF drivers respond to events that 
they can register and call into the KMDF library to perform work that isn’t specific to the 
hardware they are managing, such as generic power management or synchronization. (Previously, 
each driver had to implement this on its own.) In some cases, more than 200 lines of WDM code 
can be replaced by a single KMDF function call.  

UMDF enables certain classes of drivers (mostly USB-based or other high-latency protocol 
buses), such as those for video cameras, MP3 players, cell phones, PDAs, and printers, to be 
implemented as user-mode drivers. UMDF runs each user-mode driver in what is essentially a 
user-mode service, and it uses ALPC to communicate to a kernel-mode wrapper driver that 
provides actual access to hardware. If a UMDF driver crashes, the process dies and usually restarts, 
so the system doesn’t become unstable—the device simply becomes unavailable while the service 
hosting the driver restarts. Finally, UMDF drivers are written in C++ using COM-like classes and 
semantics, further lowering the bar for programmers to write device drivers. 
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EXPERIMENT: Viewing the Installed Device Drivers 

You can list the installed drivers by running Msinfo32. (Click Start, Run, and then type 
Msinfo32.) Under System Summary, expand Software Environment and open System Drivers. 
Here’s an example output of the list of installed drivers: 

    This window displays the list of device drivers defined in the registry, their type, and their 
state (Running or Stopped). Device drivers and Windows service processes are both defined in the 
same place: HKLM\SYSTEM\CurrentControlSet\Services. However, they are distinguished by a 
type code—for example, type 1 is a kernel-mode device driver. (For a complete list of the 
information stored in the registry for device drivers,see Table 4-7.) 

Alternatively, you can list the currently loaded device drivers by selecting the System process 
in Process Explorer and opening the DLL view. 

Peering into undocumented Interfaces 

Examining the names of the exported or global symbols in key system images (such as 
Ntoskrnl.exe, Hal.dll, or Ntdll.dll) can be enlightening—you can get an idea of the kinds of things 
Windows can do versus what happens to be documented and supported today. Of course, just 
because you know the names of these functions doesn’t mean that you can or should call 
them—the interfaces are undocumented and are subject to change. We suggest that you look at 
these functions purely to gain more insight into the kinds of internal functions Windows performs, 
not to bypass supported interfaces. 

For example, looking at the list of functions in Ntdll.dll gives you the list of all the system 
services that Windows provides to user-mode subsystem DLLs versus the subset that each 
subsystem exposes. Although many of these functions map clearly to documented and supported 
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Windows functions, several are not exposed via the Windows API. (See the article “Inside the 
Native API” from Sysinternals.) 

Conversely, it’s also interesting to examine the imports of Windows subsystem DLLs (such 
as Kernel32.dll or Advapi32.dll) and which functions they call in Ntdll.  

Another interesting image to dump is Ntoskrnl.exe—although many of the exported routines 
that kernel-mode device drivers use are documented in the Windows Driver Kit, quite a few are 
not. You might also find it interesting to take a look at the import table for Ntoskrnl and the HAL; 
this table shows the list of functions in the HAL that Ntoskrnl uses and vice versa. 

Table 2-6 lists most of the commonly used function name prefixes for the executive 
components. Each of these major executive components also uses a variation of the prefix to 
denote internal functions—either the first letter of the prefix followed by an i (for internal) or the 
full prefix followed by a p (for private). For example, Ki represents internal kernel functions, and 
Psp refers to internal process support functions. 

 

You can decipher the names of these exported functions more easily if you understand the 
naming convention for Windows system routines. The general format is: 

< Prefix>< Operation>< Object> 

In this format, Prefix is the internal component that exports the routine, Operation tells what 
is being done to the object or resource, and Object identifies what is being operated on. 

For example, ExAllocatePoolWithTag is the executive support routine to allocate from a 
paged or nonpaged pool. KeInitializeThread is the routine that allocates and sets up a kernel thread 
object. 
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2.4.7 System Processes 

The following system processes appear on every Windows system. (Two of these—Idle and 
System—are not full processes, as they are not running a user-mode executable.) 

■ Idle process (contains one thread per CPU to account for idle CPU time) 

■ System process (contains the majority of the kernel-mode system threads) 

■ Session manager (Smss.exe) 

■ Local session manager (Lsm.exe) 

■ Windows subsystem (Csrss.exe) 

■ Session 0 initialization (Wininit.exe) 

■ Logon process (Winlogon.exe) 
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■ Service control manager (Services.exe) and the child service processes it creates (such as 
the system-supplied generic service-host process, Svchost.exe) 

■ Local security authentication server (Lsass.exe) 

To understand the relationship of these processes, it is helpful to view the process “tree”— 
that is, the parent/child relationship between processes. Seeing which process created each process 
helps to understand where each process comes from. Figure 2-5 is a screen snapshot of the process 
tree viewed after taking a Process Monitor boot trace. Using Process Monitor is the only way to 
see the real process tree because, as we’ll see later, the session manager will spawn copies of itself 
for each session being created and then terminate them.  

  

The next sections explain the key system processes shown in Figure 2-5. Although these 
sections briefly indicate the order of process startup, Chapter 13 contains a detailed description of 
the steps involved in booting and starting Windows. 

Idle Process 
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The first process listed in Figure 2-5 is the system idle process. As we’ll explain in Chapter 5, 
processes are identified by their image name. However, this process (as well as the process named 
System) isn’t running a real user-mode image (in that there is no “System Idle Process.exe” in the 
\Windows directory). In addition, the name shown for this process differs from utility to utility 
(because of implementation details). Table 2-7 lists several of the names given to the Idle process 
(process ID 0). The Idle process is explained in detail in Chapter 5. 

 Now let’s look at system threads and the purpose of each of the system processes that are running 
real images. 

Interrupts and DPCs 

The two lines labeled Interrupts and DPCs represent time spent servicing interrupts and 
deferred procedure calls. These mechanisms are explained in Chapter 3. Note that while Process 
Explorer displays these as entries in the process list, they are not processes. They are shown 
because they account for CPU time not charged to any process. (For example, a system with heavy 
interrupt activity will not appear as a process consuming CPU time.)  

Note that Task Manager includes interrupt and DPC time in the system idle time. Thus a 
system with heavy interrupt activity will appear to be idle when using Task Manager. 

System Process and System Threads 

The System process (process ID 4) is the home for a special kind of thread that runs only in 
kernel mode: a kernel-mode system thread. System threads have all the attributes and contexts of 
regular user-mode threads (such as a hardware context, priority, and so on) but are different in that 
they run only in kernel-mode executing code loaded in system space, whether that is in 
Ntoskrnl.exe or in any other loaded device driver. In addition, system threads don’t have a user 
process address space and hence must allocate any dynamic storage from operating system 
memory heaps, such as a paged or nonpaged pool. 

System threads are created by the PsCreateSystemThread function (documented in the WDK), 
which can be called only from kernel mode. Windows as well as various device drivers create 
system threads during system initialization to perform operations that require thread context, such 
as issuing and waiting for I/Os or other objects or polling a device. For example, the memory 
manager uses system threads to implement such functions as writing dirty pages to the page file or 
mapped files, swapping processes in and out of memory, and so forth. The kernel creates a system 
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thread called the balance set manager that wakes up once per second to possibly initiate various 
scheduling and memory management–related events. The cache manager also uses system threads 
to implement both read-ahead and write-behind I/Os. The file server device driver (Srv2.sys) uses 
system threads to respond to network I/O requests for file data on disk partitions shared to the 
network. Even the floppy driver has a system thread to poll the floppy device. (Polling is more 
efficient in this case because an interrupt-driven floppy driver consumes a large amount of system 
resources.) Further information on specific system threads is included in the chapters in which the 
component is described. 

By default, system threads are owned by the System process, but a device driver can create a 
system thread in any process. For example, the Windows subsystem device driver (Win32k.sys) 
creates a system thread inside the Canonical Display Driver (Cdd.dll) part of the Windows 
subsystem process (Csrss.exe) so that it can easily access data in the user-mode address space of 
that process. 

When you’re troubleshooting or going through a system analysis, it’s useful to be able to map 
the execution of individual system threads back to the driver or even to the subroutine that 
contains the code. For example, on a heavily loaded file server, the System process will likely be 
consuming considerable CPU time. But the knowledge that when the System process is running 
that “some system thread” is running isn’t enough to determine which device driver or operating 
system component is running. 

So if threads in the System process are running, first determine which ones are running (for 
example, with the Performance tool). Once you find the thread (or threads) that is running, look up 
in which driver the system thread began execution (which at least tells you which driver likely 
created the thread) or examine the call stack (or at least the current address) of the thread in 
question, which would indicate where the thread is currently executing. 

Both of these techniques are illustrated in the following experiments. 

EXPERIMENT: Mapping a System Thread to a Device Driver 

In this experiment, we’ll see how to map CPU activity in the System process to the 
responsible system thread (and the driver it falls in) generating the activity. This is important 
because when the System process is running, you must go to the thread granularity to really 
understand what’s going on. For this experiment, we will generate system thread activity by 
generating file server activity on your machine. (The file server driver, Srv2.sys, creates system 
threads to handle inbound requests for file I/O. See Chapter 12 for more information on this 
component.) 

1. Open a command prompt. 

2. Do a directory listing of your entire C drive using a network path to access your C drive. 
For example, if your computer name is COMPUTER1, type dir \\computer1\c$ /s. (The /s switch 
lists all subdirectories.) 

3. Run Process Explorer, and double-click on the System process. 

4. Click on the Threads tab. 
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5. Sort by the CSwitch Delta (context switch delta) column. You should see one or more 
threads in Srv2.sys running, such as the following: 
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If you see a system thread running and you are not sure what the driver is, click the Module 
button, which will bring up the file properties. Clicking the Module button while highlighting the 
thread in Srv2.sys previously shown results in the following display. 

Session Manager (Smss) 

The session manager (%SystemRoot%\Smss.exe) is the first user-mode process created in the 
system. The kernel-mode system thread that performs the final phase of the initialization of the 
executive and kernel creates the actual Smss process. 

The session manager is responsible for a number of important steps in starting Windows, 
such as opening additional page files, performing delayed file rename and delete operations, and 
creating system environment variables. It also launches the subsystem processes (normally just 
Csrss.exe) and either the Wininit or Winlogon processes, the former of which in turn creates the 
rest of the system processes. 

Much of the configuration information in the registry that drives the initialization steps of 
Smss can be found under  HKLM\SYSTEM\CurrentControlSet\Control\Session Manager. Some 
of these are explained in Chapter 13 in the section on Smss. 

Smss also creates user sessions. When Smss creates the first interactive user session (the 
console session) or when a request to create a session is received, it creates a copy of itself inside 
that session. The copy calls NtSetSystemInformation with a request to set up kernel mode session 
data structures. This in turn calls the internal memory manager function MmSessionCreate, which 



 78

sets up the session virtual address space that will contain the session Chapter 2 System 
Architecture 79 paged pool and the per-session data structures allocated by the kernel-mode part 
of the Windows subsystem (Win32k.sys) and other session-space device drivers. (See Chapter 9 
for more details.) Smss then creates an instance of Winlogon and Csrss for the session. For session 
0, Smss creates Wininit instead. 

By having parallel copies of itself during boot-up and Terminal Services session creation, 
Smss can create multiple sessions at the same time (at minimum four concurrent sessions, plus one 
more for each extra CPU beyond one). This ability enhances logon performance on Terminal 
Server systems where multiple users connect at the same time. Once a session finishes initializing, 
the copy of Smss terminates. As a result, only the initial Smss.exe process remains active. 

The main thread in Smss waits forever on the process handles to Csrss and Winlogon. If 
either of these processes terminates unexpectedly, Smss crashes the system (using the crash code 
STATUS_SYSTEM_PROCESS_TERMINATED, or 0xC000021A), because Windows relies on 
their existence. Meanwhile, Smss waits for requests to load subsystems, debug events, and 
requests to create new Terminal Server sessions. (For a description of Terminal Services, see the 
section “Terminal Services and Multiple Sessions” in Chapter 1.) 

Winlogon, LogonUI, LSASS, and Userinit 

The Windows logon process (%SystemRoot%\Winlogon.exe) handles interactive user logons 
and logoffs. Winlogon is notified of a user logon request when the secure attention sequence (SAS) 
keystroke combination is entered. The default SAS on Windows is the combination 
Ctrl+Alt+Delete. The reason for the SAS is to protect users from password-capture programs that 
simulate the logon process, because this keyboard sequence cannot be intercepted by a user-mode 
application. 

The identification and authentication aspects of the logon process are implemented through 
DLLs called credential providers. The standard Windows credential providers implement the 
default Windows authentication interfaces: password and smartcard. However, developers can 
provide their own credential providers to implement other identification and authentication 
mechanisms in place of the standard Windows username/password method (such as one based on 
a voice print or a biometric device such as a fingerprint reader). Because Winlogon is a critical 
system process on which the system depends, credential providers and the UI to display the logon 
dialog box run inside a child process of Winlogon called LogonUI. When Winlogon detects the 
SAS, it launches this process, which initializes the credential providers. 

Once the user enters her credentials or dismisses the logon interface, the LogonUI process 
terminates.In addition, Winlogon can load additional network provider DLLs that need to perform 
secondary authentication. This capability allows multiple network providers to gather 
identification and authentication information all at one time during normal logon.Once the 
username and password have been captured, they are sent to the local security authentication 
server process (%SystemRoot%\Lsass.exe, described in Chapter 6) to be authenticated. LSASS 
calls the appropriate authentication package (implemented as a DLL) to perform the actual 
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verification, such as checking whether a password matches what is stored in the Active Directory 
or the SAM (the part of the registry that contains the definition of the users and groups). 

Upon a successful authentication, LSASS calls a function in the security reference monitor 
(for example, NtCreateToken) to generate an access token object that contains the user’s security 
profile. If User Account Control (UAC) is used and the user logging on is a member of the 
administrators group or has administrator privileges, LSASS will create a second, restricted 
version of the token. This access token is then used by Winlogon to create the initial process(es) in 
the user’s session. The initial process(es) are stored in the registry value Userinit under the registry 
key HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon. (The default is 
Userinit.exe, but there can be more than one image in the list.) 

Userinit performs some initialization of the user environment (such as running the login 
script and applying group policies) and then looks in the registry at the Shell value (under the 
same Winlogon key referred to previously) and creates a process to run the system-defined shell 
(by default, Explorer.exe). Then Userinit exits. This is the reason Explorer.exe is shown with no 
parent—its parent has exited, and as explained in Chapter 1, tlist left-justifies processes whose 
parent isn’t running. (Another way of looking at it is that Explorer is the grandchild of Winlogon.) 

Winlogon is active not only during user logon and logoff but also whenever it intercepts the 
SAS from the keyboard. For example, when you press Ctrl+Alt+Delete while logged on, the 
Windows Security dialog box comes up, providing the options to log off, start the Task Manager, 
lock the workstation, shut down the system, and so forth. Winlogon is the process that handles this 
interaction. 

For a complete description of the steps involved in the logon process, see the section “Smss, 
Csrss, and Wininit” in Chapter 13. For more details on security authentication, see Chapter 6. For 
details on the callable functions that interface with LSASS (the functions that start with Lsa), see 
the documentation in the Windows SDK. 

Service Control Manager (SCM) 

Recall from earlier in the chapter that “services” on Windows can refer either to a server 
process or to a device driver. This section deals with services that are user-mode processes. 
Services are like UNIX “daemon processes” or VMS “detached processes” in that they can be 
configured to start automatically at system boot time without requiring an interactive logon.  

They can also be started manually (such as by running the Services administrative tool or by 
calling the Windows StartService function). Typically, services do not interact with the loggedon 
user, although there are special conditions when this is possible. (See Chapter 4.) 

The service control manager is a special system process running the image %SystemRoot%\ 
Services.exe that is responsible for starting, stopping, and interacting with service processes. 
Service programs are really just Windows images that call special Windows functions to interact 
with the service control manager to perform such actions as registering the service’s successful 
startup, responding to status requests, or pausing or shutting down the service. Services are 
defined in the registry under HKLM\SYSTEM\CurrentControlSet\Services.  
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Keep in mind that services have three names: the process name you see running on the 
system, the internal name in the registry, and the display name shown in the Services 
administrative tool. (Not all services have a display name—if a service doesn’t have a display 
name, the internal name is shown.) With Windows, services can also have a description field that 
further details what the service does. 

To map a service process to the services contained in that process, use the tlist /s or tasklist 
/svc command. Note that there isn’t always one-to-one mapping between service process and 
running services, however, because some services share a process with other services. In the 
registry, the type code indicates whether the service runs in its own process or shares a process 
with other services in the image. 

A number of Windows components are implemented as services, such as the Print Spooler, 
Event Log, Task Scheduler, and various networking components.  

EXPERIMENT: listing Installed Services 

To list the installed services, select Administrative Tools from Control Panel, and then select 
Services. You should see output like this: 
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To see the detailed properties about a service, right-click on a service and select Properties. 
For example, here are the properties for the Print Spooler service (highlighted in the previous 
screen shot): 

Notice that the Path To Executable field identifies the program that contains this service. 
Remember that some services share a process with other services—mapping isn’t always one to 
one. 

EXPERIMENT: Viewing Service Details Inside Service Processes 

Process Explorer highlights processes hosting one service or more. (You can configure this 
by selecting the Configure Highlighting entry in the Options menu.) If you doubleclick on a 
service-hosting process, you will see a Services tab that lists the services inside the process, the 
name of the registry key that defines the service, the display name seen by the administrator, the 
description text for that service (if present), and for Svchost services, the path to the DLL that 
implements the service. For example, listing the services in a Svchost.exe process on Windows 
Vista running under the System account looks like the following. 

 For more details on services, see Chapter 4. 
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2.5 Conclusion 

In this chapter, we’ve taken a broad look at the overall system architecture of Windows. 
We’ve examined the key components of Windows and seen how they interrelate. In the next 
chapter, we’ll look in more detail at the core system mechanisms that these components are built 
on, such as the object manager and synchronization. 
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3. System Mechanisms 

The Windows operating system provides several base mechanisms that kernel-mode 
components such as the executive, the kernel, and device drivers use. This chapter explains the 
following system mechanisms and describes how they are used:  

■ Trap dispatching, including interrupts, deferred procedure calls (DPCs), asynchronous 
procedure calls (APCs), exception dispatching, and system service dispatching 

■ The executive object manager 

■ Synchronization, including spinlocks, kernel dispatcher objects, how waits are 
implemented, as well as user-mode-specific synchronization primitives that avoid trips to kernel 
mode (unlike typical dispatcher objects) 

■ System worker threads 

■ Miscellaneous mechanisms such as Windows global flags 

■ Advanced local procedure calls (ALPCs) 

■ Kernel Event Tracing 

■ Wow64 

■ User-mode debugging 

■ The image loader 

■ Hypervisor (Hyper-V) 

■ Kernel Transaction Manager (KTM) 

■ Kernel Patch Protection (KPP) 

■ Code integrity 

3.1 Trap Dispatching 

Interrupts and exceptions are operating system conditions that divert the processor to code 
outside the normal flow of control. Either hardware or software can detect them. The term trap 
refers to a processor’s mechanism for capturing an executing thread when an exception or an 
interrupt occurs and transferring control to a fixed location in the operating system.  

In Windows, the processor transfers control to a trap handler, a function specific to a 
particular interrupt or exception. Figure 3-1 illustrates some of the conditions that activate trap 
handlers.  
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The kernel distinguishes between interrupts and exceptions in the following way. An 
interrupt is an asynchronous event (one that can occur at any time) that is unrelated to what the 
processor is executing. Interrupts are generated primarily by I/O devices, processor clocks, or 
timers, and they can be enabled (turned on) or disabled (turned off). An exception, in contrast, is a 
synchronous condition that results from the execution of a particular instruction. 

Running a program a second time with the same data under the same conditions can 
reproduce exceptions. Examples of exceptions include memory access violations, certain debugger 
instructions, and divide-by-zero errors. The kernel also regards system service calls as exceptions 
(although technically they’re system traps). 

    Either hardware or software can generate exceptions and interrupts. For example, a bus error 
exception is caused by a hardware problem, whereas a divide-by-zero exception is the result of a 
software bug. Likewise, an I/O device can generate an interrupt, or the kernel itself can issue a 
software interrupt (such as an APC or DPC, described later in this chapter).  

When a hardware exception or interrupt is generated, the processor records enough machine 
state on the kernel stack of the thread that’s interrupted so that it can return to that point in the 
control flow and continue execution as if nothing had happened. If the thread was executing in 
user mode, Windows switches to the thread’s kernel-mode stack. Windows then creates a trap 
frame on the kernel stack of the interrupted thread into which it stores the execution state of the 
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thread. The trap frame is a subset of a thread’s complete context, and you can view its definition 
by typing dt nt!_ktrap_frame in the kernel debugger. (Thread context is described in Chapter 5.) 
The kernel handles software interrupts either as part of hardware interrupt handling or 
synchronously when a thread invokes kernel functions related to the software interrupt. 

In most cases, the kernel installs front-end trap handling functions that perform general trap 
handling tasks before and after transferring control to other functions that field the trap. For 
example, if the condition was a device interrupt, a kernel hardware interrupt trap handler transfers 
control to the interrupt service routine (ISR) that the device driver provided for the interrupting 
device. If the condition was caused by a call to a system service, the general system service trap 
handler transfers control to the specified system service function in the executive. The kernel also 
installs trap handlers for traps that it doesn’t expect to see or doesn’t handle. These trap handlers 
typically execute the system function KeBugCheckEx, which halts the computer when the kernel 
detects problematic or incorrect behavior that, if left unchecked, could result in data corruption. 
(For more information on bug checks, see Chapter 14.) The following sections describe interrupt, 
exception, and system service dispatching in greater detail. 

3.1.1 Interrupt Dispatching 

Hardware-generated interrupts typically originate from I/O devices that must notify the 
processor when they need service. Interrupt-driven devices allow the operating system to get the 
maximum use out of the processor by overlapping central processing with I/O operations. A 
thread starts an I/O transfer to or from a device and then can execute other useful work while the 
device completes the transfer. When the device is finished, it interrupts the processor for service. 
Pointing devices, printers, keyboards, disk drives, and network cards are generally interrupt 
driven.  

System software can also generate interrupts. For example, the kernel can issue a software 
interrupt to initiate thread dispatching and to asynchronously break into the execution of a thread. 
The kernel can also disable interrupts so that the processor isn’t interrupted, but it does so only 
infrequently—at critical moments while it’s processing an interrupt or dispatching an exception, 
for example.  

The kernel installs interrupt trap handlers to respond to device interrupts. Interrupt trap 
handlers transfer control either to an external routine (the ISR) that handles the interrupt or to an 
internal kernel routine that responds to the interrupt. Device drivers supply ISRs to service device 
interrupts, and the kernel provides interrupt handling routines for other types of interrupts. 

In the following subsections, you’ll find out how the hardware notifies the processor of 
device interrupts, the types of interrupts the kernel supports, the way device drivers interact with 
the kernel (as a part of interrupt processing), and the software interrupts the kernel recognizes 
(plus the kernel objects that are used to implement them). 

Hardware Interrupt Processing 
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On the hardware platforms supported by Windows, external I/O interrupts come into one of 
the lines on an interrupt controller. The controller in turn interrupts the processor on a single line. 
Once the processor is interrupted, it queries the controller to get the interrupt request (IRQ). The 
interrupt controller translates the IRQ to an interrupt number, uses this number as an index into a 
structure called the interrupt dispatch table (IDT), and transfers control to the appropriate interrupt 
dispatch routine. At system boot time, Windows fills in the IDT with pointers to the kernel 
routines that handle each interrupt and exception.  

EXPERIMENT: Viewing the IDT 

You can view the contents of the IDT, including information on what trap handlers Windows 
has assigned to interrupts (including exceptions and IRQs), using the !idt kernel debugger 
command. The !idt command with no flags shows vectors that map to addresses in modules other 
than Ntoskrnl.exe. 

The following example shows what the output of the !idt command looks like:  

1. lkd> !idt   

2. Dumping IDT:   

3. 37: 823b50e8 hal!PicSpuriousService37  

4. 51: 89714cd0 dxgkrnl!DpiFdoLineInterruptRoutine (KINTERRUPT 89714c80)   

5. 52: 887f52d0 USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5280)   

6. 62: 887f5a50 USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5a00)   

7. USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5000)   

8. 72: 861137d0 ataport!IdePortInterrupt (KINTERRUPT 86113780)   

9. 81: 89237050 i8042prt!I8042KeyboardInterruptService (KINTERRUPT 89237000)  

10. 82: 86113a50 ataport!IdePortInterrupt (KINTERRUPT 86113a00)   

11. 91: 892372d0 i8042prt!I8042MouseInterruptService (KINTERRUPT 89237280)   

12. a2: 89237cd0 sdbus!SdbusInterrupt (KINTERRUPT 89237c80)   

13. rimmptsk+0x682E (KINTERRUPT 89237a00)   

14. rimsptsk+0x6780 (KINTERRUPT 89237780)   

15. rixdptsk+0x6820 (KINTERRUPT 89237500)   

16. a3: 887f57d0 USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5780)   

17. HDAudBus!HdaController::Isr (KINTERRUPT 86113280)   

18. a8: 86113050 ndis!ndisMiniportMessageIsr (KINTERRUPT 86113000)   

19. a9: 87d35cd0 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35c80)   

20. aa: 87d35a50 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35a00)   

21. ab: 87d357d0 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35780)   

22. ac: 87d35550 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35500)   

23. ad: 87d352d0 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35280)   

24. ae: 87d35050 ndis!ndisMiniportMessageIsr (KINTERRUPT 87d35000)   

25. af: 887f5cd0 ndis!ndisMiniportMessageIsr (KINTERRUPT 887f5c80)   

26. b0: 86113550 ndis!ndisMiniportMessageIsr (KINTERRUPT 86113500)   

27. b1: 86113cd0 acpi!ACPIInterruptServiceRoutine (KINTERRUPT 86113c80)   

28. b3: 887f5550 USBPORT!USBPORT_InterruptService (KINTERRUPT 887f5500)   



 88

29. c1: 823b53d8 hal!HalpBroadcastCallService   

30. d1: 823a3c64 hal!HalpHpetClockInterrupt   

31. d2: 823a3f08 hal!HalpHpetRolloverInterrupt   

32. df: 823b51c0 hal!HalpApicRebootService   

33. e1: 823b5934 hal!HalpIpiHandler   

34. e3: 823b56d4 hal!HalpLocalApicErrorService   

35. fd: 823b5edc hal!HalpProfileInterrupt  

On the system used to provide the output for this experiment, the keyboard device driver’s 
(I8042prt.sys) keyboard ISR is at interrupt number 0x91.  

Windows maps hardware IRQs to interrupt numbers in the IDT, and the system also uses the 
IDT to configure trap handlers for exceptions. For example, the x86 and x64 exception number for 
a page fault (an exception that occurs when a thread attempts to access a page of virtual memory 
that isn’t defined or present) is 0xe. Thus, entry 0xe in the IDT points to the system’s page fault 
handler. Although the architectures supported by Windows allow up to 256 IDT entries, the 
number of IRQs a particular machine can support is determined by the design of the interrupt 
controller the machine uses. 

Each processor has a separate IDT so that different processors can run different ISRs, if 
appropriate. For example, in a multiprocessor system, each processor receives the clock interrupt, 
but only one processor updates the system clock in response to this interrupt. All the processors, 
however, use the interrupt to measure thread quantum and to initiate rescheduling when a thread’s 
quantum ends. Similarly, some system configurations might require that a particular processor 
handle certain device interrupts. 

x86 Interrupt Controllers 

Most x86 systems rely on either the i8259A Programmable Interrupt Controller (PIC) or a 
variant of the i82489 Advanced Programmable Interrupt Controller (APIC); the majority of new 
computers include an APIC. The PIC standard originates with the original IBM PC. The i8259A 
PIC works only with uniprocessor systems and only has 8 interrupt lines. However, the IBM PC 
architecture defined the addition of a second PIC, called the slave, whose interrupts are 
multiplexed into one of the master PIC’s interrupt lines. This provides 15 total interrupts (7 on the 
master and 8 on the slave, multiplexed through the master’s eighth interrupt line). APICs and 
Streamlined Advanced Programmable Interrupt Controllers (SAPICs, discussed shortly) work 
with multiprocessor systems and have 256 interrupt lines. Intel and other companies have defined 
the Multiprocessor Specification (MP Specification), a design  standard for x86 multiprocessor 
systems that centers on the use of APIC. To provide compatibility with uniprocessor operating 
systems and boot code that starts a multiprocessor system in uniprocessor mode, APICs support a 
PIC compatibility mode with 15 interrupts and delivery of interrupts to only the primary processor. 
Figure 3-2 depicts the APIC architecture. The APIC actually consists of several components: an 
I/O APIC that receives interrupts from devices, local APICs that receive interrupts from the I/O 
APIC on the bus and that interrupt the CPU they are associated with, and an i8259A-compatible 
interrupt controller that translates APIC input into PIC-equivalent signals. Because there can be 
multiple I/O APICs on the system, motherboards typically have a piece of core logic that sits 
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between them and the processors. This logic is responsible for implementing interrupt routing 
algorithms that both  alance the device interrupt load across processors and attempt to take 
advantage of locality, delivering device interrupts to the same processor that has just fielded a 
previous interrupt of the same type. Software programs can reprogram the I/O APICs with a fixed 
routing algorithm that bypasses this piece of chipset logic. Windows does this by programming 
the APICs in “interrupt one processor in the following set” routing mode. 

  

x64 Interrupt Controllers 

Because the x64 architecture is compatible with x86 operating systems, x64 systems must 
provide the same interrupt controllers as does the x86. A significant difference, however, is that 
the x64 versions of Windows will not run on systems that do not have an APIC as they use the 
APIC for interrupt control. 

IA64 Interrupt Controllers 

The IA64 architecture relies on the Streamlined Advanced Programmable Interrupt 
Controller (SAPIC), which is an evolution of the APIC. Even if load balancing and routing are 
present in the firmware, Windows does not take advantage of it; instead, it statically assigns 
interrupts to processors in a round-robin manner.  

EXPERIMENT: Viewing the PIC and APIC 
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You can view the configuration of the PIC on a uniprocessor and the APIC on a 
multiprocessor by using the !pic and !apic kernel debugger commands, respectively. Here’s the 
output of the !pic command on a uniprocessor. (Note that the !pic command doesn’t work if your 
system is using an APIC HAL.) 

1. lkd> !pic   

2. ----- IRQ Number ----- 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F   

3. Physically in service: . . . . . . . . . . . . . . . .   

4. Physically masked: . . . Y . . Y Y . . Y . . Y . .   

5. Physically requested: . . . . . . . . . . . . . . . .   

6. Level Triggered: . . . . . Y . . . Y . Y . . . .  

Here’s the output of the !apic command on a system running with the MPS HAL: 

1. lkd> !apic   

2. Apic @ fffe0000 ID:0 (40010) LogDesc:01000000 DestFmt:ffffffff TPR 20  

3. TimeCnt: 0bebc200clk SpurVec:3f FaultVec:e3 error:0  

4. Ipi Cmd: 0004001f Vec:1F FixedDel Dest=Self edg high  

5. Timer..: 000300fd Vec:FD FixedDel Dest=Self edg high masked   

6. Linti0.: 0001003f Vec:3F FixedDel Dest=Self edg high masked   

7. Linti1.: 000184ff Vec:FF NMI Dest=Self lvl high masked   

8. TMR: 61, 82, 91-92, B1  

9. IRR:   

10. ISR:  

The following output is for the !ioapic command, which displays the configuration of the I/O 
APICs, the interrupt controller components connected to devices: 

1. 0: kd> !ioapic   

2. IoApic @ ffd02000 ID:8 (11) Arb:0  

3. Inti00.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked   

4. Inti01.: 00000962 Vec:62 LowestDl Lg:03000000 edg   

5. Inti02.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked   

6. Inti03.: 00000971 Vec:71 LowestDl Lg:03000000 edg   

7. Inti04.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked   

8. Inti05.: 00000961 Vec:61 LowestDl Lg:03000000 edg   

9. Inti06.: 00010982 Vec:82 LowestDl Lg:02000000 edg masked   

10. Inti07.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked   

11. Inti08.: 000008d1 Vec:D1 FixedDel Lg:01000000 edg   

12. Inti09.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked   

13. Inti0A.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked   

14. Inti0B.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked   

15. Inti0C.: 00000972 Vec:72 LowestDl Lg:03000000 edg   

16. Inti0D.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked   

17. Inti0E.: 00000992 Vec:92 LowestDl Lg:03000000 edg   

18. Inti0F.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked   

19. Inti10.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked   
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20. Inti11.: 000100ff Vec:FF FixedDel PhysDest:00 edg masked  

Software Interrupt Request Levels (IRQLs) 

Although interrupt controllers perform a level of interrupt prioritization, Windows imposes 
its own interrupt priority scheme known as interrupt request levels (IRQLs). The kernel represents 
IRQLs internally as a number from 0 through 31 on x86 and from 0 to 15 on x64 and IA64, with 
higher numbers representing higher-priority interrupts. Although the kernel defines the standard 
set of IRQLs for software interrupts, the HAL maps hardware-interrupt numbers to the IRQLs. 
Figure 3-3 shows IRQLs defined for the x86 architecture, and Figure 3-4 shows IRQLs for the x64 
and IA64 architectures. 

  

Interrupts are serviced in priority order, and a higher-priority interrupt preempts the servicing 
of a lower-priority interrupt. When a high-priority interrupt occurs, the processor saves the 
interrupted thread’s state and invokes the trap dispatchers associated with the interrupt. The trap 
dispatcher raises the IRQL and calls the interrupt’s service routine. After the service routine 
executes, the interrupt dispatcher lowers the processor’s IRQL to where it was before the interrupt 
occurred and then loads the saved machine state. The interrupted thread resumes executing where 
it left off. When the kernel lowers the IRQL, lower-priority interrupts that were masked might 
materialize. If this happens, the kernel repeats the process to handle the new interrupts. 
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    IRQL priority levels have a completely different meaning than thread-scheduling priorities 
(which are described in Chapter 5). A scheduling priority is an attribute of a thread, whereas an 
IRQL is an attribute of an interrupt source, such as a keyboard or a mouse. In addition, each 
processor has an IRQL setting that changes as operating system code executes.  

Each processor’s IRQL setting determines which interrupts that processor can receive. IRQLs 
are also used to synchronize access to kernel-mode data structures. (You’ll find out more about 
synchronization later in this chapter.) As a kernel-mode thread runs, it raises or lowers the 
processor’s IRQL either directly by calling KeRaiseIrql and KeLowerIrql or, more commonly, 
indirectly via calls to functions that acquire kernel synchronization objects. As Figure 3-5 
illustrates, interrupts from a source with an IRQL above the current level interrupt the processor, 
whereas interrupts from sources with IRQLs equal to or below the current level are masked until 
an executing thread lowers the IRQL. 

Because accessing a PIC is a relatively slow operation, HALs that require accessing the I/O 
bus to change IRQLs, such as for PIC and 32-bit Advanced Configuration and Power Interface 
(ACPI) systems, implement a performance optimization, called lazy IRQL, that avoids PIC 
accesses. When the IRQL is raised, the HAL notes the new IRQL internally instead of changing 
the interrupt mask. If a lower-priority interrupt subsequently occurs, the HAL sets the interrupt 
mask to the settings appropriate for the first interrupt and postpones the lower-priority interrupt 
until the IRQL is lowered. Thus, if no lower-priority interrupts occur while the IRQL is raised, the 
HAL doesn’t need to modify the PIC.  
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     A kernel-mode thread raises and lowers the IRQL of the processor on which it’s running, 
depending on what it’s trying to do. For example, when an interrupt occurs, the trap handler (or 
perhaps the processor) raises the processor’s IRQL to the assigned IRQL of the interrupt source. 
This elevation masks all interrupts at and below that IRQL (on that processor only), which ensures 
that the processor servicing the interrupt isn’t waylaid by an interrupt at the same or a lower level. 
The masked interrupts are either handled by another processor or held back until the IRQL drops. 
Therefore, all components of the system, including the kernel and device drivers, attempt to keep 
the IRQL at passive level (sometimes called low level). They do this because device drivers can 
respond to hardware interrupts in a timelier manner if the IRQL isn’t kept unnecessarily elevated 
for long periods. 

Note An exception to the rule that raising the IRQL blocks interrupts of that level and lower 
relates to APC-level interrupts. If a thread raises the IRQL to APC level and then is rescheduled 
because of a dispatch/DPC-level interrupt, the system might deliver an APC level interrupt to the 
newly scheduled thread. Thus, APC level can be considered a thread-local rather than 
processorwide IRQL. 

EXPERIMENT: Viewing the IRQL  

You can view a processor’s saved IRQL with the !irql debugger command. The saved IRQL 
represents the IRQL at the time just before the break-in to the debugger, which raises the IRQL to 
a static, meaningless value: 
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1. kd> !irql   

2. Debugger saved IRQL for processor 0x0 -- 0 (LOW_LEVEL)  

Note that the IRQL value is saved in two locations. The first, which represents the current IRQL, 
is the processor control region (PCR), while its extension, the processor control block (PRCB), 
contains the saved IRQL in the DebuggerSaveIrql field. The PCR and PRCB contain information 
about the state of each processor in the system, such as the current IRQL, a pointer to the 
hardware IDT, the currently running thread, and the next thread selected to run. The kernel and the 
HAL use this information to perform architecture-specific and machine-specific actions. Portions 
of the PCR and PRCB structures are defined publicly in the Windows Driver Kit (WDK) header 
file Ntddk.h, so examine that file if you want a complete definition of these structures.  

You can view the contents of the PCR with the kernel debugger by using the !pcr command: 

1. lkd> !pcr   

2. KPCR for Processor 0 at 820f4700:  

3. Major 1 Minor 1  

4. NtTib.ExceptionList: 9cee5cc8  

5. NtTib.StackBase: 00000000  

6. NtTib.StackLimit: 00000000  

7. NtTib.SubSystemTib: 801ca000  

8. NtTib.Version: 294308d9  

9. NtTib.UserPointer: 00000001  

10. NtTib.SelfTib: 7ffdf000  

11. SelfPcr: 820f4700  

12. Prcb: 820f4820  

13. Irql: 00000004  

14. IRR: 00000000  

15. IDR: ffffffff   

16. InterruptMode: 00000000  

17. IDT: 81d7f400  

18. GDT: 81d7f000  

19. TSS: 801ca000  

20. CurrentThread: 8952d030  

21. NextThread: 00000000  

22. IdleThread: 820f8300  

23. DpcQueue:  

Because changing a processor’s IRQL has such a significant effect on system operation, the 
change can be made only in kernel mode—user-mode threads can’t change the processor’s IRQL. 
This means that a processor’s IRQL is always at passive level when it’s executing usermode code. 
Only when the processor is executing kernel-mode code can the IRQL be higher.  

Each interrupt level has a specific purpose. For example, the kernel issues an interprocessor 
interrupt (IPI) to request that another processor perform an action, such as dispatching a particular 
thread for execution or updating its translation look-aside buffer (TLB) cache. The system clock 
generates an interrupt at regular intervals, and the kernel responds by updating the clock and 
measuring thread execution time. If a hardware platform supports two clocks, the kernel adds 
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another clock interrupt level to measure performance. The HAL provides a number of interrupt 
levels for use by interrupt-driven devices; the exact number varies with the processor and system 
configuration. The kernel uses software interrupts (described later in this chapter) to initiate thread 
scheduling and to asynchronously break into a thread’s execution. 

Mapping Interrupts to IRQLs IRQL levels aren’t the same as the interrupt requests (IRQs) 
defined by interrupt controllers—the architectures on which Windows runs don’t implement the 
concept of IRQLs in hardware. So how does Windows determine what IRQL to assign to an 
interrupt? The answer lies in the HAL. In Windows, a type of device driver called a bus driver 
determines the presence of devices on its bus (PCI, USB, and so on) and what interrupts can be 
assigned to a device. The bus driver reports this information to the Plug and Play manager, which 
decides, after taking into account the acceptable interrupt assignments for all other devices, which 
interrupt will be assigned to each device. Then it calls a Plug and Play interrupt arbiter, which 
maps interrupts to IRQLs. 

The algorithm for assignment differs for the various HALs that Windows includes. On ACPI 
systems (including x86, x64, and IA64), the HAL computes the IRQL for a given interrupt by 
dividing the interrupt vector assigned to the IRQ by 16. As for selecting an interrupt vector for the 
IRQ, this depends on the type of interrupt controller present on the system. On today’s APIC 
systems, this number is generated in a round-robin fashion, so there is no computable way to 
figure out the IRQ based on the interrupt vector or the IRQL. 

Predefined IRQLs Let’s take a closer look at the use of the predefined IRQLs, starting from 
the highest level shown in Figure 3-4: 

■ The kernel uses high level only when it’s halting the system in KeBugCheckEx and 
masking out all interrupts. 

■ Power fail level originated in the original Windows NT design documents, which specified 
the behavior of system power failure code, but this IRQL has never been used. 

■ Inter-processor interrupt level is used to request another processor to perform an action, 
such as updating the processor’s TLB cache, system shutdown, or system crash. 

■ Clock level is used for the system’s clock, which the kernel uses to track the time of day as 
well as to measure and allot CPU time to threads. 

■ The system’s real-time clock (or another source, such as the local APIC timer) uses profile 
level when kernel profiling, a performance measurement mechanism, is enabled. When kernel 
profiling is active, the kernel’s profiling trap handler records the address of the code that was 
executing when the interrupt occurred. A table of address samples is constructed over time that 
tools can extract and analyze. You can obtain Kernrate, a kernel profiling tool that you can use to 
configure and view profiling-generated statistics, from the Windows Driver Kit (WDK). See the 
Kernrate experiment for more  information on using this tool. 

■ The device IRQLs are used to prioritize device interrupts. (See the previous section for 
how hardware interrupt levels are mapped to IRQLs.) 

■ The correctible machine check interrupt level is used after a serious but correctible (by the 
operating system) hardware condition or error was reported by the CPU or firmware. 
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■ DPC/dispatch-level and APC-level interrupts are software interrupts that the kernel and 
device drivers generate. (DPCs and APCs are explained in more detail later in this chapter.) 

■ The lowest IRQL, passive level, isn’t really an interrupt level at all; it’s the setting at which 
normal thread execution takes place and all interrupts are allowed to occur.  

EXPERIMENT: using Kernel Profiler (Kernrate) to Profile execution 

You can use the Kernel Profiler tool (Kernrate) to enable the system profiling timer, collect 
samples of the code that is executing when the timer fires, and display a summary showing the 
frequency distribution across image files and functions. It can be used to track CPU usage 
consumed by individual processes and/or time spent in kernel mode independent of processes (for 
example, interrupt service routines). Kernel profiling is useful when you want to obtain a 
breakdown of where the system is spending time.  

In its simplest form, Kernrate samples where time has been spent in each kernel module (for 
example, Ntoskrnl, drivers, and so on). For example, after installing the Windows Driver Kit, try 
performing the following steps: 

1. Open a command prompt. 

2. Type cd c:\winddk\6001\tools\other\. 

3. Type dir. (You will see directories for each platform.) 

4. Run the image that matches your platform (with no arguments or switches). For example, 
i386\kernrate.exe is the image for an x86 system. 

5. While Kernrate is running, go perform some other activity on the system. For example, run 
Windows Media Player and play some music, run a graphicsintensive game, or perform network 
activity such as doing a directory of a remote network share. 

6. Press Ctrl+C to stop Kernrate. This causes Kernrate to display the statistics from the 
sampling period. 

In the sample output from Kernrate, Windows Media Player was running, playing a recorded 
movie from disk. 

1. C:\Windows\system32>c:\Programming\ddk\tools\other\i386\kernrate.exe 

2. /==============================\   

3. < KERNRATE LOG >   

4. \==============================/   

5. Date: 2008/03/09 Time: 16:44:24  

6. Machine Name: ALEX-LAPTOP   

7. Number of Processors: 2  

8. PROCESSOR_ARCHITECTURE: x86  

9. PROCESSOR_LEVEL: 6  

10. PROCESSOR_REVISION: 0f06  

11. Physical Memory: 3310 MB   

12. Pagefile Total: 7285 MB   

13. Virtual Total: 2047 MB   
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14. PageFile1: \??\C:\pagefile.sys, 4100MB   

15. OS Version: 6.0 Build 6000 Service-Pack: 0.0  

16. WinDir: C:\Windows   

17. Kernrate Executable Location: C:\PROGRAMMING\DDK\TOOLS\OTHER\I386  

18. Kernrate User-Specified Command Line:   

19. c:\Programming\ddk\tools\other\i386\kernrate.exe   

20. Kernel Profile (PID = 0): Source= Time,   

21. Using Kernrate Default Rate of 25000 events/hit   

22. Starting to collect profile data   

23. ***> Press ctrl-c to finish collecting profile data   

24. ===> Finished Collecting Data, Starting to Process Results   

25. ------------Overall Summary:--------------   

26. P0 K 0:00:00.000 ( 0.0%) U 0:00:00.234 ( 4.7%) I 0:00:04.789 (95.3%) 

27. DPC 0:00:00.000 ( 0.0%) Interrupt 0:00:00.000 ( 0.0%)   

28. Interrupts= 9254, Interrupt Rate= 1842/sec.   

29. P1 K 0:00:00.031 ( 0.6%) U 0:00:00.140 ( 2.8%) I 0:00:04.851 (96.6%) 

30. DPC 0:00:00.000 ( 0.0%) Interrupt 0:00:00.000 ( 0.0%)   

31. Interrupts= 7051, Interrupt Rate= 1404/sec.   

32. TOTAL K 0:00:00.031 ( 0.3%) U 0:00:00.374 ( 3.7%) I 0:00:09.640      

     96.0%) 

33. DPC 0:00:00.000 ( 0.0%) Interrupt 0:00:00.000 ( 0.0%)   

34. Total Interrupts= 16305, Total Interrupt Rate= 3246/sec.   

35. Total Profile Time = 5023 msec   

36. BytesStart BytesStop BytesDiff.   

37. Available Physical Memory , 1716359168, 1716195328, -163840  

38. Available Pagefile(s) , 5973733376, 5972783104, -950272  

39. Available Virtual , 2122145792, 2122145792, 0  

40. Available Extended Virtual , 0, 0, 0  

41. Committed Memory Bytes , 1665404928, 1666355200, 950272  

42. Non Paged Pool Usage Bytes , 66211840, 66211840, 0  

43. Paged Pool Usage Bytes , 189083648, 189087744, 4096  

44. Paged Pool Available Bytes , 150593536, 150593536, 0  

45. Free System PTEs , 37322, 37322, 0  

46. Total Avg. Rate   

47. Context Switches , 30152, 6003/sec.   

48. System Calls , 110807, 22059/sec.   

49. Page Faults , 226, 45/sec.   

50. I/O Read Operations , 730, 145/sec.   

51. I/O Write Operations , 1038, 207/sec.   

52. I/O Other Operations , 858, 171/sec.   

53. I/O Read Bytes , 2013850, 2759/ I/O   

54. I/O Write Bytes , 28212, 27/ I/O   

55. I/O Other Bytes , 19902, 23/ I/O   

56. -----------------------------   
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57. Results for Kernel Mode:   

58. -----------------------------   

59. OutputResults: KernelModuleCount = 167  

60. Percentage in the following table is based on the Total Hits for the

     Kernel   

61. Time 3814 hits, 25000 events per hit --------   

62. Module Hits msec %Total Events/Sec   

63. NTKRNLPA 3768 5036 98 % 18705321  

64. NVLDDMKM 12 5036 0 % 59571  

65. HAL 12 5036 0 % 59571  

66. WIN32K 10 5037 0 % 49632  

67. DXGKRNL 9 5036 0 % 44678  

68. NETW4V32 2 5036 0 % 9928  

69. FLTMGR 1 5036 0 % 4964  

70. ================================= END OF RUN =======================     

71. ============================== NORMAL END OF RUN =================== 

The overall summary shows that the system spent 0.3 percent of the time in kernel mode, 3.7 
percent in user mode, 96.0 percent idle, 0.0 percent at DPC level, and 0.0 percent at interrupt level. 
The module with the highest hit rate was Ntkrnlpa.exe, the kernel for machines with Physical 
Address Extension (PAE) or NX support. The module with the second highest hit rate was 
nvlddmkm.sys, the driver for the video card on the machine used for the test. This makes sense 
because the major activity going on in the system was Windows Media Player sending video I/O 
to the video driver.  

If you have symbols available, you can zoom in on individual modules and see the time spent 
by function name. For example, profiling the system while rapidly dragging a window around the 
screen resulted in the following (partial) output:  

1. C:\Windows\system32>c:\Programming\ddk\tools\other\i386\kernrate.exe -z n

tkrnlpa -z   

2. win32k   

3. /==============================\   

4. < KERNRATE LOG >   

5. \==============================/   

6. Date: 2008/03/09 Time: 16:49:56  

7. Time 4191 hits, 25000 events per hit --------   

8. Module Hits msec %Total Events/Sec   

9. NTKRNLPA 3623 5695 86 % 15904302  

10. WIN32K 303 5696 7 % 1329880  

11. INTELPPM 141 5696 3 % 618855  

12. HAL 61 5695 1 % 267778  

13. CDD 30 5696 0 % 131671  

14. NVLDDMKM 13 5696 0 % 57057  

15. ----- Zoomed module WIN32K.SYS (Bucket size = 16 bytes, Rounding Down)  

16. Module Hits msec %Total Events/Sec   
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17. BltLnkReadPat 34 5696 10 % 149227  

18. memmove 21 5696 6 % 92169  

19. vSrcTranCopyS8D32 17 5696 5 % 74613  

20. memcpy 12 5696 3 % 52668  

21. RGNOBJ::bMerge 10 5696 3 % 43890  

22. HANDLELOCK::vLockHandle 8 5696 2 % 35112  

23. ----- Zoomed module NTKRNLPA.EXE (Bucket size = 16 bytes, Rounding Down) 

--------   

24. Module Hits msec %Total Events/Sec   

25. KiIdleLoop 3288 5695 87 % 14433713  

26. READ_REGISTER_USHORT 95 5695 2 % 417032  

27. READ_REGISTER_ULONG 93 5695 2 % 408252  

28. RtlFillMemoryUlong 31 5695 0 % 136084  

29. KiFastCallEntry 18 5695 0 % 79016  

The module with the second hit rate was Win32k.sys, the windowing system driver. Also 
high on the list were the video driver and Cdd.dll, a global video driver used for the 
3D-accelerated Aero desktop theme. These results make sense because the main activity in the 
system was drawing on the screen. Note that in the zoomed display for Win32k.sys, the functions 
with the highest hits are related to merging, copying, and moving bits, the main GDI operations 
for painting a window dragged on the screen.  

One important restriction on code running at DPC/dispatch level or above is that it can’t wait 
for an object if doing so would necessitate the scheduler to select another thread to execute, which 
is an illegal operation because the scheduler synchronizes its data structures at DPC/ dispatch level 
and cannot therefore be invoked to perform a reschedule. Another restriction is that only nonpaged 
memory can be accessed at IRQL DPC/dispatch level or higher. 

This rule is actually a side-effect of the first restriction because attempting to access memory 
that isn’t resident results in a page fault. When a page fault occurs, the memory manager initiates a 
disk I/O and then needs to wait for the file system driver to read the page in from disk. This wait 
would in turn require the scheduler to perform a context switch (perhaps to the idle thread if no 
user thread is waiting to run), thus violating the rule that the scheduler can’t be invoked (because 
the IRQL is still DPC/dispatch level or higher at the time of the disk read). 

If either of these two restrictions is violated, the system crashes with an 
IRQL_NOT_LESS_OR_EQUAL or a DRIVER_IRQL_NOT_LESS_OR_EQUAL crash code. 
(See Chapter 14 for a thorough discussion of system crashes.) Violating these restrictions is a 
common bug in device drivers. The Windows Driver Verifier, explained in the section “Driver 
Verifier” in Chapter 9, has an option you can set to assist in finding this particular type of bug.  

Interrupt Objects The kernel provides a portable mechanism—a kernel control object called 
an interrupt object—that allows device drivers to register ISRs for their devices. An interrupt 
object contains all the information the kernel needs to associate a device ISR with a particular 
level of interrupt, including the address of the ISR, the IRQL at which the device interrupts, and 
the entry in the kernel’s IDT with which the ISR should be associated. When an interrupt object is 
initialized, a few instructions of assembly language code, called the dispatch code, are copied 
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from an interrupt handling template, KiInterruptTemplate, and stored in the object. When an 
interrupt occurs, this code is executed. 

This interrupt-object resident code calls the real interrupt dispatcher, which is typically either 
the kernel’s KiInterruptDispatch or KiChainedDispatch routine, passing it a pointer to the 
interrupt object. KiInterruptDispatch is the routine used for interrupt vectors for which only one 
interrupt object is registered, and KiChainedDispatch is for vectors shared among multiple 
interrupt objects. The interrupt object contains information this second dispatcher routine needs to 
locate and properly call the ISR the device driver provides. 

The interrupt object also stores the IRQL associated with the interrupt so that 
KiInterrupt-Dispatch or KiChainedDispatch can raise the IRQL to the correct level before calling 
the ISR and then lower the IRQL after the ISR has returned. This two-step process is required 
because there’s no way to pass a pointer to the interrupt object (or any other argument for that 
matter) on the initial dispatch because the initial dispatch is done by hardware. On a 
multiprocessor system, the kernel allocates and initializes an interrupt object for each CPU, 
enabling the local APIC on that CPU to accept the particular interrupt.  

Another kernel interrupt handler is KiFloatingDispatch, which is used for interrupts that 
require saving the floating-point state. Unlike kernel-mode code, which typically is not allowed to 
use floating-point (MMX, SSE, 3DNow!) operations because these registers won’t be saved across 
context switches, ISRs might need to use these registers (such as the video card ISR performing a 
quick drawing operation). When connecting an interrupt, drivers can set the FloatingSave 
argument to TRUE, requesting that the kernel use the floating-point dispatch routine, which will 
save the floating registers. (However, this will greatly increase interrupt latency.) Note that this is 
supported only on 32-bit systems.  
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EXPERIMENT: examining interrupt internals 

Using the kernel debugger, you can view details of an interrupt object, including its IRQL, 
ISR address, and custom interrupt dispatching code. First, execute the !idt command and locate 
the entry that includes a reference to I8042KeyboardInterruptService, the ISR routine for the PS2 
keyboard device: 

1. 81: 89237050 i8042prt!I8042KeyboardInterruptService (KINTERRUPT 89237000) 
 To view the contents of the interrupt object associated with the interrupt, execute dt 

nt!_kinterrupt with the address following KINTERRUPT: 
1. lkd> dt nt!_KINTERRUPT 89237000  

2. +0x000 Type : 22  

3. +0x002 Size : 624  

4. +0x004 InterruptListEntry : _LIST_ENTRY [ 0x89237004 - 0x89237004 ]   

5. +0x00c ServiceRoutine : 0x8f60e15c unsigned char   

6. i8042prt!I8042KeyboardInterruptService+0  

7. +0x010 MessageServiceRoutine : (null)   

8. +0x014 MessageIndex : 0  



 102

9. +0x018 ServiceContext : 0x87c707a0  

10. +0x01c SpinLock : 0  

11. +0x020 TickCount : 0xffffffff   

12. +0x024 ActualLock : 0x87c70860 -> 0  

13. +0x028 DispatchAddress : 0x82090b40 void nt!KiInterruptDispatch+0  

14. +0x02c Vector : 0x81  

15. +0x030 Irql : 0x7 ''  

16. +0x031 SynchronizeIrql : 0x8 ''  

17. +0x032 FloatingSave : 0 ''  

18. +0x033 Connected : 0x1 ''  

19. +0x034 Number : 0 ''  

20. +0x035 ShareVector : 0 ''  

21. +0x038 Mode : 1 ( Latched )   

22. +0x03c Polarity : 0 ( InterruptPolarityUnknown )   

23. +0x040 ServiceCount : 0  

24. +0x044 DispatchCount : 0xffffffff   

25. +0x048 Rsvd1 : 0  

26. +0x050 DispatchCode : [135] 0x56535554  

In this example, the IRQL that Windows assigned to the interrupt is 7. Because this output is 
from an APIC system, the only way to verify the IRQ is to open the Device Manager (on the 
Hardware tab in the System item in Control Panel), locate the PS/2 keyboard device, and view its 
resource assignments, as shown in the following screen shot: 
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On an x64 or IA64 system you will see that the IRQ is the interrupt vector number 
(0x81—129 decimal—in this example) divided by 16 minus 1. 

The ISR’s address for the interrupt object is stored in the ServiceRoutine field (which is 
what !idt displays in its output), and the interrupt code that actually executes when an interrupt 
occurs is stored in the DispatchCode array at the end of the interrupt object. The interrupt code 
stored there is programmed to build the trap frame on the stack and then call the function stored in 
the DispatchAddress field (KiInterruptDispatch in the example), passing it a pointer to the 
interrupt object. 

Windows and real-Time Processing 

Deadline requirements, either hard or soft, characterize real-time environments. Hard 
real-time systems (for example, a nuclear power plant control system) have deadlines that the 
system must meet to avoid catastrophic failures such as loss of equipment or life. Soft real-time 
systems (for example, a car’s fuel-economy optimization system) have deadlines that the system 
can miss, but timeliness is still a desirable trait. In realtime systems, computers have sensor input 
devices and control output devices. The designer of a real-time computer system must know 
worst-case delays between the time an input device generates an interrupt and the time the 
device’s driver can control the output device to respond. This worst-case analysis must take into 
account the delays the operating system introduces as well as the delays the application and device 
drivers impose. 

Because Windows doesn’t prioritize device IRQs in any controllable way and userlevel 
applications execute only when a processor’s IRQL is at passive level, Windows isn’t always 
suitable as a real-time operating system. The system’s devices and device drivers—not 
Windows—ultimately determine the worst-case delay. This factor becomes a problem when the 
real-time system’s designer uses off-the-shelf hardware. The designer can have difficulty 
determining how long every off-the-shelf device’s ISR or DPC might take in the worst case. Even 
after testing, the designer can’t guarantee that a special case in a live system won’t cause the 
system to miss an important deadline. Furthermore, the sum of all the delays a system’s DPCs and 
ISRs can introduce usually far exceeds the tolerance of a time-sensitive system.  

Although many types of embedded systems (for example, printers and automotive computers) 
have real-time requirements, Windows Embedded Standard doesn’t have real-time characteristics. 
It is simply a version of Windows XP that makes it possible, using system-designer technology 
that Microsoft licensed from VenturCom (formerly Ardence and now part of IntervalZero), to 
produce small-footprint versions of Windows XP suitable for running on devices with limited 
resources. For example, a device that has no networking capability would omit all the Windows 
XP components related to networking, including network management tools and adapter and 
protocol stack device drivers. 

Still, there are third-party vendors that supply real-time kernels for Windows. The approach 
these vendors take is to embed their real-time kernel in a custom HAL and to have Windows run 
as a task in the real-time operating system. The task running Windows serves as the user interface 
to the system and has a lower priority than the tasks responsible for managing the device. See 
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IntervalZero’s Web site, www.intervalzero.com, for an example of a third-party real-time kernel 
extension for Windows. 

Associating an ISR with a particular level of interrupt is called connecting an interrupt object, 
and dissociating an ISR from an IDT entry is called disconnecting an interrupt object. These 
operations, accomplished by calling the kernel functions IoConnectInterrupt and 
IoDisconnectInterrupt, allow a device driver to “turn on” an ISR when the driver is loaded into the 
system and to “turn off” the ISR if the driver is unloaded. 

Using the interrupt object to register an ISR prevents device drivers from fiddling directly 
with interrupt hardware (which differs among processor architectures) and from needing to know 
any details about the IDT. This kernel feature aids in creating portable device drivers because it 
eliminates the need to code in assembly language or to reflect processor differences in device 
drivers. 

Interrupt objects provide other benefits as well. By using the interrupt object, the kernel can 
synchronize the execution of the ISR with other parts of a device driver that might share data with 
the ISR. (See Chapter 7 for more information about how device drivers respond to interrupts.) 

Furthermore, interrupt objects allow the kernel to easily call more than one ISR for any 
interrupt level. If multiple device drivers create interrupt objects and connect them to the same 
IDT entry, the interrupt dispatcher calls each routine when an interrupt occurs at the specified 
interrupt line. This capability allows the kernel to easily support “daisy-chain” configurations, in 
which several devices share the same interrupt line. The chain breaks when one of the ISRs claims 
ownership for the interrupt by returning a status to the interrupt dispatcher.  

If multiple devices sharing the same interrupt require service at the same time, devices not 
acknowledged by their ISRs will interrupt the system again once the interrupt dispatcher has 
lowered the IRQL. Chaining is permitted only if all the device drivers wanting to use the same 
interrupt indicate to the kernel that they can share the interrupt; if they can’t, the Plug and Play 
manager reorganizes their interrupt assignments to ensure that it honors the sharing requirements 
of each. If the interrupt vector is shared, the interrupt object invokes KiChainedDispatch, which 
will invoke the ISRs of each registered  interrupt object in turn until one of them claims the 
interrupt or all have been executed. In the earlier sample !idt output, vector 0xa2 is connected to 
several chained interrupt objects. 

Even though connecting and disconnecting interrupts in previous versions of Windows was a 
portable operation that abstracted much of the internal system functionality from the developer, it 
still required a great deal of information from the device driver developer, which could result in 
anything from subtle bugs to hardware damage should these parameters be input improperly. As 
part of the many enhancements to the interrupt mechanisms in the kernel and HAL, Windows 
Vista introduced a new API, IoConnectInterruptEx, that added support for more advanced types of 
interrupts (called message-based interrupts) and enhanced the current support for standard 
interrupts (also called line-based interrupts). The new IoConnectInterruptEx API also takes fewer 
parameters than its predecessor. Notably missing are the vector (interrupt number), IRQL, affinity, 
and edge versus level-trigged parameters. 

Software Interrupts  
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Although hardware generates most interrupts, the Windows kernel also generates software 
interrupts for a variety of tasks, including these: 

■ Initiating thread dispatching 

■ Non-time-critical interrupt processing 

■ Handling timer expiration 

■ Asynchronously executing a procedure in the context of a particular thread 

■ Supporting asynchronous I/O operations 

These tasks are described in the following subsections. Dispatch or Deferred Procedure Call 
(DPC) Interrupts When a thread can no longer continue executing, perhaps because it has 
terminated or because it voluntarily enters a wait state, the kernel calls the dispatcher directly to 
effect an immediate context switch. Sometimes, however, the kernel detects that rescheduling 
should occur when it is deep within many layers of code. In this situation, the kernel requests 
dispatching but defers its occurrence until it completes its current activity. Using a DPC software 
interrupt is a convenient way to achieve this delay.  

The kernel always raises the processor’s IRQL to DPC/dispatch level or above when it needs 
to synchronize access to shared kernel structures. This disables additional software interrupts and 
thread dispatching. When the kernel detects that dispatching should occur, it requests a 
DPC/dispatch-level interrupt; but because the IRQL is at or above that level, the processor holds 
the interrupt in check. When the kernel completes its current activity, it sees that it’s going to 
lower the IRQL below DPC/dispatch level and checks to see whether any dispatch interrupts are 
pending. If there are, the IRQL drops to DPC/dispatch level and the dispatch interrupts are 
processed. Activating the thread dispatcher by using a software interrupt is a way to defer 
dispatching until conditions are right. However, Windows uses software interrupts to defer other 
types of processing as well. 

In addition to thread dispatching, the kernel also processes deferred procedure calls (DPCs) at 
this IRQL. A DPC is a function that performs a system task—a task that is less time-critical than 
the current one. The functions are called deferred because they might not execute immediately. 

DPCs provide the operating system with the capability to generate an interrupt and execute a 
system function in kernel mode. The kernel uses DPCs to process timer expiration (and release 
threads waiting for the timers) and to reschedule the processor after a thread’s quantum expires. 
Device drivers use DPCs to complete I/O requests. To provide timely service for hardware 
interrupts, Windows—with the cooperation of device drivers—attempts to keep 

the IRQL below device IRQL levels. One way that this goal is achieved is for device driver 
ISRs to perform the minimal work necessary to acknowledge their device, save volatile interrupt 
state, and defer data transfer or other less time-critical interrupt processing activity for execution 
in a DPC at DPC/dispatch IRQL. (See Chapter 7 for more information on DPCs and the I/O 
system.) 

A DPC is represented by a DPC object, a kernel control object that is not visible to 
user-mode programs but is visible to device drivers and other system code. The most important 
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piece of information the DPC object contains is the address of the system function that the kernel 
will call when it processes the DPC interrupt. DPC routines that are waiting to execute are stored 
in kernel-managed queues, one per processor, called DPC queues. To request a DPC, system code 
calls the kernel to initialize a DPC object and then places it in a DPC queue.  

By default, the kernel places DPC objects at the end of the DPC queue of the processor on 
which the DPC was requested (typically the processor on which the ISR executed). A device 
driver can override this behavior, however, by specifying a DPC priority (low, medium, or high, 
where medium is the default) and by targeting the DPC at a particular processor. A DPC aimed at 
a specific CPU is known as a targeted DPC. If the DPC has a low or medium priority, the kernel 
places the DPC object at the end of the queue; if the DPC has a high priority, the kernel inserts the 
DPC object at the front of the queue.  

When the processor’s IRQL is about to drop from an IRQL of DPC/dispatch level or higher 
to a lower IRQL (APC or passive level), the kernel processes DPCs. Windows ensures that the 
IRQL remains at DPC/dispatch level and pulls DPC objects off the current processor’s queue until 
the queue is empty (that is, the kernel “drains” the queue), calling each DPC function in turn. Only 
when the queue is empty will the kernel let the IRQL drop below DPC/dispatch level and let 
regular thread execution continue. DPC processing is depicted in Figure 3-7. DPC priorities can 
affect system behavior another way. The kernel usually initiates DPC queue draining with a 
DPC/dispatch-level interrupt. The kernel generates such an interrupt only if the DPC is directed at 
the processor the ISR is requested on and the DPC has a high or medium priority. If the DPC has a 
low priority, the kernel requests the interrupt only if the number of outstanding DPC requests for 
the processor rises above a threshold or if the number of DPCs requested on the processor within a 
time window is low.  
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If a DPC is targeted at a CPU different from the one on which the ISR is running and the 
DPC’s priority is high, the kernel immediately signals the target CPU (by sending it a dispatch IPI) 
to drain its DPC queue. If the priority is medium or low, the number of DPCs queued on the target 
processor must exceed a threshold for the kernel to trigger a DPC/dispatch interrupt. The system 
idle thread also drains the DPC queue for the processor it runs on. Although DPC targeting and 
priority levels are flexible, device drivers rarely need to change the default behavior of their DPC 
objects. Table 3-1 summarizes the situations that initiate DPC queue draining. 

       Because user-mode threads execute at low IRQL, the chances are good that a DPC will 
interrupt the execution of an ordinary user’s thread. DPC routines execute without regard to hat 
thread is running, meaning that when a DPC routine runs, it can’t assume what process address 
space is currently mapped. DPC routines can call kernel functions, but they can’t call system 
services, generate page faults, or create or wait for dispatcher objects  explained later in this 
chapter). They can, however, access nonpaged system memory addresses, because system address 
space is always mapped regardless of what the current process is.  DPCs are provided primarily 
for device drivers, but the kernel uses them too. The kernel most frequently uses a DPC to handle 
quantum expiration. At every tick of the system clock, an interrupt occurs at clock IRQL. The 
clock interrupt handler (running at clock IRQL) updates the system time and then decrements a 
counter that tracks how long the current thread has run. When the counter reaches 0, the thread’s 
time quantum has expired and the kernel might need to reschedule the processor, a lower-priority 
task that should be done at DPC/dispatch IRQL. The clock interrupt handler queues a DPC to 
initiate thread dispatching and then finishes its work and lowers the processor’s IRQL. Because 
the DPC interrupt has a lower priority than do device interrupts, any pending device interrupts that 
surface before the clock interrupt completes are handled before the DPC interrupt occurs. 

EXPERIMENT: Listing System Timers  

You can use the kernel debugger to dump all the current registered timers on the system, as 
well as information on the DPC associated with each timer (if any). See the output below for a 
sample: 

1. lkd> !timer   

2. Dump system timers   

3. Interrupt time: 437df8b4 00000330 [ 5/19/2008 15:56:27.044]   

4. List Timer Interrupt Low/High Fire Time DPC/thread   

5. 1 886dd6f0 45b1ecca 00000330 [ 5/19/2008 15:56:30.739] srv+1005  
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6. 7 884966a8 0ebf5dcb 00001387 [ 6/08/2008 10:58:03.373] thread 88496620  

7. 11 8553b8f8 4f4db783 00000330 [ 5/19/2008 15:56:46.860] thread 8553b870  

8. 85404be0 4f4db783 00000330 [ 5/19/2008 15:56:46.860] thread 85404b58  

9. 16 89a1c0a8 a62084ac 00000331 [ 5/19/2008 16:06:22.022] thread 89a1c020  

10. 18 8ab02198 ec7a2c4c 00000330 [ 5/19/2008 16:01:10.554] thread 8ab02110  

11. 19 8564aa20 45dae868 00000330 [ 5/19/2008 15:56:31.008] thread 8564a998  

12. 20 86314738 4a9ffc6a 00000330 [ 5/19/2008 15:56:39.010] thread 863146b0  

13. 88c21320 4aa0719b 00000330 [ 5/19/2008 15:56:39.013] thread 88c21298  

14. 21 88985e00 4f655e8c 00000330 [ 5/19/2008 15:56:47.015] thread 88985d78  

15. 22 88d00748 542b35e0 00000330 [ 5/19/2008 15:56:55.022] thread 88d006c0  

16. 899764c0 542b35e0 00000330 [ 5/19/2008 15:56:55.022] thread 89976438  

17. 861f8b70 542b35e0 00000330 [ 5/19/2008 15:56:55.022] thread 861f8ae8  

18. 861e71d8 542b5cf0 00000330 [ 5/19/2008 15:56:55.023] thread 861e7150  

19. 26 8870ee00 45ec1074 00000330 [ 5/19/2008 15:56:31.120] thread 8870ed78  

20. 29 8846e348 4f7a35a4 00000330 [ 5/19/2008 15:56:47.152] thread 8846e2c0  

21. 86b8f110 543d1b8c 00000330 [ 5/19/2008 15:56:55.140] ndis!NdisCancelTimer

-   

22. Object+aa   

23. 38 88a56610 460a2035 00000330 [ 5/19/2008 15:56:31.317]  

afd!AfdTimeoutPoll   

In this example, there are three driver-associated timers, due to expire shortly, associated 
with the Srv.sys, Ndis.sys, and Afd.sys drivers (all related to networking). Additionally, there are 
a dozen or so timers that don’t have any DPC associated with them—this likely indicates 
user-mode or kernel-mode timers that are used for wait dispatching. You can use !thread on the 
thread pointers to verify this. Because DPCs execute regardless of whichever thread is currently 
running on the system (much like interrupts), they are a primary cause for perceived system 
unresponsiveness of client systems or workstation workloads because even the highest-priority 
thread will be interrupted by a pending DPC. Some DPCs run long enough that users may 
perceive video or sound lagging, and even abnormal mouse or keyboard latencies, so for the 
benefit of drivers with long-running DPCs, Windows supports threaded DPCs. 

Threaded DPCs, as their name implies, function by executing the DPC routine at passive 
level on a real-time priority (priority 31) thread. This allows the DPC to preempt most user-mode 
threads (because most application threads don’t run at real-time priority ranges), but allows other 
interrupts, non-threaded DPCs, APCs, and higher-priority threads to preempt the routine. 

The threaded DPC mechanism is enabled by default, but you can disable it by editing the 
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SessionManager\Kernel\ 
ThreadDpcEnable value and setting it to 0. Because threaded DPCs can be disabled, driver 
developers who make use of threaded DPCs must write their routines following the same rules as 
for non-threaded DPC routines and cannot access paged memory, perform dispatcher waits, or 
make assumptions about the IRQL level at which they are executing. In addition, they must not 
use the KeAcquire/ReleaseSpinLockAtDpcLevel APIs because the functions assume the CPU is at 
dispatch level. Instead, threaded DPCs must use KeAcquire/ReleaseSpinLockForDpc, which 
performs the appropriate action after checking the current IRQL. 



 109

EXPERIMENT:Monitoring interrupt and DPC Activity 

You can use Process Explorer to monitor interrupt and DPC activity by adding the Context 
Switch Delta column and watching the Interrupt and DPC processes. (See the following screen 
shot.) These are not real processes, but they are shown as processes for convenience and therefore 
do not incur context switches. Process Explorer’s context switch count for these pseudo processes 
reflects the number of occurrences of each within the previous refresh interval. You can stimulate 
interrupt and DPC activity by moving the mouse quickly around the screen. 

   

You can also trace the execution of specific interrupt service routines and deferred procedure 
calls with the built-in event tracing support (described later in this chapter). 

1. Start capturing events by typing the following command: 

tracelog –start –f kernel.etl –dpcisr –usePerfCounter –b 64 

2. Stop capturing events by typing: 

tracelog –stop 

3. Generate reports for the event capture by typing: 

tracerpt kernel.etl –report report.html –f html 

This will generate a Web page called report.html 

4. Open report.html and expand the DPC/ISR subsection. Expand the DPC/ISR Breakdown 
area, and you will see summaries of the time spent in ISRs and DPCs by each driver. For example: 
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Running an ln command in the kernel debugger on the address of each event record shows 
the name of the function that executed the DPC or ISR: 

1. lkd> ln 0x806321C7  

2. (806321c7) ndis!ndisInterruptDpc   

3. lkd> ln 0x820AED3F   

4. (820aed3f) nt!IopTimerDispatch   

5. lkd> ln 0x82051312  

6. (82051312) nt!PpmPerfIdleDpc  

The first is a DPC queued by a network card NDIS miniport driver. The second is a DPC for 
a generic I/O timer expiration. The third address is the address of a DPC for an idle performance 
operation. For more information, see www.microsoft.com/whdc/driver/perform/mmdrv.mspx. 

Asynchronous Procedure Call (APC) Interrupts Asynchronous procedure calls (APCs) 
provide a way for user programs and system code to execute in the context of a particular user 
thread (and hence a particular process address space). Because APCs are queued to execute in the 
context of a particular thread and run at an IRQL less than DPC/dispatch level, they don’t operate 
under the same restrictions as a DPC. An APC routine can acquire  sources(objects), wait for 
object handles, incur page faults, and call system services.  

APCs are described by a kernel control object, called an APC object. APCs waiting to 
execute reside in a kernel-managed APC queue. Unlike the DPC queue, which is systemwide, the 
APC queue is thread-specific—each thread has its own APC queue. When asked to queue an APC, 
the kernel inserts it into the queue belonging to the thread that will execute the APC routine. The 
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kernel, in turn, requests a software interrupt at APC level, and when the thread eventually begins 
running, it executes the APC. 

There are two kinds of APCs: kernel mode and user mode. Kernel-mode APCs don’t require 
“permission” from a target thread to run in that thread’s context, while user-mode APCs do. 
Kernel-mode APCs interrupt a thread and execute a procedure without the thread’s intervention or 
consent. There are also two types of kernel-mode APCs: normal and special. Special APCs 
execute at APC level and allow the APC routine to modify some of the APC parameters. Normal 
APCs execute at passive level and receive the modified parameters from the special APC routine 
(or the original parameters if they weren’t modified). Both normal and special APCs can be 
disabled by raising the IRQL to APC level or by calling KeEnterGuardedRegion. 
KeEnterGuardedRegion disables APC delivery by setting the SpecialApcDisable field in the 
calling thread’s KTHREAD structure (described further in Chapter 5). A thread can disable 
normal APCs only by calling KeEnterCriticalRegion, which sets the KernelApcDisable field in 
the thread’s KTHREAD structure. Table 3-2 summarizes APC insertion and delivery behavior for 
each type of APC. The executive uses kernel-mode APCs to perform operating system work that 
must be completed within the address space (in the context) of a particular thread. It can use 
special kernel-mode APCs to direct a thread to stop executing an interruptible system service, for 
example, or to record the results of an asynchronous I/O operation in a thread’s address space. 
Environment subsystems use special kernel-mode APCs to make a thread suspend or terminate 
itself or to get or set its user-mode execution context. The POSIX subsystem uses kernel-mode 
APCs to emulate the delivery of POSIX signals to POSIX processes.  

Another important use of kernel-mode APCs is related to thread suspension and termination. 
Because these operations can be initiated from arbitrary threads and be directed to other arbitrary 
threads, the kernel uses an APC to query the thread context as well as to terminate the thread. 
Device drivers will often block APCs or enter a critical or guarded region to prevent these 
operations from occurring while they are holding a lock; otherwise, the lock may never be 
released, and the system would hang.  
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 Device drivers also use kernel-mode APCs. For example, if an I/O operation is initiated and a 
thread goes into a wait state, another thread in another process can be scheduled to run. When the 
device finishes transferring data, the I/O system must somehow get back into the context of the 
thread that initiated the I/O so that it can copy the results of the I/O operation to the buffer in the 
address space of the process containing that thread. The I/O system uses a special kernel-mode 
APC to perform this action, unless the application used the SetFileIoOverlappedRange API or I/O 
completion ports, in which case the buffer will either be global in memory or only copied after the 
thread pulls a completion item from the port. (The use of APCs in the I/O system is discussed in 
more detail in Chapter 7.) 

Several Windows APIs, such as ReadFileEx, WriteFileEx, and QueueUserAPC, use 
user-mode APCs. For example, the ReadFileEx and WriteFileEx functions allow the caller to 
specify a completion routine to be called when the I/O operation finishes. The I/O completion is 
implemented by queuing an APC to the thread that issued the I/O. However, the callback to the 
completion routine doesn’t necessarily take place when the APC is queued because usermode 
APCs are delivered to a thread only when it’s in an alertable wait state. A thread can enter a wait 
state either by waiting for an object handle and specifying that its wait is alertable (with the 
Windows WaitForMultipleObjectsEx function) or by testing directly whether it has a pending 
APC (using SleepEx). In both cases, if a user-mode APC is pending, the kernel interrupts (alerts) 
the thread, transfers control to the APC routine, and resumes the thread’s execution when the APC 
routine completes. Unlike kernel-mode APCs, which can execute at APC level, user-mode APCs 
execute at passive level. 
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APC delivery can reorder the wait queues—the lists of which threads are waiting for what, 
and in what order they are waiting. (Wait resolution is described in the section “Low-IRQL 
Synchronization” later in this chapter.) If the thread is in a wait state when an APC is delivered, 
after the APC routine completes, the wait is reissued or reexecuted. If the wait still isn’t resolved, 
the thread returns to the wait state, but now it will be at the end of the list of objects it’s waiting 
for. For example, because APCs are used to suspend a thread from execution, if the thread is 
waiting for any objects, its wait will be removed until the thread is resumed, after which that 
thread will be at the end of the list of threads waiting to access the objects it was waiting for. A 
thread performing an alertable kernel-mode wait will also be woken up during thread termination, 
allowing such a thread to check whether it woke up as a result of termination or a different reason. 

3.1.2 Exception Dispatching 

In contrast to interrupts, which can occur at any time, exceptions are conditions that result 
directly from the execution of the program that is running. Windows uses a facility known as 
structured exception handling, which allows applications to gain control when exceptions occur. 
The application can then fix the condition and return to the place the exception occurred, unwind 
the stack (thus terminating execution of the subroutine that raised the exception), or declare back 
to the system that the exception isn’t recognized and the system should continue searching for an 
exception handler that might process the exception. This section assumes you’re familiar with the 
basic concepts behind Windows structured exception handling—if you’re not, you should read the 
overview in the Windows API reference documentation in the Windows SDK or Chapters 23 
through 25 in Jeffrey Richter’s book Windows via C/C++ (Microsoft Press, 2007) before 
proceeding. Keep in mind that although exception handling is made accessible through language 
extensions (for example, the __try construct in Microsoft Visual C++), it is a system mechanism 
and hence isn’t language-specific. Other examples of consumers of Windows exception handling 
include C++ and Java exceptions. On the x86 and x64 processors, all exceptions have predefined 
interrupt numbers that directly correspond to the entry in the IDT that points to the trap handler for 
a particular exception. Table 3-3 shows x86-defined exceptions and their assigned interrupt 
numbers.  

Because the first entries of the IDT are used for exceptions, hardware interrupts are assigned 
entries later in the table, as mentioned earlier. All exceptions, except those simple enough to be 
resolved by the trap handler, are serviced by a kernel module called the exception dispatcher. The 
exception  dispatcher’s job is to find an exception handler that can “dispose of” the exception. 
Examples of architectureindependent exceptions that the kernel defines include memory access 
violations, integer divide-by-zero, integer overflow, floating-point exceptions, and debugger 
breakpoints. For a complete list of architecture-independent exceptions, consult the Windows 
SDK reference documentation. 
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The kernel traps and handles some of these exceptions transparently to user programs. For 
example, encountering a breakpoint while executing a program being debugged generates an 
exception, which the kernel handles by calling the debugger. The kernel handles certain other 
exceptions by returning an unsuccessful status code to the caller.  

A few exceptions are allowed to filter back, untouched, to user mode. For example, certain 
types of memory access violations or an arithmetic overflow generate an exception that the 
operating system doesn’t handle. 32-bit applications can establish frame-based exception handlers 
to deal with these exceptions. The term frame-based refers to an exception handler’s association 
with a particular procedure activation. When a procedure is invoked, a stack frame representing 
that activation of the procedure is pushed onto the stack. A stack frame can have one or more 
exception handlers associated with it, each of which protects a particular block of code in the 
source program. When an exception occurs, the kernel searches for an exception handler 
associated with the current stack frame. If none exists, the kernel searches for an exception 
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handler associated with the previous stack frame, and so on, until it finds a frame-based exception 
handler. If no exception handler is found, the kernel calls its own default exception handlers. 

For 64-bit applications, structured exception handling does not use frame-based handlers. 
Instead, a table of handlers for each function is built into the image during compilation. The kernel 
looks for handlers associated with each function and generally follows the same algorithm we’ve 
described for 32-bit code. Structured exception handling is heavily used within the kernel itself so 
that it can safely verify whether pointers from user mode can be safely accessed for read or write 
access. Drivers can make use of this same technique when dealing with pointers sent during I/O 
control codes (IOCTLs). Another mechanism of exception handling is called vectored exception 
handling. This method can only be used by user-mode applications. You can find more 
information about it in the Windows SDK or the MSDN Library. 

When an exception occurs, whether it is explicitly raised by software or implicitly raised by 
hardware, a chain of events begins in the kernel. The CPU hardware transfers control to the kernel 
trap handler, which creates a trap frame (as it does when an interrupt occurs). The trap frame 
allows the system to resume where it left off if the exception is resolved. The trap handler also 
creates an exception record that contains the reason for the exception and other pertinent 
information. 

If the exception occurred in kernel mode, the exception dispatcher simply calls a routine to 
locate a frame-based exception handler that will handle the exception. Because unhandled 
kernel-mode exceptions are considered fatal operating system errors, you can assume that the 
dispatcher always finds an exception handler. Some traps, however, do not lead into an exception 
handler because the kernel always assumes such errors to be fatal—these are errors that could 
have been caused only by severe bugs in the internal kernel code or by major inconsistencies in 
driver code (that could have only occurred through deliberate lowlevel system modifications that 
drivers should not be responsible for). Such fatal errors will result in a bug check with the 
UNEXPECTED_KERNEL_MODE_TRAP code. 

If the exception occurred in user mode, the exception dispatcher does something more 
elaborate. As you’ll see in Chapter 5, the Windows subsystem has a debugger port (this is actually 
a debugger object, which will be discussed later) and an exception port to receive notification of 
user-mode exceptions in Windows processes. (In this case, by “port” we mean an LPC port object, 
which will be discussed later in this chapter.) The kernel uses these ports in its default exception 
handling, as illustrated in Figure 3-8. 

Debugger breakpoints are common sources of exceptions. Therefore, the first action the 
exception dispatcher takes is to see whether the process that incurred the exception has an 
associated debugger process. If it does, the exception dispatcher sends a debugger object message 
to the debug object associated with the process (which internally the system refers to as a port for 
compatibility with programs that might rely on behavior in Windows 2000,which used an LPC 
port instead of a debug object). 
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If the process has no debugger process attached, or if the debugger doesn’t handle the 
exception, the exception dispatcher switches into user mode, copies the trap frame to the user 
stack formatted as a CONTEXT data structure (documented in the Windows SDK), and calls a 
routine to find a structured or vectored exception handler. If none is found, or if none handles the 
exception, the exception dispatcher switches back into kernel mode and calls the debugger again 
to allow the user to do more debugging. (This is called the second-chance notification.) 

If the debugger isn’t running and no user-mode exception handlers are found, the kernel 
sends a message to the exception port associated with the thread’s process. This exception port, if 
one exists, was registered by the environment subsystem that controls this thread. The exception 
port gives the environment subsystem, which presumably is listening at the port, the opportunity 
to translate the exception into an environment-specific signal or exception.Csrss (Client/Server 
Run-Time Subsystem) uses this signal for Windows Error Reporting (WER)—which will be 
discussed shortly—and when POSIX gets a message from the kernel that one of its threads 
generated an exception, the POSIX subsystem sends a POSIX-style signal to the thread that 
caused the exception. However, if the kernel progresses this far in processing the exception and 
the subsystem doesn’t handle the exception, the kernel executes a default exception handler that 
simply terminates the process whose thread caused the exception. 

Unhandled Exceptions 

All Windows threads have an exception handler that processes unhandled exceptions. This 
exception handler is declared in the internal Windows start-of-thread function. The startof-thread 
function runs when a user creates a process or any additional threads. It calls 
theenvironment-supplied thread start routine specified in the initial thread context structure, which 
in turn calls the user-supplied thread start routine specified in the CreateThread call. 
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EXPERIMENT: Viewing the real user Start Address for Windows Threads 

The fact that each Windows thread begins execution in a system-supplied function (and not 
the user-supplied function) explains why the start address for thread 0 is the same for every 
Windows process in the system (and why the start addresses for secondary threads are also the 
same). To see the user-supplied function address, use Process Explorer or the kernel debugger. 

Because most threads in Windows processes start at one of the system-supplied wrapper 
functions, Process Explorer, when displaying the start address of threads in a process, skips the 
initial call frame that represents the wrapper function and instead shows the second frame on the 
stack. For example, notice the thread start address of a process running Notepad.exe: 

  

Process Explorer does display the complete call hierarchy when it displays the call stack. 
Notice the following results when the Stack button is clicked: 
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Line 18 in the preceding screen shot is the first frame on the stack—the start of the internal 
thread wrapper. The second frame (line 17) is the environment subsystem’s thread wrapper, in this 
case kernel32, because we are dealing with a Windows subsystem application. The third frame 
(line 16) is the main entry point into Notepad.exe.  

The generic code for the internal thread start functions is shown here: 

1. VOID RtlUserThreadStart(VOID){   

2. LPVOID lpStartAddr = (R/E)AX; // Located in the initial thread context  

structure   

3. LPVOID lpvThreadParm = (R/E)BX; // Located in the initial thread context 

structure   

4. LPVOID lpWin32StartAddr;   

5. lpWin32StartAddr = Kernel32ThreadInitThunkFunction ?  

Kernel32ThreadInitThunkFunction :   

6. lpStartAddr;   

7. __try {   

8. DWORD dwThreadExitCode = lpWin32StartAddr(lpvThreadParm);   

9. RtlExitUserThread(dwThreadExitCode);   

10. } __except(RtlUnhandledExceptionFilter(   

11. GetExceptionInformation())) {   

12. RtlExitUserProcess(GetExceptionCode());   

13. }   

14. }   

15. void Win32StartOfProcess(   

16. LPTHREAD_START_ROUTINE lpStartAddr,   
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17. LPVOID lpvThreadParm){   

18. lpStartAddr(lpvThreadParm);   

19. }  

Notice that the Windows unhandled exception filter is called if the thread has an exception 
that it doesn’t handle. The purpose of this function is to provide the system-defined behavior for 
what to do when an exception is not handled, which is based on the contents of the 
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug registry key and on 
whether the process is on the exclusion list. There are two important values: Auto and Debugger. 
Auto tells the unhandled exception filter whether to automatically run the debugger or ask the user 
what to do. Installing development tools, such as Microsoft Visual Studio, will change this value 
to 0. The Debugger value is a string that points to the path of the debugger executable to run in the 
case of an unhandled exception. 

Windows Error Reporting 

Windows Error Reporting (WER) is a sophisticated mechanism that automates the 
submission of both user-mode process crashes as well as kernel-mode system crashes. (For a 
description of how this applies to system crashes, see Chapter 14.) Windows Error Reporting can 
be configured by going to Control Panel, choosing Problem Reports And Solutions, and then 
Change Settings. (See Figure 3-9.) Alternatively, you can launch the Wercon.exe application from 
a command prompt or by using Start, Run. 
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When an unhandled exception is caught by the unhandled exception filter (described in the 
previous section), it builds context information (such as the current value of the registers and stack) 
and opens an LPC port connection to the WER service. This service will begin to analyze the 
crashed program’s state and perform the appropriate actions to notify the user. In most cases, this 
means launching the WerFault.exe program, which executes with the current 

user’s credentials and displays a message box informing the user of the crash, as shown in 
Figure 3-10. (The figure shows the Accvio.exe program, downloadable from the book home page 
on Windows Sysinternals, www.microsoft.com/technet/sysinternals.) On systems where a 
debugger is installed, an additional option to debug the process will be shown. When you click the 
Debug button, the debugger (registered in the Debugger string described earlier in the AeDebug 
key) will be launched so it can attach to the crashing process. 

On default configured systems, an error report (a minidump and an XML file with various 
details, such as the DLL version numbers loaded in the process) is sent to Microsoft’s online crash 
analysis server. Eventually, as the service is notified of a solution for a problem, it will display a 
tooltip to the user informing her of steps that should be taken to solve the problem. An entry will 
also be displayed in the Problem Reports And Solutions configuration dialogbox. By clicking on 
the tooltip, or the link under the configuration dialog box, WER displays a solution pane, as 
shown in Figure 3-11. 

In environments where systems are not connected to the Internet or where the administrator 
wants to control which error reports are submitted to Microsoft, the destination for the error report 
can be configured to be an internal file server. Microsoft provides to qualified customers a tool set, 
called Microsoft Systems Center 2007, that understands the directory structure created by 
Windows Error Reporting and provides the administrator with the option to take selective error 
reports and submit them to Microsoft.  
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Until Windows Vista, all the operations we’ve described had to occur within the crashing 
thread’s context; that is to say, as part of the unhandled exception filter that was initially set up. In 
certain types of crashes, these complex operations became impossible for a badly damaged thread 
to perform, so the unhandled exception filter itself crashed. This “silent process death” was not 
logged anywhere, which made it hard to debug and also resulted in invisible crashes in cases 
where no user was present on the machine. (This also meant that services or applications could 
crash on servers without any trace.) Windows Vista and later versions improved the WER 
mechanism by performing this work externally from the crashed thread, if the unhandled 
exception filter itself crashes.  

WER contains many customizable settings that can be configured by the user through the 
Group Policy editor or by manually making changes to the registry. Table 3-4 lists the WER 
registry configuration options, their use, and possible values. These values are located under the 
HKLM\SOFTWARE\Microsoft\Windows\Windows Error Reporting subkey for computer 
configuration and in the equivalent path under HKEY_CURRENT_USER for per-user 
configuration. 
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Note The values listed under LocalDumps can also be configured per application by adding 
the application name in the subkey path between LocalDumps and the relevant value. However, 
they cannot be configured per user; they exist only in the HKLM path.  

As discussed, the WER service uses an ALPC port for communicating with crashed 
processes. This mechanism has been extended to function as well over the standard exception port 
mechanism that has always been present in the Windows exception dispatching design. As a result, 
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all Windows processes now have an error port that is actually an ALPC port object registered by 
the WER service. The kernel, which is first notified of an exception, will use this port to send a 
message to the WER service, which will then analyze the crashing process. This means that even 
in severe cases of thread state damage, WER will still be able to receive notifications and launch 
WerFault.exe to display a user interface instead of having to do this work within the crashing 
thread itself. Additionally, WER will be able to generate a crash dump for the process, and a 
message will be written to the Event Log. This solves all the problems of silent process death: 
users are notified, debugging can occur, and service administrators can see the crash event. The 
next experiment will demonstrate this improved behavior.  

EXPERIMENT: Silent Process exception Termination 

One typical crash that the error reporting mechanism prior to Windows Vista could not 
handle was stack trashing. This means that the stack of the crashed thread was damaged, perhaps 
even deallocated, so that even calling a new function (which puts the return address as well as 
arguments on the stack) would generate another, subsequent crash, prompting the kernel to 
terminate the process. You can see this behavior on a system running Windows Vista or later by 
temporarily turning off the WER service and then enabling it again. Follow these steps: 

1. Open the Services.msc Microsoft Management Console (MMC) snap-in. 

2. Double-click on Windows Error Reporting, and then click the Stop button under the 
Service status label. 

3. Launch the Stacktrash.exe application (downloadable from the book home page on 
Sysinternals). 

4. Click the Trash Stack button. You should see the process disappear without a trace. 

5. Now click the Start button in the Windows Error Reporting service configuration dialog 
box again, and then launch Stacktrash.exe one more time. You should see the WER dialog box 
displayed along with a pop-up balloon near the system tray notifying you that the application 
encountered an error. 

3.1.3 System Service Dispatching 

As Figure 3-1 illustrated, the kernel’s trap handlers dispatch interrupts, exceptions, and 
system service calls. In the preceding sections, you’ve seen how interrupt and exception handling 
work; in this section, you’ll learn about system services. A system service dispatch is triggered as 
a result of executing an instruction assigned to system service dispatching. The instruction that 
Windows uses for system service dispatching depends on the processor on which it’s executing.  

32-Bit System Service Dispatching 

On x86 processors prior to the Pentium II, Windows uses the int 0x2e instruction (46 
decimal), which results in a trap. Windows fills in entry 46 in the IDT to point to the system 
service dispatcher. (Refer to Table 3-1.) The trap causes the executing thread to transition into 
kernel mode and enter the system service dispatcher. A numeric argument passed in the EAX 
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processor register indicates the system service number being requested. The EDX register points 
to the list of parameters the caller passes to the system service. To return to user mode, the system 
service dispatcher uses the iretd (interrupt return instruction).  

On x86 Pentium II processors and higher, Windows uses the special sysenter instruction, 
which Intel defined specifically for fast system service dispatches. To support the instruction, 
Windows stores at boot time the address of the kernel’s system service dispatcher routine in a 
machine specific register (MSR) associated with the instruction. The execution of the instruction 
causes the change to kernel mode and execution of the system service dispatcher. The system 
service number is passed in the EAX processor register and the EDX register points to the list of 
caller arguments. To return to user mode, the system service dispatcher usually executes the 
sysexit instruction. (In some cases, like when the single-step flag is enabled on the processor, the 
system service dispatcher uses the iretd instead because stepping over a sysexit instruction with 
the kernel debugger would result in an undefined system state  leading to a crash.) 

Note Because certain older applications may have been hardcoded to use the int 0x2e 
instruction to manually perform a system call (an unsupported operation), Windows keeps this 
mechanism usable even on systems that support the sysenter instruction by still having the handler 
registered. 

EXPERIMENT: Locating the System Service Dispatcher 

As mentioned, system calls occur through an interrupt, which means that the handler needs to 
be registered in the IDT or through a special sysenter instruction that uses an MSR to store the 
handler address at boot time. Here’s how you can locate the appropriate routine for either method: 

1. To see the handler for the interrupt 2E version of the system call dispatcher, type !idt 2e in 
the kernel debugger: 

1. lkd> !idt 2e   
2. Dumping IDT:   
3. 2e: 8208c8ee nt!KiSystemService  

2. To see the handler for the sysenter version, use the rdmsr debugger command to read from 
the MSR register 0x176, which stores the handler:  
1. lkd> rdmsr 176  
2. msr[176] = 00000000`8208c9c0  
3. lkd> ln 00000000`8208c9c0  
4. (8208c9c0) nt!KiFastCallEntry  

3. You can disassemble the KiSystemService routine with the u command. You’ll eventually 
notice the following instructions:  
1. nt!KiSystemService+0x7b:   
2. 8208c969 897d04 mov dword ptr [ebp+4],edi   
3. 8208c96c fb sti   
4. 8208c96d e9dd000000 jmp nt!KiFastCallEntry+0x8f (8208ca4f)  

Because the actual system call dispatching operations are common regardless of the mechanism 
used to reach the handler, the older interrupt-based handler simply calls into the middle of the 



 125

newer sysenter-based handler to perform the same generic tasks. The only parts of the handlers 
that are different are related to the generation of the trap frame and the setup of certain registers.  

On K6 and higher 32-bit AMD processors, Windows uses the special syscall instruction, 
which functions similarly to the x86 sysenter instruction, with Windows configuring a 
syscallassociated processor register with the address of the kernel’s system service dispatcher. The 
system call number is passed in the EAX register, and the stack stores the caller arguments. After 
completing the dispatch, the kernel executes the sysret instruction. At boot time, Windows detects 
the type of processor on which it’s executing and sets up the appropriate system call code to use 
by storing a pointer to the correct code in the SharedUserData structure. The system service code 
for NtReadFile in user mode looks like this: 

1. 0:000> u NtReadFile   

2. ntdll!ZwReadFile:   

3. 77020074 b802010000 mov eax,102h   

4. 77020079 ba0003fe7f mov edx,offset SharedUserData!SystemCallStub  

(7ffe0300)   

5. 7702007e ff12 call dword ptr [edx]   

6. 77020080 c22400 ret 24h   

7. 77020083 90 nop  

The system service number is 0x102 (258 in decimal) and the call instruction executes the system 
service dispatch code set up by the kernel, whose pointer is at address 0x7ffe0300. (This 
corresponds to the SystemCallStub member of the KUSER_SHARED_DATA structure, which 
starts at 0x7FFE0000.) Because the following output was taken from an Intel Core 2 Duo, it 
contains a pointer to sysenter:  

1. 0:000> dd SharedUserData!SystemCallStub l 1  

2. 7ffe0300 77020f30  

3. 0:000> u 77020f30  

4. ntdll!KiFastSystemCall:   

5. 77020f30 8bd4 mov edx,esp   

6. 77020f32 0f34 sysenter  

64-Bit System Service Dispatching 
On the x64 architecture, Windows uses the syscall instruction, which functions like the AMD 
K6’s syscall instruction, for system service dispatching, passing the system call number in the 
EAX register, the first four parameters in registers, and any parameters beyond those four on the 
stack: 
ntdll!NtReadFile: 

1. 00000000`77f9fc60 4c8bd1 mov r10,rcx   

2. 00000000`77f9fc63 b810200000 mov eax,0x102  

3. 00000000`77f9fc68 0f05 syscall   

4. 00000000`77f9fc6a c3 ret  

On the IA64 architecture, Windows uses the epc (Enter Privileged Mode) instruction. The 
first eight system call arguments are passed in registers, and the rest are passed on the stack. 



 126

Kernel-Mode System Service Dispatching  

As Figure 3-12 illustrates, the kernel uses the system call number to locate the system service 
information in the system service dispatch table. This table is similar to the interrupt dispatch table 
described earlier in the chapter except that each entry contains a pointer to a system service rather 
than to an interrupt handling routine. 
Note System service numbers can change between service packs—Microsoft occasionally adds or 
removes system services, and the system service numbers are generated automatically as part of a 
kernel compile. 

   The system service dispatcher, KiSystemService, copies the caller’s arguments from the 
thread’s user-mode stack to its kernel-mode stack (so that the user can’t change the arguments as 
the kernel is accessing them), and then executes the system service. If the arguments passed to a 
system service point to buffers in user space, these buffers must be probed for accessibility before 
kernel-mode code can copy data to or from them. This probing is performed only if the previous 
mode of the thread is set to user mode. The previous mode is a value (kernel or user) that the 
kernel saves in the thread whenever it executes a trap handler and identifies the privilege level of 
the incoming exception, trap, or system call. As an optimization, if a system call comes from a 
driver or the kernel itself, the probing and capturing of parameters is skipped, and all parameters 
are assumed to be pointing to valid kernelmode buffers (also, access to kernel-mode data is 
allowed). Because kernel-mode code can also make system calls, let’s look at the way these are 
done. Because the code for each system call is in kernel mode, and the caller is already in kernel 
mode, you can see that there shouldn’t be a need for an interrupt or sysenter operation: the CPU is 
already at the right privilege level, and drivers, as well as the kernel, should only be able to 
directly call the function required. In the executive’s case, this is actually what happens: the kernel 
has access to all its own routines and can simply call them just like standard routines. Externally, 
however, drivers can only access these system calls if they have been exported just like other 
standard kernel-mode APIs. In fact, quite a few of the system callsare exported. Drivers, however, 
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are not supposed to access system calls this way. Instead, drivers must use the Zw versions of 
these call—that is, instead of NtCreateFile, they must use ZwCreateFile. These Zw versions must 
also be manually exported by the kernel, and only a handful are, but they are fully documented 
and supported. The Zw versions are officially available only for drivers because of the previous 
mode concept discussed earlier. Because this value is only updated each time the kernel builds a 
trap frame, its value won’t actually change across a simple API call—no trap frame is being 
generated. By calling a function such as NtCreateFile directly, the kernel preserves the previous 
mode value that indicates that it is user-mode, detects that the address passed is a kernel-mode 
address, and fails the call, correctly asserting that user-mode applications should not pass 
kernelmode pointers. However, this is not actually what happens, so how can the kernel be aware 
of the correct previous mode? The answer lies in the Zw calls. These exported APIs are not 
actually simple aliases or wrappers around the Nt versions. Instead, they are “trampolines” to the 
appropriate Nt system call, which use the same system call dispatching mechanism. Instead of 
generating an interrupt or a sysenter, which would be slow and/or unsupported, they build a fake 
interrupt stack (the stack that the CPU would generate after an interrupt) and call the 
KiSystemService routine directly, essentially emulating the CPU interrupt. The handler will 
execute the same operations as if this call came from user mode, except it will detect the actual 
privilege level this call came from and set the previous mode to kernel. Now NtCreateEvent sees 
that the call came from the kernel and does not fail anymore. Here’s what the kernel-mode 
trampolines look like:  

1. lkd> u nt!ZwReadFile   

2. nt!ZwReadFile:   

3. 8207f118 b802010000 mov eax,102h   

4. 8207f11d 8d542404 lea edx,[esp+4]   

5. 8207f121 9c pushfd   

6. 8207f122 6a08 push 8  

7. 8207f124 e8c5d70000 call nt!KiSystemService (8208c8ee)   

8. 8207f129 c22400 ret 24h  

As you’ll see in Chapter 5, each thread has a pointer to its system service table (on 32-bit and 
IA64 versions of Windows only; otherwise, the table address is hard-coded). Windows has two 
built-in system service tables, and third-party drivers cannot extend the tables to add their own 
service calls. The system service dispatcher determines which table contains the requested service 
by interpreting a 2-bit field in the 32-bit system service number as a table index. The low 12 bits 
of the system service number serve as the index into the table specified by the table index. The 
fields are shown in Figure 3-13. 
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 64-Bit System Service Dispatching  

On the x64 architecture, Windows uses the syscall instruction, which functions like the AMD 
K6’s syscall instruction, for system service dispatching, passing the system call number in the 
EAX register, the first four parameters in registers, and any parameters beyond those four on the 
stack: 

ntdll!NtReadFile: 

1. 00000000`77f9fc60 4c8bd1 mov r10,rcx   
2. 00000000`77f9fc63 b810200000 mov eax,0x102  
3. 00000000`77f9fc68 0f05 syscall   
4. 00000000`77f9fc6a c3 ret  

On the IA64 architecture, Windows uses the epc (Enter Privileged Mode) instruction. The 
first eight system call arguments are passed in registers, and the rest are passed on the stack. 

Kernel-Mode System Service Dispatching  

As Figure 3-12 illustrates, the kernel uses the system call number to locate the system service 
information in the system service dispatch table. This table is similar to the interrupt dispatch table 
described earlier in the chapter except that each entry contains a pointer to a system service rather 
than to an interrupt handling routine. 

Note System service numbers can change between service packs—Microsoft occasionally 
adds or removes system services, and the system service numbers are generated automatically as 
part of a kernel compile. 
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     The system service dispatcher, KiSystemService, copies the caller’s arguments from the 
thread’s user-mode stack to its kernel-mode stack (so that the user can’t change the arguments as 
the kernel is accessing them), and then executes the system service. If the arguments passed to a 
system service point to buffers in user space, these buffers must be probed for accessibility before 
kernel-mode code can copy data to or from them. This probing is performed only if the previous 
mode of the thread is set to user mode. The previous mode is a value (kernel or user) that the 
kernel saves in the thread whenever it executes a trap handler and identifies the privilege level of 
the incoming exception, trap, or system call. As an optimization, if a system call comes from a 
driver or the kernel itself, the probing and capturing of parameters is skipped, and all parameters 
are assumed to be pointing to valid kernelmode buffers (also, access to kernel-mode data is 
allowed). 

Because kernel-mode code can also make system calls, let’s look at the way these are done. 
Because the code for each system call is in kernel mode, and the caller is already in kernel mode, 
you can see that there shouldn’t be a need for an interrupt or sysenter operation: the CPU is 
already at the right privilege level, and drivers, as well as the kernel, should only be able to 
directly call the function required. In the executive’s case, this is actually what happens: the kernel 
has access to all its own routines and can simply call them just like standard routines. Externally, 
however, drivers can only access these system calls if they have been exported just like other 
standard kernel-mode APIs. In fact, quite a few of the system callsare exported. Drivers, however, 
are not supposed to access system calls this way. Instead, drivers must use the Zw versions of 
these call—that is, instead of NtCreateFile, they must use ZwCreateFile. These Zw versions must 
also be manually exported by the kernel, and only a handful are, but they are fully documented 
and supported. 

The Zw versions are officially available only for drivers because of the previous mode 
concept discussed earlier. Because this value is only updated each time the kernel builds a trap 
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frame, its value won’t actually change across a simple API call—no trap frame is being generated. 
By calling a function such as NtCreateFile directly, the kernel preserves the previous mode value 
that indicates that it is user-mode, detects that the address passed is a kernel-mode address, and 
fails the call, correctly asserting that user-mode applications should not pass kernelmode pointers. 
However, this is not actually what happens, so how can the kernel be aware of the correct previous 
mode? The answer lies in the Zw calls. 

These exported APIs are not actually simple aliases or wrappers around the Nt versions. 
Instead, they are “trampolines” to the appropriate Nt system call, which use the same system call 
dispatching mechanism. Instead of generating an interrupt or a sysenter, which would be slow 
and/or unsupported, they build a fake interrupt stack (the stack that the CPU would generate after 
an interrupt) and call the KiSystemService routine directly, essentially emulating the CPU 
interrupt. The handler will execute the same operations as if this call came from user mode, except 
it will detect the actual privilege level this call came from and set the previous mode to kernel. 
Now NtCreateEvent sees that the call came from the kernel and does not fail anymore. Here’s 
what the kernel-mode trampolines look like:  

1. lkd> u nt!ZwReadFile   

2. nt!ZwReadFile:   

3. 8207f118 b802010000 mov eax,102h   

4. 8207f11d 8d542404 lea edx,[esp+4]   

5. 8207f121 9c pushfd   

6. 8207f122 6a08 push 8  

7. 8207f124 e8c5d70000 call nt!KiSystemService (8208c8ee)   

8. 8207f129 c22400 ret 24h  

As you’ll see in Chapter 5, each thread has a pointer to its system service table (on 32-bit and 
IA64 versions of Windows only; otherwise, the table address is hard-coded). Windows has two 
built-in system service tables, and third-party drivers cannot extend the tables to add their own 
service calls. The system service dispatcher determines which table contains the requested service 
by interpreting a 2-bit field in the 32-bit system service number as a table index. The low 12 bits 
of the system service number serve as the index into the table specified by the table index. The 
fields are shown in Figure 3-13. 
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 Service Descriptor Tables 

A primary default array table, KeServiceDescriptorTable, defines the core executive system 
services implemented in Ntosrknl.exe. The other table array, KeServiceDescriptorTableShadow, 
includes the Windows USER and GDI services implemented in the kernel-mode part of the 
Windows subsystem, Win32k.sys. The first time a Windows thread calls a Windows USER or 
GDI service, the address of the thread’s system service table is changed to point to a table that 
includes the Windows USER and GDI services. The KeAddSystemServiceTable function allows 
Win32k.sys to add a system service table.  

The system service dispatch instructions for Windows executive services exist in the system 
library Ntdll.dll. Subsystem DLLs call functions in Ntdll to implement their documented functions. 
The exception is Windows USER and GDI functions, in which the system service dispatch 
instructions are implemented directly in User32.dll and Gdi32.dll—there is no Ntdll.dll involved. 
These two cases are shown in Figure 3-14.  

As shown in Figure 3-14, the Windows WriteFile function in Kernel32.dll calls the 
NtWriteFile function in Ntdll.dll, which in turn executes the appropriate instruction to cause a 
system service trap, passing the system service number representing NtWriteFile. The system 
service dispatcher (function KiSystemService in Ntoskrnl.exe) then calls the real NtWriteFile to 
process the I/O request. For Windows USER and GDI functions, the system service dispatch calls 
functions in the loadable kernel-mode part of the Windows subsystem, Win32k.sys. 
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 EXPERIMENT: Mapping System Call Numbers to Functions 

You can duplicate the same lookup performed by the kernel when dealing with a system call 
ID to figure out which function is responsible for handling it. 

1. The KeServiceDescriptorTable and KeServiceDescriptorTableShadow tables both point to 
the same array of pointers for kernel system calls, called KiServiceTable. You can use the kernel 
debugger command dds to dump the data along with symbolic information. The debugger will 
attempt to match each pointer with a symbol. Here’s a partial output: 

1. lkd> dds KiServiceTable   

2. 820807d0 821be2e5 nt!NtAcceptConnectPort   

3. 820807d4 820659a6 nt!NtAccessCheck   

4. 820807d8 8224a953 nt!NtAccessCheckAndAuditAlarm   

5. 820807dc 820659dd nt!NtAccessCheckByType   

6. 820807e0 8224a992 nt!NtAccessCheckByTypeAndAuditAlarm   

7. 820807e4 82065a18 nt!NtAccessCheckByTypeResultList   

8. 820807e8 8224a9db nt!NtAccessCheckByTypeResultListAndAuditAlarm   

9. 820807ec 8224aa24 nt!NtAccessCheckByTypeResultListAndAuditAlarmByHandle   

10. 820807f0 822892af nt!NtAddAtom  
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2. Instead of dumping the entire table, you can also look up a specific number. Because each 
system call number is an index into the table, and because each element is 4 bytes, you can use the 
following calculation: Handler = KiServiceTable + Number * 4. Let’s use the number 0x102, 
obtained during our description of the NtReadFile stub code in Ntdll.dll. 

1. lkd> ln poi(KiServiceTable + 102 * 4)   

2. (82193023) nt!NtReadFile  

3. Because drivers, including kernel-mode rootkits, are able to patch this table on 32-bit 
versions of Windows, which is something the operating system does not support, you can use dds 
to dump the entire table and look for any values outside the range of valid kernel addresses (dds 
will also make this clear by not being able to look up a symbol for the function). Sixty-four bit 
Windows organizes the system call table differently and uses relative pointers (an offset) to 
system calls instead of the absolute addresses used by 32-bit Windows. Because code on 64-bit 
Windows is guaranteed to be aligned on a 16-byte boundary, only the top 28 bits are used to 
describe the offset, since the bottom 4 bits are always 0. Windows takes advantage of this fact by 
using the bottom 4 bits to pack information on the number of arguments that each system call 
takes (based on the data stored in KiArgumentTable). The base of the pointer is the 
KiServiceTable itself, so you’ll have to dump the data in its raw format with the dd command. 
Here’s an example of output from a 64-bit system: 

1. lkd> dd KiServiceTable   

2. fffff800`0105efc0 003021e0 0021efc0 fffc7b80 00202755  

Each offset can be mapped to each function with the ln command, by stripping off the bottom 
4 bits (used as described above) and adding the remaining value to the base of KiServiceTable 
itself, as shown here: 

1. lkd> ln KiServiceTable+(003021e0 & -16)   

2. (fffff800`013611a0) nt!NtMapUserPhysicalPagesScatter  

EXPERIMENT: Viewing System Service Activity 

You can monitor system service activity by watching the System Calls/Sec performance 
counter in the System object. Run the Reliability and Performance Monitor, and in chart view, 
click the Add button to add a counter to the chart. Select the System object, select the System 
Calls/Sec counter, and then click the Add button to add the counter to the chart. 

2. Instead of dumping the entire table, you can also look up a specific number. Because each 
system call number is an index into the table, and because each element is 4 bytes, you can use the 
following calculation: Handler = KiServiceTable + Number * 4. Let’s use the number 0x102, 
obtained during our description of the NtReadFile stub code in Ntdll.dll. 

1. lkd> ln poi(KiServiceTable + 102 * 4)   
2. (82193023) nt!NtReadFile  

3. Because drivers, including kernel-mode rootkits, are able to patch this table on 32-bit 
versions of Windows, which is something the operating system does not support, you can use dds 
to dump the entire table and look for any values outside the range of valid kernel addresses (dds 
will also make this clear by not being able to look up a symbol for the function). Sixty-four bit 
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Windows organizes the system call table differently and uses relative pointers (an offset) to 
system calls instead of the absolute addresses used by 32-bit Windows. Because code on 64-bit 
Windows is guaranteed to be aligned on a 16-byte boundary, only the top 28 bits are used to 
describe the offset, since the bottom 4 bits are always 0. Windows takes advantage of this fact by 
using the bottom 4 bits to pack information on the number of arguments that each system call 
takes (based on the data stored in KiArgumentTable). The base of the pointer is the 
KiServiceTable itself, so you’ll have to dump the data in its raw format with the dd command. 
Here’s an example of output from a 64-bit system: 

1. lkd> dd KiServiceTable   

2. fffff800`0105efc0 003021e0 0021efc0 fffc7b80 00202755  

Each offset can be mapped to each function with the ln command, by stripping off the bottom 
4 bits (used as described above) and adding the remaining value to the base of KiServiceTable 
itself, as shown here: 

1. lkd> ln KiServiceTable+(003021e0 & -16)   

2. (fffff800`013611a0) nt!NtMapUserPhysicalPagesScatter  

EXPERIMENT: Viewing System Service Activity 
You can monitor system service activity by watching the System Calls/Sec performance counter 
in the System object. Run the Reliability and Performance Monitor, and in chart view, click the 
Add button to add a counter to the chart. Select the System object, select the System Calls/Sec 
counter, and then click the Add button to add the counter to the chart. 

3.2 Object Manager 

As mentioned in Chapter 2, Windows implements an object model to provide consistent and 
secure access to the various internal services implemented in the executive. This section describes 
the Windows object manager, the executive component responsible for creating, deleting, 
protecting, and tracking objects. The object manager centralizes resource control operations that 
otherwise would be scattered throughout the operating system. It was designed to meet the goals 
listed on the next page.  

EXPERIMENT: exploring the Object Manager 

Throughout this section, you’ll find experiments that show you how to peer into the object 
manager database. These experiments use the following tools, which you should become familiar 
with if you aren’t already: 

■ WinObj (available from Sysinternals) displays the internal object manager’s namespace 
and information about objects (such as the reference count, the number of open handles, security 
descriptors, and so forth). 

■ Process Explorer and Handle from Sysinternals (introduced in Chapter 1) display the open 
handles for a process. 
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■ The Openfiles /query command displays the open file handles for a process, but it requires 
a global flag to be set in order to operate. 

■ The kernel debugger !handle command displays the open handles for a process. 

WinObj from Sysinternals provides a way to traverse the namespace that the object manager 
maintains. (As we’ll explain later, not all objects have names.) Run WinObj and examine the 
layout, shown next. 

  

As noted previously, the Windows Openfiles /query command requires that a Windows 
global flag called maintain objects list be enabled. (See the “Windows Global Flags” section later 
in this chapter for more details about global flags.) If you type Openfiles /Local, it will tell you 
whether the flag is enabled. You can enable it with the Openfiles /Local ON command. In either 
case, you must reboot the system for the setting to take effect. Neither Process Explorer nor 
Handle from Sysinternals require object tracking to be turned on because they use a device driver 
to obtain the information. 

The object manager was designed to meet the following goals: 

■ Provide a common, uniform mechanism for using system resources 

■ Isolate object protection to one location in the operating system so that C2 security 
compliance can be achieved 

■ Provide a mechanism to charge processes for their use of objects so that limits can be 
placed on the usage of system resources 
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■ Establish an object-naming scheme that can readily incorporate existing objects, such as 
the devices, files, and directories of a file system, or other independent collections of objects 

■ Support the requirements of various operating system environments, such as the ability of a 
process to inherit resources from a parent process (needed by Windows and POSIX) and the 
ability to create case-sensitive file names (needed by POSIX) 

■ Establish uniform rules for object retention (that is, for keeping an object available until all 
processes have finished using it) 

■ Provide the ability to isolate objects for a specific session to allow for both local and global 
objects in the namespace 

Internally, Windows has three kinds of objects: executive objects, kernel objects, and 
GDI/User objects. Executive objects are objects implemented by various components of the 
executive (such as the process manager, memory manager, I/O subsystem, and so on). Kernel 
objects are a more primitive set of objects implemented by the Windows kernel. These objects are 
not visible to user-mode code but are created and used only within the executive. Kernel objects 
provide fundamental capabilities, such as synchronization, on which executive objects are built. 
Thus, many executive objects contain (encapsulate) one or more kernel objects, as shown in 
Figure 3-15. 

  

Note: GDI/User objects, on the other hand, belong to the Windows subsystem (Win32k.sys) 
and do not interact with the kernel. For this reason, they are outside the scope of this book, but you 
can get more information on them from the Windows SDK, the MSDN Library, or from the book 
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Windows Graphics Programming: Win32 GDI and DirectDraw, by Feng Yuan (Prentice Hall, 
2000).  

Details about the structure of kernel objects and how they are used to implement 
synchronization are given later in this chapter. In the remainder of this section, we’ll focus on how 
the object manager works and on the structure of executive objects, handles, and handle tables. 
Here we’ll just briefly describe how objects are involved in implementing Windows security 
access checking; we’ll cover this topic thoroughly in Chapter 6. 

3.2.1 Executive Objects 

Each Windows environment subsystem projects to its applications a different image of the 
operating system. The executive objects and object services are primitives that the environment 
subsystems use to construct their own versions of objects and other resources. 

Executive objects are typically created either by an environment subsystem on behalf of a 
user application or by various components of the operating system as part of their normal 
operation. For example, to create a file, a Windows application calls the Windows CreateFile 
function, implemented in the Windows subsystem DLL Kernel32.dll. After some validation and 
initialization, CreateFile in turn calls the native Windows service NtCreateFile to create an 
executive file object. 

The set of objects an environment subsystem supplies to its applications might be larger or 
smaller than the set the executive provides. The Windows subsystem uses executive objects to 
export its own set of objects, many of which correspond directly to executive objects. For example, 
the Windows mutexes and semaphores are directly based on executive objects (which are in turn 
based on corresponding kernel objects). In addition, the Windows subsystem supplies named pipes 
and mailslots, resources that are based on executive file objects. Some subsystems, such as POSIX, 
don’t support objects as objects at all. The POSIX subsystem uses executive objects and services 
as the basis for presenting POSIX-style processes, pipes, and other resources to its applications.  

Table 3-5 lists the primary objects the executive provides and briefly describes what they 
represent. You can find further details on executive objects in the chapters that describe the related 
executive components (or in the case of executive objects directly exported to Windows, in the 
Windows API reference documentation).  

Note The executive implements a total of 37 object types. Many of these objects are for use 
only by the executive component that defines them and are not directly accessible by Windows 
APIs. Examples of these objects include Driver, Device, and EventPair. 
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Note As Windows NT was originally supposed to support the OS/2 operating system, the 
mutex had to be compatible with the existing design of OS/2 mutual-exclusion objects, a design 
that required that a thread be able to abandon the object, leaving it inaccessible. Because this 
behavior was considered unusual for such an object, another kernel object—the mutant—was 
created. Eventually, OS/2 support was dropped, and the object became used by the Windows 32 
subsystem under the name mutex (but it is still called mutant internally). 

3.2.2 Object Structure 

As shown in Figure 3-16, each object has an object header and an object body. The object 
manager controls the object headers, and the owning executive components control the object 
bodies of the object types they create. Each object header also points to a special object, called the 
type object, that contains information common to each instance of the object. Additionally, up to 
four optional subheaders exist: the name information header, the quota information header, the 
handle information header, and the creator information header. 
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Object Headers and Bodies 

The object manager uses the data stored in an object’s header to manage objects without 
regard to their type. Table 3-6 briefly describes the object header fields, and Table 3-7 describes 
the fields found in the optional object subheaders. 
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In addition to the object header, which contains information that applies to any kind of object, 
the subheaders contain optional information regarding specific aspects of the object. Note that 
these structures are located at a variable offset from the top of the object header, the value of 
which is stored in the object header itself (except, as mentioned above, for creator information). If 
any of these offsets is 0, the object manager assumes that no subheader is associated with that 
offset. In the case of creator information, a value in the object header flags determines whether the 
subheader is present. (See Table 3-9 for information about these flags.) 

  

Note The quota information subheader might also contain a pointer to the exclusive process 
that allows access to this object if the object was created with the exclusive object flag. Also, this 
subheader does not necessarily contain information on quotas being levied against the process. 
More information on exclusive objects follows later in the chapter.  
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Each of these subheaders is optional and is present only under certain conditions, either 
during system boot up or at object creation time. Table 3-8 describes each of these conditions.  

  

Finally, a number of attributes and/or flags determine the behavior of the object during 
creation time or during certain operations. These flags are received by the object manager 
whenever any new object is being created, in a structure called the object attributes. This structure 
defines the object name, the root object directory where it should be inserted, the security 
descriptor for the object, and the object attribute flags. Table 3-9 lists the various flags that can be 
associated with an object. 

Note When an object is being created through an API in the Windows subsystem (such as 
CreateEvent or CreateFile), the caller does not specify any object attributes—the subsystem DLL 
will perform the work behind the scenes. For this reason, all named objects created through Win32 
will go in the BaseNamedObjects directory because this is the root object directory that 
Kernel32.dll specifies as part of the object attributes structure. More information on 
BaseNamedObjects and how it relates to the per-session namespace will follow later in this 
chapter. 
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In addition to an object header, each object has an object body whose format and contents are 
unique to its object type; all objects of the same type share the same object body format. By 
creating an object type and supplying services for it, an executive component can control the 
manipulation of data in all object bodies of that type. Because the object header has a static and 
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well-known size, the object manager can easily look up the object header for an object simply by 
subtracting the size of the header from the pointer of the object. As explained earlier, to access the 
subheaders, the object manager subtracts yet another value from the pointer of the object header. 

Because of the standardized object header and subheader structures, the object manager is 
able to provide a small set of generic services that can operate on the attributes stored in any 
object header and can be used on objects of any type (although some generic services don’t make 
sense for certain objects). These generic services, some of which the Windows subsystem makes 
available to Windows applications, are listed in Table 3-10. 

Although these generic object services are supported for all object types, each object has its 
own create, open, and query services. For example, the I/O system implements a create file service 
for its file objects, and the process manager implements a create process service for its process 
objects. 

Although a single create object service could have been implemented, such a routine would 
have been quite complicated, because the set of parameters required to initialize a file object, for 
example, differs markedly from that required to initialize a process object. Also, the object 
manager would have incurred additional processing overhead each time a thread called an object 
service to determine the type of object the handle referred to and to call the appropriate version of 
the service. 

  

  

Type Objects 

Object headers contain data that is common to all objects but that can take on different values 
for each instance of an object. For example, each object has a unique name and can have a unique 
security descriptor. However, objects also contain some data that remains constant for all objects 
of a particular type. For example, you can select from a set of access rights specific to a type of 
object when you open a handle to objects of that type. The executive supplies terminate and 
suspend access (among others) for thread objects and read, write, append, and delete access 
(among others) for file objects. Another example of an objecttype-specific attribute is 
synchronization, which is described shortly. 
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To conserve memory, the object manager stores these static, object-type-specific attributes 
once when creating a new object type. It uses an object of its own, a type object, to record this 
data. As Figure 3-17 illustrates, if the object-tracking debug flag (described in the “Windows 
Global Flags” section later in this chapter) is set, a type object also links together all objects of the 
same type (in this case the process type), allowing the object manager to find and enumerate them, 
if necessary. This functionality takes advantage of the creator information subheader discussed 
previously. 

  

EXPERIMENT: Viewing Object Headers and Type Objects 

You can see the list of type objects declared to the object manager with the WinObj tool from 
Sysinternals. After running WinObj, open the \ObjectTypes directory, as shown here: 
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You can look at the process object type data structure in the kernel debugger by first 
identifying a process object with the !process command: 

1. lkd> !process 0 0  

2. **** NT ACTIVE PROCESS DUMP ****   

3. PROCESS 860f1ab0 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000  

4. DirBase: 00122000 ObjectTable: 83000118 HandleCount: 484.   

5. Image: System  

Then execute the !object command with the process object address as the argument: 

1. lkd> !object 860f1ab0  

2. Object: 860f1ab0 Type: (860f1ed0) Process   

3. ObjectHeader: 860f1a98 (old version)   

4. HandleCount: 4 PointerCount: 139  

Notice that the object header starts 0x18 (24 decimal) bytes prior to the start of the object 
body—the size of the object header itself. You can view the object header with this command: 

1. lkd> dt nt!_OBJECT_HEADER 860f1a98  

2. +0x000 PointerCount : 139  

3. +0x004 HandleCount : 4  

4. +0x004 NextToFree : 0x00000004  

5. +0x008 Type : 0x860f1ed0 _OBJECT_TYPE   

6. +0x00c NameInfoOffset : 0 ''  

7. +0x00d HandleInfoOffset : 0 ''  
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8. +0x00e QuotaInfoOffset : 0 ''  

9. +0x00f Flags : 0x22 '"'  

10. +0x010 ObjectCreateInfo : 0x82109380 _OBJECT_CREATE_INFORMATION   

11. +0x010 QuotaBlockCharged : 0x82109380  

12. +0x014 SecurityDescriptor : 0x83003482  

13. +0x018 Body : _QUAD  

Now look at the object type data structure by obtaining its address from the Type field of the 
object header data structure: 

1. lkd> dt nt!_OBJECT_TYPE 0x860f1ed0  

2. +0x000 Mutex : _ERESOURCE   

3. +0x038 TypeList : _LIST_ENTRY [ 0x860f1f08 - 0x860f1f08 ]   

4. +0x040 Name : _UNICODE_STRING "Process"  

5. +0x048 DefaultObject : (null)   

6. +0x04c Index : 6  

7. +0x050 TotalNumberOfObjects : 0x4f   

8. +0x054 TotalNumberOfHandles : 0x12d   

9. +0x058 HighWaterNumberOfObjects : 0x52  

10. +0x05c HighWaterNumberOfHandles : 0x141  

11. +0x060 TypeInfo : _OBJECT_TYPE_INITIALIZER   

12. +0x0ac Key : 0x636f7250  

13. +0x0b0 ObjectLocks : [32] _EX_PUSH_LOCK   

The output shows that the object type structure includes the name of the object type, tracks 
the total number of active objects of that type, and tracks the peak number of handles and objects 
of that type. The TypeInfo field stores the pointer to the data structure that stores attributes 
common to all objects of the object type as well as pointers to the object type’s methods: 

1. lkd> dt nt!_OBJECT_TYPE_INITIALIZER 0x860f1ed0+60  

2. +0x000 Length : 0x4c   

3. +0x002 ObjectTypeFlags : 0xa ''  

4. +0x002 CaseInsensitive : 0y0  

5. +0x002 UnnamedObjectsOnly : 0y1  

6. +0x002 UseDefaultObject : 0y0  

7. +0x002 SecurityRequired : 0y1  

8. +0x002 MaintainHandleCount : 0y0  

9. +0x002 MaintainTypeList : 0y0  

10. +0x004 ObjectTypeCode : 0  

11. +0x008 InvalidAttributes : 0  

12. +0x00c GenericMapping : _GENERIC_MAPPING   

13. +0x01c ValidAccessMask : 0x1fffff   

14. +0x020 PoolType : 0 ( NonPagedPool )   

15. +0x024 DefaultPagedPoolCharge : 0x1000  

16. +0x028 DefaultNonPagedPoolCharge : 0x2a0  

17. +0x02c DumpProcedure : (null)   
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18. +0x030 OpenProcedure : 0x822137d3 long nt!PspProcessOpen+0  

19. +0x034 CloseProcedure : 0x8221c3d4 void nt!PspProcessClose+0  

20. +0x038 DeleteProcedure : 0x8221c1e2 void nt!PspProcessDelete+0  

21. +0x03c ParseProcedure : (null)   

22. +0x040 SecurityProcedure : 0x822502bb long nt!SeDefaultObjectMethod+0  

23. +0x044 QueryNameProcedure : (null)   

24. +0x048 OkayToCloseProcedure : (null)   

Type objects can’t be manipulated from user mode because the object manager supplies no 
services for them. However, some of the attributes they define are visible through certain native 
services and through Windows API routines. The information stored in the type initializers is 
described in Table 3-11. 

  

Synchronization, one of the attributes visible to Windows applications, refers to a thread’s 
ability to synchronize its execution by waiting for an object to change from one state to another. A 
thread can synchronize with executive job, process, thread, file, event, semaphore,mutex, and 
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timer objects. Other executive objects don’t support synchronization. An object’s ability to 
support synchronization is based on three possibilities: 

■ The executive object contains an embedded dispatcher object, a kernel object that is 
covered in the section “Low-IRQL Synchronization” later in this chapter. 

■ The creator of the object type requested a default object, and the object manager provided 
one. 

■ The object type is a file and the object manager manually hardcoded a value inside the 
object body (described in Table 3-11). 
 

Object Methods 

The last attribute in Table 3-11, methods, comprises a set of internal routines that are similar 
to C++ constructors and destructors—that is, routines that are automatically called when an object 
is created or destroyed. The object manager extends this idea by calling an object method in other 
situations as well, such as when someone opens or closes a handle to an object or when someone 
attempts to change the protection on an object. Some object types 

specify methods, whereas others don’t, depending on how the object type is to be used.  

When an executive component creates a new object type, it can register one or more methods 
with the object manager. Thereafter, the object manager calls the methods at well-defined points 
in the lifetime of objects of that type, usually when an object is created, deleted, or modified in 
some way. The methods that the object manager supports are listed in Table 3-12. 

The reason for these object methods is to address the fact that, as we’ve seen, certain object 
operations are generic (close, duplicate, security, and so on). Fully generalizing these generic 
routines would have required the designers of the object manager to anticipate all object types. 
However, the routines to create an object type are exported by the kernel, enabling third-party 
components to create their own object types. Although this functionality is not documented for 
driver developers, it is internally used by Win32k.sys to define WindowStation and Desktop 
objects. Through object method extensibility, Win32k.sys defines its routines for handling 
operations such as create and query. 

One exception to this rule is the security routine, which does, unless otherwise instructed, 
default to SeDefaultObjectMethod. This routine does not need to know the internal structure of the 
object because it only deals with the security descriptor for the object, and we’ve seen that the 
pointer to the security descriptor is stored in the generic object header, not inside the object body. 
However, if an object does require its own additional security checks, it can define a custom 
security routine. The other reason for having a generic security method is to avoid complexity, 
because most objects rely on the security reference monitor to manage their security. 
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The object manager calls the open method whenever it creates a handle to an object, which it 
does when an object is created or opened. The WindowStation and Desktop objects provide an 
open method; for example, the WindowStation object type requires an open method so that 
Win32k.sys can share a piece of memory with the process that serves as a desktoprelated memory 
pool. 

An example of the use of a close method occurs in the I/O system. The I/O manager registers 
a close method for the file object type, and the object manager calls the close method each time it 
closes a file object handle. This close method checks whether the process that is closing the file 
handle owns any outstanding locks on the file and, if so, removes them. Checking for file locks 
isn’t something the object manager itself could or should do. 

The object manager calls a delete method, if one is registered, before it deletes a temporary 
object from memory. The memory manager, for example, registers a delete method for the section 
object type that frees the physical pages being used by the section. It also verifies that any internal 
data structures the memory manager has allocated for a section are deleted before the section 
object is deleted. Once again, the object manager can’t do this work because it knows nothing 
about the internal workings of the memory manager. Delete methods for other types of objects 
perform similar functions. 

The parse method (and similarly, the query name method) allows the object manager to 
relinquish control of finding an object to a secondary object manager if it finds an object that 
exists outside the object manager namespace. When the object manager looks up an object name, 
it suspends its search when it encounters an object in the path that has an associated parse method. 
The object manager calls the parse method, passing to it the remainder of the object name it is 
looking for. There are two namespaces in Windows in addition to the object manager’s: the 
registry namespace, which the configuration manager implements, and the file system namespace, 
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which the I/O manager implements with the aid of file system drivers.(See Chapter 4 for more 
information on the configuration manager and Chapter 7 for more about the I/O manager and file 
system drivers.) 

For example, when a process opens a handle to the object named \Device\Floppy0\docs 
\resume.doc, the object manager traverses its name tree until it reaches the device object named 
Floppy0. It sees that a parse method is associated with this object, and it calls the method, passing 
to it the rest of the object name it was searching for—in this case, the string \docs\resume.doc. The 
parse method for device objects is an I/O routine because the I/O manager defines the device 
object type and registers a parse method for it. The I/O manager’s parse routine takes the name 
string and passes it to the appropriate file system, which finds the file on the disk and opens it. 

The security method, which the I/O system also uses, is similar to the parse method. It is 
called whenever a thread tries to query or change the security information protecting a file. This 
information is different for files than for other objects because security information is stored in the 
file itself rather than in memory. The I/O system, therefore, must be called to find the security 
information and read or change it. 

Finally, the okay-to-close method is used as an additional layer of protection around the 
malicious—or incorrect—closing of handles being used for system purposes. For example, each 
process has a handle to the Desktop object(s) on which its thread or threads have windows visible. 
Under the standard security model, it would be possible for those threads to close their handles to 
their desktops because the process has full control of its own objects. 

In this scenario, the threads would end up without a desktop associated with them—a 
violation of the windowing model. Win32k.sys registers an okay-to-close routine for the Desktop 
and WindowStation objects to prevent this behavior. 

Object Handles and the Process Handle Table 

When a process creates or opens an object by name, it receives a handle that represents its 
access to the object. Referring to an object by its handle is faster than using its name because the 
object manager can skip the name lookup and find the object directly. Processes can also acquire 
handles to objects by inheriting handles at process creation time (if the creator specifies the inherit 
handle flag on the CreateProcess call and the handle was marked as inheritable, either at the time 
it was created or afterward by using the Windows SetHandleInformation function) or by receiving 
a duplicated handle from another process. (See the Windows DuplicateHandle function.) 

All user-mode processes must own a handle to an object before their threads can use the 
object. Using handles to manipulate system resources isn’t a new idea. C and Pascal (an older 
programming language similar to Delphi) run-time libraries, for example, return handles to opened 
files. Handles serve as indirect pointers to system resources; this indirection keeps application 
programs from fiddling directly with system data structures.  

Note Executive components and device drivers can access objects directly because they are 
running in kernel mode and therefore have access to the object structures in system memory. 
However, they must declare their usage of the object by incrementing the reference count so that 
the object won’t be deallocated while it’s still being used. (See the section “Object Retention” 
later in this chapter for more details.) To successfully make use of this object, however, device 



 151

drivers need to know the internal structure definition of the object, and this is not provided for 
most objects. Instead, device drivers are encouraged to use the appropriate kernel APIs to modify 
or read information from the object. For example, although device drivers can get a pointer to the 
Process object (EPROCESS), the structure is opaque, and Ps* APIs must be used. For other 
objects, the type itself is opaque (such as most executive objects that wrap a dispatcher 
object—for example, events or mutexes). For these objects, drivers must use the same system calls 
that user-mode applications end up calling (such as ZwCreateEvent) and use handles instead of 
object pointers. 

Object handles provide additional benefits. First, except for what they refer to, there is no 
difference between a file handle, an event handle, and a process handle. This similarity provides a 
consistent interface to reference objects, regardless of their type. Second, the object manager has 
the exclusive right to create handles and to locate an object that a handle refers to. This means that 
the object manager can scrutinize every user-mode action that affects an object to see whether the 
security profile of the caller allows the operation requested on the object in question. 

EXPERIMENT: Viewing Open Handles 

Run Process Explorer, and make sure the lower pane is enabled and configured to show open 
handles. (Click on View, Lower Pane View, and then Handles). Then open a command prompt 
and view the handle table for the new Cmd.exe process. You should see an open file handle to the 
current directory. For example, assuming the current directory is C:\, Process Explorer shows the 
following: 

   If you then change the current directory with the cd command, you will see in Process Explorer 
that the handle to the previous current directory is closed and a new handle is opened to the new 
current directory. The previous handle is highlighted briefly in red, and the new handle is 
highlighted in green. The duration of the highlight can be adjusted by clicking Options and then 
Difference Highlight Duration. 

Process Explorer’s differences highlighting feature makes it easy to see changes in the handle 
table. For example, if a process is leaking handles, viewing the handle table with Process Explorer 
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can quickly show what handle or handles are being opened but not closed. This information can 
help the programmer find the handle leak.  

You can also display the open handle table by using the command-line Handle tool from 
Sysinternals. For example, note the following partial output of Handle examining the file object 
handles located in the handle table for a Cmd.exe process before and after changing the directory. 
By default, Handle will filter out nonfile handles unless the –a switch is used, which displays all 
the handles in the process, similar to Process Explorer. 

1. C:\>handle -p cmd.exe   

2. Handle v3.3  

3. Copyright (C) 1997-2007 Mark Russinovich   

4. Sysinternals - www.sysinternals.com   

5. ------------------------------------------------------------------------- 

6. cmd.exe pid: 5124 Alex-Laptop\Alex Ionescu   

7. 3C: File (R-D) C:\Windows\System32\en-US\cmd.exe.mui   

8. 44: File (RW-) C:\   

9. C:\>cd windows   

10. C:\Windows>handle -p cmd.exe   

11. Handle v3.3  

12. Copyright (C) 1997-2007 Mark Russinovich   

13. Sysinternals - www.sysinternals.com   

14. ------------------------------------------------------------------------- 

15. cmd.exe pid: 5124 Alex-Laptop\Alex Ionescu   

16. 3C: File (R-D) C:\Windows\System32\en-US\cmd.exe.mui   

17. 40: File (RW-) C:\Windows  

An object handle is an index into a process-specific handle table, pointed to by the executive 
process (EPROCESS) block (described in Chapter 5). The first handle index is 4, the second 8, 
and so on. A process’s handle table contains pointers to all the objects that the process has opened 
a handle to. Handle tables are implemented as a three-level scheme, similar to the way that the x86 
memory management unit implements virtual-to-physical address translation, giving a maximum 
of more than 16,000,000 handles per process. (See Chapter 9 for details about memory 
management in x86 systems.) 

Only the lowest-level handle table is allocated on process creation—the other levels are 
created as needed. The subhandle table consists of as many entries as will fit in a page minus one 
entry that is used for handle auditing. For example, for x86 systems a page is 4096 bytes, divided 
by the size of a handle table entry (8 bytes), which is 512, minus 1, which is a total of 511 entries 
in the lowest-level handle table. The mid-level handle table contains a full page of pointers to 
subhandle tables, so the number of subhandle tables depends on the size of the page and the size 
of a pointer for the platform. Figure 3-18 describes the handle table layout on Windows. 
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EXPERIMENT: Creating the Maximum Number of Handles 

The test program Testlimit from Sysinternals has an option to open handles to an object until 
it cannot open any more handles. You can use this to see how many handles can be created in a 
single process on your system. Because handle tables are allocated from paged pool, you might 
run out of paged pool before you hit the maximum number of handles that can be created in a 
single process. To see how many handles you can create on your system, follow these steps: 

1. Download the Testlimit .zip file from www.microsoft.com/technet/ sysinternals, and unzip 
it into a directory. 

2. Run Process Explorer, and then click View and then System Information. Notice the 
current and maximum size of paged pool. (To display the maximum pool size values, Process 
Explorer must be configured properly to access the symbols for the kernel image, Ntoskrnl.exe.) 
Leave this system information display running so that you can see pool utilization when you run 
the Testlimit program. 

3. Open a command prompt.  

4. Run the Testlimit program with the -h switch (do this by typing testlimit –h). When 
Testlimit fails to open a new handle, it will display the total number of 

handles it was able to create. If the number is less than approximately 16 million, you are 
probably running out of paged pool before hitting the theoretical perprocess handle limit. 
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5. Close the Command Prompt window; doing this will kill the Testlimit process, thus 
closing all the open handles.  

As shown in Figure 3-19, on x86 systems, each handle entry consists of a structure with two 
32-bit members: a pointer to the object (with flags), and the granted access mask. On 64-bit 
systems, a handle table entry is 12 bytes long: a 64-bit pointer to the object header and a 32-bit 
access mask. (Access masks are described in Chapter 6.) 

  

The first flag is a lock bit, indicating whether the entry is currently in use. The second flag is 
the inheritance designation—that is, it indicates whether processes created by this process will get 
a copy of this handle in their handle tables. As already noted, handle inheritance can be specified 
on handle creation or later with the SetHandleInformation function. (This flag can also be 
specified with the Windows SetHandleInformation function.) The third flag indicates whether 
closing the object should generate an audit message. (This flag isn’t exposed to Windows—the 
object manager uses it internally.) Finally, the protect from close bit, stored in an unused portion 
of the access mask, indicates whether the caller is allowed to close this handle. (This flag can be 
set with the NtSetInformationObject system call.)  

System components and device drivers often need to open handles to objects that usermode 
applications shouldn’t have access to. This is done by creating handles in the kernel handle table 
(referenced internally with the name ObpKernelHandleTable). The handles in this table are 
accessible only from kernel mode and in any process context. This means that a kernel-mode 
function can reference the handle in any process context with no performance impact. The object 
manager recognizes references to handles from the kernel handle table when the high bit of the 
handle is set—that is, when references to kernel-handle-table handles have values greater than 
0x80000000. The kernel handle table also serves as the handle table for the System process. 

EXPERIMENT: Viewing the Handle Table with the Kernel Debugger 

The !handle command in the kernel debugger takes three arguments: 

1. !handle < handle index> < flags> < processid>  
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The handle index identifies the handle entry in the handle table. (Zero means display all 
handles.) The first handle is index 4, the second 8, and so on. For example, typing !handle 4 will 
show the first handle for the current process. 

The flags you can specify are a bitmask, where bit 0 means display only the information in 
the handle entry, bit 1 means display free handles (not just used handles), and bit 2 means display 
information about the object that the handle refers to. The following command displays full details 
about the handle table for process ID 0x408: 

1. lkd> !handle 0 7 acc   

2. processor number 0, process 00000acc   

3. Searching for Process with Cid == acc   

4. PROCESS 89e1ead8 SessionId: 1 Cid: 0acc Peb: 7ffd3000 ParentCid: 0a28  

5. DirBase: b25c8740 ObjectTable: f1a76c78 HandleCount: 246.   

6. Image: windbg.exe   

7. Handle table at f0aaa000 with 246 Entries in use   

8. 0000: free handle, Entry address f0aaa000, Next Entry fffffffe   

9. 0004: Object: 95d02d70 GrantedAccess: 00000003 Entry: f0aaa008  

10. Object: 95d02d70 Type: (860f5d60) Directory   

11. ObjectHeader: 95d02d58 (old version)   

12. HandleCount: 74 PointerCount: 103  

13. Directory Object: 83007470 Name: KnownDlls   

14. 0008: Object: 89e1a468 GrantedAccess: 00100020 Entry: f0aaa010  

15. Object: 89e1a468 Type: (8613f040) File   

16. ObjectHeader: 89e1a450 (old version)   

17. HandleCount: 1 PointerCount: 1  

18. Directory Object: 00000000 Name: \Program Files\Debugging Tools for  

Windows   

19. {HarddiskVolume3}  

EXPERIMENT: Searching for Open Files with the Kernel Debugger 

Although you can use Process Explorer as well as the OpenFiles.exe utility to search for open 
file handles, these tools are not available when looking at a crash dump or analyzing a system 
remotely. You can instead use the !devhandles command to search for handles opened to files on a 
specific volume. (See Chapter 7 for more information on devices, files, and volumes.) 

1. First you need to pick the drive letter you are interested in and obtain the pointer to its 
Device object. You can use the !object command as shown here: 

1. lkd> !object \GLOBAL??\C:   

2. Object: 8d274e68 Type: (84d10bc0) SymbolicLink   

3. ObjectHeader: 8d274e50 (old version)   

4. HandleCount: 0 PointerCount: 1  

5. Directory Object: 8b6053b8 Name: C:   

6. Target String is '\Device\HarddiskVolume3'  

7. Drive Letter Index is 3 (C:)  
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2. Next use the !devobj command to get the Device object of the target volume name: 

1. lkd> !devobj \Device\HarddiskVolume3  

2. Device object (86623e10) is for:  

3. Now you can use the pointer of the Device object with the !devhandles command. Each 
object shown points to a file: 

1. lkd> !devhandles 86623e10  

2. Checking handle table for process 0x84d0da90  

3. Handle table at 890d6000 with 545 Entries in use   

4. PROCESS 84d0da90 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000  

5. DirBase: 00122000 ObjectTable: 8b602008 HandleCount: 545.   

6. Image: System   

7. 0084: Object: 8684c4b8 GrantedAccess: 0012019f   

8. PROCESS 84d0da90 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000  

9. DirBase: 00122000 ObjectTable: 8b602008 HandleCount: 545.   

10. Image: System   

11. 0088: Object: 8684c348 GrantedAccess: 0012019f   

12. PROCESS 84d0da90 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000  

13. DirBase: 00122000 ObjectTable: 8b602008 HandleCount: 545.   

14. Image: System  

4. Finally, you can repeat the !object command on these objects to figure out to which file 
they refer: 

1. lkd> !object 8684c4b8  

2. Object: 8684c4b8 Type: (84d5a040) File   

3. ObjectHeader: 8684c4a0 (old version)   

4. HandleCount: 1 PointerCount: 2  

5. Directory Object: 00000000 Name:   

6. \$Extend\$RmMetadata\$TxfLog\$TxfLogContainer00000000000000000004  

7. {HarddiskVolume3}  

Because handle leaks can be dangerous to the system by leaking kernel pool memory and 
eventually causing systemwide memory starvation—and can also break applications in subtle 
ways—Windows includes a couple of debugging mechanisms that can be enabled to monitor, 
analyze, and debug issues with handles. Additionally, the Debugging Tools for Windows come 
with two extensions that tap into these mechanisms and provide easy graphical analysis. 

Table 3-13 illustrates them: 
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Enabling the handle tracing database is useful when attempting to understand the use of each 
handle within an application or the system context. The !htrace debugger extension can display the 
stack trace captured at the time a specified handle was opened. After you discover a handle leak, 
the stack trace can pinpoint the code that is creating the handle, and it can be analyzed for a 
missing call to a function such as CloseHandle. 

The object reference tracing !obtrace extension monitors even more by showing the stack 
trace for each new handle created as well as each time a handle is referenced by the kernel (and 
also opened, duplicated, or inherited) and dereferenced. By analyzing these patterns, misuse of an 
object at the system level can be more easily debugged. Additionally, these reference traces 
provide a way to understand the behavior of the system when dealing with certain objects. Tracing 
processes, for example, will display references from all the drivers on the system that have 
registered callback notifications (such as Process Monitor) and helps detect rogue or buggy 
third-party drivers that may be referencing handles in kernel mode but never dereferencing them. 

Note When enabling object reference tracing for a specific object type, you can obtain the 
name of its pool tag by looking at the key member of the OBJECT_TYPE structure when using 
the dt command. Each object type on the system has a global variable that references this 
structure—for example, PsProcessType. Alternatively, you can use the !object command, which 
displays the pointer to this structure. 

Object Security 

When you open a file, you must specify whether you intend to read or to write. If you try to 
write to a file that is opened for read access, you get an error. Likewise, in the executive, when a 
process creates an object or opens a handle to an existing object, the process must specify a set of 
desired access rights—that is, what it wants to do with the object. It can request either a set of 
standard access rights (such as read, write, and execute) that apply to all object types or specific 
access rights that vary depending on the object type. For example, the process can request delete 
access or append access to a file object. Similarly, it might require the ability to suspend or 
terminate a thread object. 

When a process opens a handle to an object, the object manager calls the security reference 
monitor, the kernel-mode portion of the security system, sending it the process’s set of desired 
access rights. The security reference monitor checks whether the object’s security descriptor 
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permits the type of access the process is requesting. If it does, the reference monitor returns a set 
of granted access rights that the process is allowed, and the object manager stores them in the 
object handle it creates. How the security system determines who gets access to which objects is 
explored in Chapter 6. 

Thereafter, whenever the process’s threads use the handle, the object manager can quickly 
check whether the set of granted access rights stored in the handle corresponds to the usage 
implied by the object service the threads have called. For example, if the caller asked for read 
access to a section object but then calls a service to write to it, the service fails. 

EXPERIMENT: Looking at Object Security 

You can look at the various permissions on an object by using either Process Explorer, 
WinObj, or AccessCheck, all tools from Sysinternals. Let’s look at different ways you can display 
the access control list (ACL) for an object. 

1. You can use WinObj to navigate to any object on the system, including object directories, 
right-click on the object, and select Properties. For example, select the BaseNamedObjects 
directory, select Properties, and click on the Security tab. You should see a dialog box similar to 
the one shown next. 

  

By examining the settings in the dialog box, you can see that the Everyone group doesn’t 
have delete access to the directory, for example, but the SYSTEM account does (because this is 
where session 0 services with SYSTEM privileges will store their objects). Note that even though 
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Everyone has the Add Object permission, a special privilege is required to be able to insert objects 
in this directory when running in another session. 

2. Instead of using WinObj, you can view the handle table of a process using Process 
Explorer, as shown in the experiment “Viewing Open Handles” earlier in the chapter. Look at the 
handle table for the Explorer.exe process. You should notice a Directory object handle to the 
\Sessions\n\BaseNamedObjects directory. (We’ll describe the per-session namespace shortly.) 
You can double-click on the object handle and then click on the Security tab and see a similar 
dialog box (with more users and rights granted). Unfortunately, Process Explorer cannot decode 
the specific object directory access rights, so all you’ll see are generic rights.  

3. Finally, you can use AccessCheck to query the security information of any object by using 
the –o switch as shown in the following output. Note that using AccessCheck will also show you 
the integrity level of the object. (See Chapter 6 for more information on integrity levels and the 
security reference monitor.)  

1. C:\Windows>accesschk -o \Sessions\1\BaseNamedObjects   

2. AccessChk v4.02 - Check access of files, keys, objects, processes or  

services   

3. Copyright (C) 2006-2007 Mark Russinovich   

4. Sysinternals - www.sysinternals.com   

5. \Sessions\1\BaseNamedObjects   

6. Type: Directory   

7. Low Mandatory Level [No-Write-Up]   

8. RW NT AUTHORITY\SYSTEM   

9. RW Alex-Laptop\Alex Ionescu   

10. RW BUILTIN\Administrators   

11. R Everyone   

12. NT AUTHORITY\RESTRICTED  

Windows also supports Ex (Extended) versions of the APIs—CreateEventEx, CreateMutex- 
Ex, CreateSemaphoreEx—that add another argument for specifying the access mask. This makes 
it possible for applications to properly use discretionary access control lists (DACLs) to secure 
their objects without breaking their ability to use the create object APIs to open a handle to them. 
You might be wondering why a client application would not simply use OpenEvent, which does 
support a desired access argument. Using the open object APIs leads to an inherent race condition 
when dealing with a failure in the open call—that is to say, when the client application has 
attempted to open the event before it has been created. In most applications of this kind, the open 
API would be followed by a create API in the failure case. Unfortunately, there is no guaranteed 
way to make this create operation atomic—in other words, to only occur once. Indeed, it would be 
possible for multiple threads and/or processes to have executed the create API concurrently and all 
attempt to create the event at the same time. This race condition and the extra complexity required 
to try and handle it makes using the open object APIs an inappropriate solution to the problem, 
which is why the Ex APIs should be used instead. 
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Object Retention 

There are two types of objects: temporary and permanent. Most objects are temporary—that 
is, they remain while they are in use and are freed when they are no longer needed. Permanent 
objects remain until they are explicitly freed. Because most objects are temporary, the rest of this 
section describes how the object manager implements object retention—that is, retaining 
temporary objects only as long as they are in use and then deleting them. Because all user-mode 
processes that access an object must first open a handle to it, the object manager can easily track 
how many of these processes, and even which ones, are using an object. Tracking these handles 
represents one part in implementing retention. The object manager implements object retention in 
two phases. The first phase is called name retention, and it is controlled by the number of open 
handles to an object that exist. Every time a process opens a handle to an object, the object 
manager increments the open handle counter in the object’s header. As processes finish using the 
object and close their handles to it, the object manager decrements the open handle counter. When 
the counter drops to 0, the object manager deletes the object’s name from its global namespace. 
This deletion prevents new processes from opening a handle to the object. 

The second phase of object retention is to stop retaining the objects themselves (that is, to 
delete them) when they are no longer in use. Because operating system code usually accesses 
objects by using pointers instead of handles, the object manager must also record how many object 
pointers it has dispensed to operating system processes. It increments a reference count for an 
object each time it gives out a pointer to the object; when kernel-mode components finish using 
the pointer, they call the object manager to decrement the object’s reference count. The system 
also increments the reference count when it increments the handle count, and likewise decrements 
the reference count when the handle count decrements, because a handle is also a reference to the 
object that must be tracked. (For further details on object retention, see the WDK documentation 
on the functions ObReferenceObjectByPointer and ObDereferenceObject.) 

Figure 3-20 illustrates two event objects that are in use. Process A has the first event open. 
Process B has both events open. In addition, the first event is being referenced by some 
kernel-mode structure; thus, the reference count is 3. So even if Processes A and B closed their 
handles to the first event object, it would continue to exist because its reference count is 1. 
However, when Process B closes its handle to the second event object, the object would be 
deallocated. 

So even after an object’s open handle counter reaches 0, the object’s reference count might 
remain positive, indicating that the operating system is still using the object. Ultimately, when the 
reference count drops to 0, the object manager deletes the object from memory. This deletion has 
to respect certain rules and also requires cooperation from the caller in certain cases. For example, 
because objects can be present both in paged or nonpaged pool memory (depending on the settings 
located in their object type), if a dereference occurs at an IRQL level of dispatch or higher, and 
this dereference causes the pointer count to drop to 0, the system would crash if it attempted to 
immediately free the memory of a paged-pool object. (Recall that such access is illegal because 
the page fault will never be serviced.) In this scenario, the object manager will perform a deferred 
delete operation, queuing the operation on a worker thread running at passive level (IRQL 0). 
We’ll describe more about system worker threads later in this chapter. 
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Another scenario that requires deferred deletion is when dealing with Kernel Transaction 
Manager (KTM) objects. In some scenarios, certain drivers may hold a lock related to this object, 
and attempting to delete the object will result in the system attempting to acquire this lock. 
However, the driver may never get the chance to release its lock, causing a deadlock. When 
dealing with KTM objects, driver developers must use ObDereferenceObjectDeferDelete to force 
deferred deletion regardless of IRQL level. Finally, the I/O manager will also use this mechanism 
as an optimization so that certain I/Os can complete more quickly, instead of waiting for the object 
manager to delete the object. 

 

Because of the way object retention works, an application can ensure that an object and its 
name remain in memory simply by keeping a handle open to the object. Programmers who write 
applications that contain two or more cooperating processes need not be concerned that one 
process might delete an object before the other process has finished using it. In addition, closing 
an application’s object handles won’t cause an object to be deleted if the operating system is still 
using it. For example, one process might create a second process to execute a program in the 
background; it then immediately closes its handle to the process. Because the operating system 
needs the second process to run the program, it maintains a reference to its process object. Only 
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when the background program finishes executing does the object manager decrement the second 
process’s reference count and then delete it. 

Resource Accounting 

Resource accounting, like object retention, is closely related to the use of object handles. A 
positive open handle count indicates that some process is using that resource. It also indicates that 
some process is being charged for the memory the object occupies. When an object’s handle count 
and reference count drop to 0, the process that was using the object should no longer be charged 
for it. 

Many operating systems use a quota system to limit processes’ access to system resources. 
However, the types of quotas imposed on processes are sometimes diverse and complicated, and 
the code to track the quotas is spread throughout the operating system. For example, in some 
operating systems, an I/O component might record and limit the number of files a process can 
open, whereas a memory component might impose a limit on the amount of memory a process’s 
threads can allocate. A process component might limit users to some maximum number of new 
processes they can create or a maximum number of threads within a process. Each of these limits 
is tracked and enforced in different parts of the operating system. 

In contrast, the Windows object manager provides a central facility for resource accounting. 
Each object header contains an attribute called quota charges that records how much the object 
manager subtracts from a process’s allotted paged and/or nonpaged pool quota when a thread in 
the process opens a handle to the object. 

Each process on Windows points to a quota structure that records the limits and current 
values for nonpaged pool, paged pool, and page file usage. These quotas default to 0 (no limit) but 
can be specified by modifying registry values. (See NonPagedPoolQuota, PagedPoolQuota, and 
PagingFileQuota under HKLM\SYSTEM\CurrentControlSet\Session Manager\Memory Manage- 
ment.) Note that all the processes in an interactive session share the same quota block (and there’s 
no documented way to create processes with their own quota blocks). 

Object Names 

An important consideration in creating a multitude of objects is the need to devise a 
successful system for keeping track of them. The object manager requires the following 
information to help you do so: 

■ A way to distinguish one object from another 

■ A method for finding and retrieving a particular object 

The first requirement is served by allowing names to be assigned to objects. This is an 
extension of what most operating systems provide—the ability to name selected resources, files, 
pipes, or a block of shared memory, for example. The executive, in contrast, allows any resource 
represented by an object to have a name. The second requirement, finding and retrieving an object, 
is also satisfied by object names. If the object manager stores objects by name, it can find an 
object by looking up its name. 
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Object names also satisfy a third requirement, which is to allow processes to share objects. 
The executive’s object namespace is a global one, visible to all processes in the system. One 
process can create an object and place its name in the global namespace, and a second process can 
open a handle to the object by specifying the object’s name. If an object isn’t meant to be shared 
in this way, its creator doesn’t need to give it a name. 

To increase efficiency, the object manager doesn’t look up an object’s name each time 
someone uses the object. Instead, it looks up a name under only two circumstances. The first is 
when a process creates a named object: the object manager looks up the name to verify that it 
doesn’t already exist before storing the new name in the global namespace. The second is when a 
process opens a handle to a named object: the object manager looks up the name, finds the object, 
and then returns an object handle to the caller; thereafter, the caller uses the handle to refer to the 
object. When looking up a name, the object manager allows the caller to select either a 
case-sensitive or a case-insensitive search, a feature that supports POSIX and other environments 
that use case-sensitive file names. 

Where the names of objects are stored depends on the object type. Table 3-14 lists the 
standard object directories found on all Windows systems and what types of objects have their 
names stored there. Of the directories listed, only \BaseNamedObjects and \Global?? are visible to 
user programs (see the “Session Namespace” section later in this chapter for more information). 

Because the base kernel objects such as mutexes, events, semaphores, waitable timers, and 
sections have their names stored in a single object directory, no two of these objects can have the 
same name, even if they are of a different type. This restriction emphasizes the need to choose 
names carefully so that they don’t collide with other names. For example, prefix names with a 
GUID and/or combine the name with the user’s security identifier (SID).  

Object names are global to a single computer (or to all processors on a multiprocessor 
computer), but they’re not visible across a network. However, the object manager’s parse method 
makes it possible to access named objects that exist on other computers. For example, the I/O 
manager, which supplies file object services, extends the functions of the object manager to 
remote files. When asked to open a remote file object, the object manager calls a parse method, 
which allows the I/O manager to intercept the request and deliver it to a network redirector, a 
driver that accesses files across the network. Server code on the remote Windows system calls the 
object manager and the I/O manager on that system to find the file object and return the 
information back across the network. 

Object Directories The object directory object is the object manager’s means for supporting 
this hierarchical naming structure. This object is analogous to a file system directory and contains 
the names of other objects, possibly even other object directories. The object directory object 
maintains enough information to translate these object names into pointers to the objects 
themselves. The object manager uses the pointers to construct the object handles that it returns to 
user-mode callers. Both kernel-mode code (including executive components and device drivers) 
and user-mode code (such as subsystems) can create object directories in which to store objects. 
For example, the I/O manager creates an object directory named \Device, which contains the 
names of objects representing I/O devices. 
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One security consideration to keep in mind when dealing with named objects is the 
possibility of object name squatting. Although object names in different sessions are protected 
from each other, there’s no standard protection inside the current session namespace that can be 
set with the standard Windows API. This makes it possible for an unprivileged application 
running in the same session as a privileged application to access its objects, as described earlier in 
the object security subsection. Unfortunately, even if the object creator used a proper DACL to 
secure the object, this doesn’t help against the squatting attack, in which the unprivileged 
application creates the object before the privileged application, thus denying access to the 
legitimate application. 

The concept of a private namespace was introduced in Windows Vista to alleviate this issue. 
It allows user-mode applications to create object directories through the CreatePrivate-Namespace 
API and associate these directories with boundary descriptors, which are special data structures 
protecting the directories. These descriptors contain SIDs describing which security principals are 
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allowed access to the object directory. In this manner, a privileged application can be sure that 
unprivileged applications will not be able to conduct a denial of service attack against its objects 
(this doesn’t stop a privileged application from doing the same, however, but this point is moot). 

EXPERIMENT: Looking at the base Named Objects 

You can see the list of base objects that have names with the WinObj tool from Sysinternals. 
Run Winobj.exe. and click on \BaseNamedObjects, as shown here:  

  

The named objects are shown on the right. The icons indicate the object type. 

■ Mutexes are indicated with a stop sign. 

■ Sections (Windows file mapping objects) are shown as memory chips. 

■ Events are shown as exclamation points. 

■ Semaphores are indicated with an icon that resembles a traffic signal. 

■ Symbolic links have icons that are curved arrows. 

■ Folders indicate object directories. 

■ Gears indicate other objects, such as ALPC ports. 

EXPERIMENT: Tampering with Single instancing 
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Applications such as Windows Media Player and those in Microsoft Office are common 
examples of single instancing enforcement through named objects. Notice that when launching the 
Wmplayer.exe executable, Windows Media Player appears only once—every other launch simply 
results in the window coming back into focus. We can tamper with the handle list by using 
Process Explorer to turn the computer into a media mixer! Here’s how: 

1. Launch Windows Media Player and Process Explorer, and then view the handle table (by 
clicking View, Lower Pane View, and then Handles). You should see a handle containing 
CheckForOtherInstanceMutex. 

    2. Right-click on the handle, and select Close Handle. Confirm the action when asked. 

3. Now run Windows Media Player again. Notice that this time a second process is created. 

4. Go ahead and play a different song in each instance. You can also use the Sound Mixer in 
the system tray (click on the Volume icon) to select which of the two processes will have greater 
volume, effectively creating a mixing environment.  

Instead of closing a handle to a named object, an application could have run on its own 
before Windows Media Player and created an object with the same name. In this scenario, 
Windows Media Player would never run, fooled into believing it was already running on the 
system. 

Symbolic Links In certain file systems (on NTFS and some UNIX systems, for example), a 
symbolic link lets a user create a file name or a directory name that, when used, is translated by 
the operating system into a different file or directory name. Using a symbolic link is a simple 
method for allowing users to indirectly share a file or the contents of a directory, creating a 
cross-link between different directories in the ordinarily hierarchical directory structure. 

The object manager implements an object called a symbolic link object, which performs a 
similar function for object names in its object namespace. A symbolic link can occur anywhere 
within an object name string. When a caller refers to a symbolic link object’s name, the object 
manager traverses its object namespace until it reaches the symbolic link object. It looks inside the 
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symbolic link and finds a string that it substitutes for the symbolic link name. It then restarts its 
name lookup. 

One place in which the executive uses symbolic link objects is in translating MS-DOS-style 
device names into Windows internal device names. In Windows, a user refers to hard disk drives 
using the names C:, D:, and so on and serial ports as COM1, COM2, and so on. The Windows 
subsystem makes these symbolic link objects protected, global data by placing them in the object 
manager namespace under the \Global?? directory. 

Session Namespace 

Services have access to the global namespace, a namespace that serves as the first instance of 
the namespace. Additional sessions (including a console user) are given a session-private view of 
the namespace known as a local namespace. The parts of the namespace that are localized for each 
session include \DosDevices, \Windows, and \BaseNamedObjects. Making separate copies of the 
same parts of the namespace is known as instancing the  namespace. Instancing \DosDevices 
makes it possible for each user to have different network drive letters and Windows objects such 
as serial ports. On Windows, the global \DosDevices directory is named \Global?? and is the 
directory to which \DosDevices points, and local \DosDevices directories are identified by the 
logon session ID. 

The \Windows directory is where Win32k.sys creates the interactive window station, 
\WinSta0. A Terminal Services environment can support multiple interactive users, but each user 
needs an individual version of WinSta0 to preserve the illusion that he or she is accessing the 
predefined interactive window station in Windows. Finally, applications and the system create 
shared objects in \BaseNamedObjects, including events, mutexes, and memory sections. 

If two users are running an application that creates a named object, each user session must 
have a private version of the object so that the two instances of the application don’t interfere with 
one another by accessing the same object.  

The object manager implements a local namespace by creating the private versions of the 
three directories mentioned under a directory associated with the user’s session under \Sessions\n 
(where n is the session identifier). When a Windows application in remote session two creates a 
named event, for example, the object manager transparently redirects the object’s name from 
\BaseNamedObjects to \Sessions\2\BaseNamedObjects.  

All object manager functions related to namespace management are aware of the instanced 
directories and participate in providing the illusion that nonconsole sessions use the same 
namespace as the console session. Windows subsystem DLLs prefix names passed by Windows 
applications that reference objects in \DosDevices with \?? (for example, C:\Windows becomes 
\??\C:\Windows). When the object manager sees the special \?? prefix, the steps it takes depends 
on the version of Windows, but it always relies on a field named DeviceMap in the executive 
process object (EPROCESS, which is described further in Chapter 5) that points to a data structure 
shared by other processes in the same session.  

The DosDevicesDirectory field of the DeviceMap structure points at the object manager 
directory that represents the process’s local \DosDevices. When the object manager sees a 
reference to \??, it locates the process’s local \DosDevices by using the DosDevicesDirectory field 
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of the DeviceMap. If the object manager doesn’t find the object in that directory, it checks the 
DeviceMap field of the directory object, and if it’s valid it looks for the object in the directory 
pointed to by the GlobalDosDevicesDirectory field of the DeviceMap structure, which is always 
\Global??. Under certain circumstances, applications that are Terminal Services–aware need to 
access objects in the console session even if the application is running in a remote session. The 
application might want to do this to synchronize with instances of itself running in other remote 
sessions or with the console session. For these cases, the object manager provides the special 
override “\Global” that an application can prefix to any object name to access the 
global  namespace. For example, an application in session two opening an object named 
\Global\ApplicationInitialized is directed to \BaseNamedObjects\ApplicationInitialized instead of 
\Sessions\2\BaseNamedObjects\ApplicationInitialized. 

An application that wants to access an object in the global \DosDevices directory does not 
need to use the \Global prefix as long as the object doesn’t exist in its local \DosDevices directory. 
This is because the object manager will automatically look in the global directory for the object if 
it doesn’t find it in the local directory. Session directories are isolated from each other, and 
administrative privileges are required to create a global object (except for section objects). A 
special privilege named create global object is verified before allowing such operations. 

EXPERIMENT: Viewing Namespace instancing 

You can see the separation between the session 0 namespace and other session namespaces as 
soon as you log in. The reason you can is that the first console user is logged in to session 1 (while 
services run in session 0). Run Winobj.exe, and click on the \Sessions directory. You’ll see a 
subdirectory with a numeric name for each active session. If you open one of these directories, 
you’ll see subdirectories named \DosDevices, \Windows, and \BaseNamedObjects, which are the 
local namespace subdirectories of the session. The following screen shot shows a local 
namespace: 
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     Next run Process Explorer and select a process in your session (such as Explorer.exe), and 
then view the handle table (by clicking View, Lower Pane View, and then Handles). You should 
see a handle to \Windows\WindowStations\WinSta0 underneath \Sessions\n, where n is the 
session ID. 
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 Object Filtering 

Windows includes a filtering model in the object manager, similar to the file system 
minifilter model described in Chapter 7. One of the primary benefits of this filtering model is the 
ability to use the altitude concept that these existing filtering technologies use, which means that 
multiple drivers can filter object manager events at appropriate locations in the filtering stack. 
Additionally, drivers are permitted to intercept calls such as NtOpenThread and NtOpenProcess 
and even to modify the access masks being requested from the process manager. This allows 
protection against certain operations on an open handle—however, an open operation cannot be 
entirely blocked because doing so would too closely resemble a malicious operation (processes 
that could never be managed). 

Furthermore, drivers are able to take advantage of both pre and post callbacks, allowing them 
to prepare for a certain operation before it occurs, as well as to react or finalize information after 
the operation has occurred. These callbacks can be specified for each operation (currently, only 
open, create, and duplicate are supported) and be specific for each object type (currently, only 
process and thread objects are supported). For each callback, drivers can specify their own internal 
context value, which can be returned across all calls to the driver or across a pre/post pair. These 
callbacks can be registered with the ObRegisterCallback API and unregistered with the 
ObUnregisterCallback API—it is the responsibility of the driver to ensure deregistration happens. 

Use of the APIs is restricted to images that have certain characteristics: 

■ The image must be signed, even on 32-bit computers, according to the same rules set forth 
in the Kernel Mode Code Signing (KMCS) policy. (Code integrity will be discussed later in this 
chapter.) The image must be compiled with the /integritycheck linker flag, which sets the 
IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY value in the PE header. This instructs 
the memory manager to check the signature of the image regardless of any other defaults that may 
not normally result in a check. 



 171

■ The image must be signed with a catalog containing cryptographic per-page hashes of the 
executable code. This allows the system to detect changes to the image after it has been loaded in 
memory. 

3.3 Synchronization 

The concept of mutual exclusion is a crucial one in operating systems development. It refers 
to the guarantee that one, and only one, thread can access a particular resource at a time. Mutual 
exclusion is necessary when a resource doesn’t lend itself to shared access or when sharing would 
result in an unpredictable outcome. For example, if two threads copy a file to a printer port at the 
same time, their output could be interspersed. Similarly, if one thread reads a memory location 
while another one writes to it, the first thread will receive unpredictable data. In general, writable 
resources can’t be shared without restrictions, whereas resources that aren’t subject to 
modification can be shared. Figure 3-21 illustrates what happens when two threads running on 
different processors both write data to a circular queue. 

  

Because the second thread obtained the value of the queue tail pointer before the first thread 
had finished updating it, the second thread inserted its data into the same location that the first 
thread had used, overwriting data and leaving one queue location empty. Even though Figure 3-21 
illustrates what could happen on a multiprocessor system, the same error could occur on a 
single-processor system if the operating system were to perform a context switch to the second 
thread before the first thread updated the queue tail pointer.  

Sections of code that access a nonshareable resource are called critical sections. To ensure 
correct code, only one thread at a time can execute in a critical section. While one thread is writing 
to a file, updating a database, or modifying a shared variable, no other thread can be allowed to 
access the same resource. The pseudocode shown in Figure 3-21 is a critical section that 
incorrectly accesses a shared data structure without mutual exclusion. The issue of mutual 
exclusion, although important for all operating systems, is especially important (and intricate) for 
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a tightly coupled, symmetric multiprocessing (SMP) operating system such as Windows, in which 
the same system code runs simultaneously on more than one processor, sharing certain data 
structures stored in global memory. In Windows, it is the kernel’s job to provide mechanisms that 
system code can use to prevent two threads from modifying the same structure at the same time. 
The kernel provides mutual-exclusion primitives that it and the rest of the executive use to 
synchronize their access to global data structures. 

Because the scheduler synchronizes access to its data structures at DPC/dispatch level IRQL, 
the kernel and executive cannot rely on synchronization mechanisms that would result in a page 
fault or reschedule operation to synchronize access to data structures when the IRQL is 
DPC/dispatch level or higher (levels known as an elevated or high IRQL). In the following 
sections, you’ll find out how the kernel and executive use mutual exclusion to protect theirglobal 
data structures when the IRQL is high and what mutual-exclusion and synchronization 
mechanisms the kernel and executive use when the IRQL is low (below DPC/dispatch level). 

3.3.1 High-IRQL Synchronization 

At various stages during its execution, the kernel must guarantee that one, and only one, 
processor at a time is executing within a critical section. Kernel critical sections are the code 
segments that modify a global data structure such as the kernel’s dispatcher database or its DPC 
queue. The operating system can’t function correctly unless the kernel can guarantee that threads 
access these data structures in a mutually exclusive manner. 

The biggest area of concern is interrupts. For example, the kernel might be updating a global 
data structure when an interrupt occurs whose interrupt-handling routine also modifies the 
structure. Simple single-processor operating systems sometimes prevent such a scenario by 
disabling all interrupts each time they access global data, but the Windows kernel has a more 
sophisticated solution. Before using a global resource, the kernel temporarily masks those 
interrupts whose interrupt handlers also use the resource. It does so by raising the processor’s 
IRQL to the highest level used by any potential interrupt source that accesses the global data. For 
example, an interrupt at DPC/dispatch level causes the dispatcher, which uses the dispatcher 
database, to run. Therefore, any other part of the kernel that uses the dispatcher database raises the 
IRQL to DPC/dispatch level, masking DPC/dispatch-level interrupts before using the dispatcher 
database. 

This strategy is fine for a single-processor system, but it’s inadequate for a multiprocessor 
configuration. Raising the IRQL on one processor doesn’t prevent an interrupt from occurring on 
another processor. The kernel also needs to guarantee mutually exclusive access across several 
processors. 

Interlocked Operations 

The simplest form of synchronization mechanisms rely on hardware support for 
multiprocessor-safe manipulation of integer values and for performing comparisons. They include 
functions such as InterlockedIncrement, InterlockedDecrement, InterlockedExchange, and 
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InterlockedCompareExchange. The InterlockedDecrement function, for example, uses the x86 
lock instruction prefix (for example, lock xadd) to lock the multiprocessor bus during the 
subtraction operation so that another processor that’s also modifying the memory location being 
decremented won’t be able to modify it between the decrementing processor’s read of the original 
value and its write of the decremented value. This form of basic synchronization is used by the 
kernel and drivers. In today’s Microsoft compiler suite, these functions are called intrinsic because 
the code for them is generated in inline assembler, directly during the compilation phase, instead 
of going through a function call. (It’s likely that pushing the parameters onto the stack, calling the 
function, copying the parameters into registers, and then popping the parameters off the stack and 
returning to the caller would be a more expensive operation than the actual work the function is 
supposed to do in the first place.) 

Spinlocks 

The mechanism the kernel uses to achieve multiprocessor mutual exclusion is called a 
spinlock. A spinlock is a locking primitive associated with a global data structure such as the DPC 
queue shown in Figure 3-22. 

     Before entering either critical section shown in Figure 3-22, the kernel must acquire the 
spinlock associated with the protected DPC queue. If the spinlock isn’t free, the kernel keeps 
trying to acquire the lock until it succeeds. The spinlock gets its name from the fact that the kernel 
(and thus, the processor) waits, “spinning,” until it gets the lock.Spinlocks, like the data structures 
they protect, reside in nonpaged memory mapped into the system address space. The code to 
acquire and release a spinlock is written in assembly language for speed and to exploit whatever 
locking mechanism the underlying processor architecture provides. On many architectures, 
spinlocks are implemented with a hardwaresupported test-and-set operation, which tests the value 
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of a lock variable and acquires the lock in one atomic instruction. Testing and acquiring the lock 
in one instruction prevents a second thread from grabbing the lock between the time the first 
thread tests the variable and the time it acquires the lock. Additionally, the lock instruction 
mentioned earlier can also be used on the test-and-set operation, resulting in the combined lock bts 
assembly operation, which also locks the multiprocessor bus; otherwise, it would be possible for 
more than one processor to atomically perform the operation (without the lock, the operation is 
only guaranteed to be atomic on the current processor). 

All kernel-mode spinlocks in Windows have an associated IRQL that is always DPC/dispatch 
level or higher. Thus, when a thread is trying to acquire a spinlock, all other activity at the 
spinlock’s IRQL or lower ceases on that processor. Because thread dispatching happens at 
DPC/dispatch level, a thread that holds a spinlock is never preempted because the IRQL masks the 
dispatching mechanisms. This masking allows code executing in a critical section protected by a 
spinlock to continue executing so that it will release the lock quickly. The kernel uses spinlocks 
with great care, minimizing the number of instructions it executes while it holds a spinlock. Any 
processor that attempts to acquire the spinlock will essentially be busy, waiting indefinitely, 
consuming power (a busy wait results in 100% CPU usage) and performing no actual work. 

On newer (Pentium 4 and later) processors, a special pause assembly instruction can be 
inserted in busy wait loops. This instruction offers a hint to the processor that the loop instructions 
it is processing are part of a spinlock (or a similar construct) acquisition loop. The instruction 
provides three benefits: 

■ It significantly reduces power usage by delaying the core ever so slightly instead of 
continuously looping. 

■ On HyperThreaded cores, it allows the CPU to realize that the “work” being done by the 
spinning logical core is not terribly important and awards more CPU time to the second logical 
core instead. 

■ Because a busy wait loop results in a storm of read requests coming to the bus from the 
waiting thread (which may be generated out-of-order), the CPU will attempt to correct for 
violations of memory order as soon as it detects a write (that is, when the owning thread releases 
the lock). Thus, as soon as the spinlock is released, the CPU will reorder any pending memory 
read operations to ensure proper ordering. This reordering results in a large penalty in system 
performance and can be avoided with the pause instruction. 

The kernel makes spinlocks available to other parts of the executive through a set of kernel 
functions, including KeAcquireSpinLock and KeReleaseSpinLock. Device drivers, for example, 
require spinlocks to guarantee that device registers and other global data structures are accessed by 
only one part of a device driver (and from only one processor) at a time. Spinlocks are not for use 
by user programs—user programs should use the objects described in the next section. Device 
drivers also need to protect access to their own data structures from interrupts associated with 
themselves. Because the spinlock APIs typically only raise the IRQL to DPC/dispatch level, this 
isn’t enough to protect against interrupts. For this reason, the kernel also exports the 
KeAcquireInterruptSpinLock and KeReleaseInterruptSpinLock APIs that take as a parameter the 
KINTERRUPT object discussed at the beginning of this chapter. The system will look inside the 
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interrupt object for the associated DIRQL with the interrupt and raise the IRQL to the appropriate 
level to ensure correct access to structures shared with the ISR. Devices can use the 
KeSynchronizeExecution API to synchronize an entire function with an 

ISR, instead of just a critical section. In all cases, the code protected by an interrupt spinlock 
must execute extremely quickly—any delay causes higher than normal interrupt latency and will 
have significant negative performance effects. 

Kernel spinlocks carry with them restrictions for code that uses them. Because spinlocks 
always have an IRQL of DPC/dispatch level or higher, as explained earlier, code holding a 
spinlock will crash the system if it attempts to make the scheduler perform a dispatch operation or 
if it causes a page fault. 

Queued Spinlocks 

To increase the scalability of spinlocks, a special type of spinlock, called a queued spinlock, 
is used in most circumstances instead of a standard spinlock. A queued spinlock works like this: 
When a processor wants to acquire a queued spinlock that is currently held, it places its identifier 
in a queue associated with the spinlock. When the processor that’s holding the spinlock releases it, 
it hands the lock over to the first processor identified in the queue. In the meantime, a processor 
waiting for a busy spinlock checks the status not of the spinlock itself but of a per-processor flag 
that the processor ahead of it in the queue sets to indicate that the waiting processor’s turn has 
arrived. 

The fact that queued spinlocks result in spinning on per-processor flags rather than global 
spinlocks has two effects. The first is that the multiprocessor’s bus isn’t as heavily trafficked by 
interprocessor synchronization. The second is that instead of a random processor in a waiting 
group acquiring a spinlock, the queued spinlock enforces first-in, first-out (FIFO) ordering to the 
lock. FIFO ordering means more consistent performance across processors accessing the same 
locks. 

Windows defines a number of global queued spinlocks by storing pointers to them in an array 
contained in each processor’s processor region control block (PRCB). A global spinlock can be 
acquired by calling KeAcquireQueuedSpinLock with the index into the PRCB array at which the 
pointer to the spinlock is stored. The number of global spinlocks has grown in each release of the 
operating system, and the table of index definitions for them is published in the WDK header file 
Ntddk.h. Note, however, that acquiring one of these queued spinlocks from a device driver is an 
unsupported and heavily frowned upon operation. These locks are reserved for the kernel’s own 
internal use. 

EXPERIMENT: Viewing global Queued Spinlocks 

You can view the state of the global queued spinlocks (the ones pointed to by the queued 
spinlock array in each processor’s PCR) by using the !qlocks kernel debugger command. In the 
following example, the page frame number (PFN) database queued spinlock is held by processor 1, 
and the other queued spinlocks are not acquired. (The PFN database is described in Chapter 9.) 
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1. lkd> !qlocks    
2. Key: O = Owner, 1-n = Wait order, blank = not owned/waiting, C = Corrupt    
3. Processor Number    
4. Lock Name 0 1   
5. KE - Dispatcher    
6. MM - Expansion    
7. MM - PFN O    
8. MM - System Space    
9. CC - Vacb    
10. CC - Master  

Instack Queued Spinlocks 

Driver developers who recognized the significant improvement in the queued spinlock 
mechanism (over standard spinlocks) might have been disappointed to know that these locks were 
not available to third-party developers. Device drivers can now use dynamically allocated queued 
spinlocks with the KeAcquireInStackQueuedSpinLock and KeReleaseInStackQueuedSpinLock 
functions. Several components—including the cache manager, executive pool manager, and 
NTFS—take advantage of these types of locks (when a global static queued spinlock would 
simply be too wasteful), and the functions are documented in the WDK for use by third-party 
driver writers. 

KeAcquireInStackQueuedSpinLock takes a pointer to a spinlock data structure and a 
spinlock queue handle. The spinlock handle is actually a data structure in which the kernel stores 
information about the lock’s status, including the lock’s ownership and the queue of processors 
that might be waiting for the lock to become available. For this reason, the handle shouldn’t be a 
global variable. It is usually a stack variable, guaranteeing locality to the caller thread, and is 
responsible for the InStack part of the spinlock and API name.  

Executive Interlocked Operations 

The kernel supplies a number of simple synchronization functions constructed on spinlocks 
for more advanced operations, such as adding and removing entries from singly and doubly linked 
lists. Examples include ExInterlockedPopEntryList and ExInterlockedPushEntryList for singly 
linked lists, and ExInterlockedInsertHeadList and ExInterlockedRemoveHeadList for doubly 
linked lists. All these functions require a standard spinlock as a parameter and are used throughout 
the kernel and device drivers. 

Instead of relying on the standard APIs to acquire and release the spinlock parameter, these 
functions place the code required inline and also use a different ordering scheme. Whereas the Ke 
spinlock APIs will first test and set the bit to see whether the lock is released and then atomically 
do a locked test-and-set operation to actually make the acquisition, these routines will disable 
interrupts on the processor and immediately attempt an atomic test-and-set. If the initial attempt 
fails, interrupts are enabled again, and the standard busy waiting algorithm continues until the 
test-and-set operation returns 0—in which case the whole function is restarted again. Because of 
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these subtle differences, a spinlock used for the executive interlocked functions must not be used 
with the standard kernel APIs discussed previously. Naturally, noninterlocked list operations must 
not be mixed with interlocked operations. 

Note Certain of the executive interlocked operations actually silently ignore the spinlock 
when possible. For example, the ExInterlockedIncrementLong or ExInterlockedCompare- 
Exchange APIs actually use the same lock prefix used by the standard interlocked functions and 
the intrinsic functions. These functions were useful on older systems (or non-x86 systems) where 
the lock operation was not suitable or available. For this reason, these calls are now deprecated in 
favor of the intrinsic functions. 

3.3.2 Low-IRQL Synchronization 

Executive software outside the kernel also needs to synchronize access to global data 
structures in a multiprocessor environment. For example, the memory manager has only one page 
frame database, which it accesses as a global data structure, and device drivers need to ensure that 
they can gain exclusive access to their devices. By calling kernel functions, the executive can 
create a spinlock, acquire it, and release it. 

Spinlocks only partially fill the executive’s needs for synchronization mechanisms, however. 
Because waiting for a spinlock literally stalls a processor, spinlocks can be used only under the 
following strictly limited circumstances: 

■ The protected resource must be accessed quickly and without complicated interactions with 
other code. 

■ The critical section code can’t be paged out of memory, can’t make references to pageable 
data, can’t call external procedures (including system services), and can’t generate interrupts or 
exceptions.  

These restrictions are confining and can’t be met under all circumstances. Furthermore, the 
executive needs to perform other types of synchronization in addition to mutual exclusion, and it 
must also provide synchronization mechanisms to user mode.  

There are several additional synchronization mechanisms for use when spinlocks are not 
suitable: 

■ Kernel dispatcher objects 

■ Fast mutexes and guarded mutexes 

■ Executive resources 

■ Pushlocks 

Additionally, user-mode code, which also executes at low IRQL, must be able to have its 
own locking primitives. Windows supports various user-mode specific primitives: 

■ Condition variables (CondVars) 
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■ Slim reader-writer locks (SRWs) 

■ Run once initialization (InitOnce) 

■ Critical sections 

We’ll take a look at the user-mode primitives and their underlying kernel-mode support later; 
for now we’ll focus on kernel-mode objects. Table 3-15 serves as a reference that compares and 
contrasts the capabilities of these mechanisms and their interaction with kernel-mode APC 
delivery. 

 Kernel Dispatcher Objects 

The kernel furnishes additional synchronization mechanisms to the executive in the form of 
kernel objects, known collectively as dispatcher objects. The user-visible synchronization objects 
acquire their synchronization capabilities from these kernel dispatcher objects. Each user-visible 
object that supports synchronization encapsulates at least one kernel dispatcher object. The 
executive’s synchronization semantics are visible to Windows programmers through the 
WaitForSingleObject and WaitForMultipleObjects functions, which the Windows subsystem 
implements by calling analogous system services that the object manager supplies. A thread in a 
Windows application can synchronize with a Windows process, thread, event, semaphore, mutex, 
waitable timer, I/O completion port, or file object.  

One other type of executive synchronization object worth noting is called an executive 
resource. Executive resources provide exclusive access (like a mutex) as well as shared read 
access (multiple readers sharing read-only access to a structure). However, they’re available only 
to kernel-mode code and thus are not accessible from the Windows API. Executive resources are 
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not dispatcher objects but data structures, allocated directly from nonpaged pool, that have their 
own specialized services to initialize, lock, release, query, and wait for them. The remaining 
subsections describe the implementation details of waiting for dispatcher objects. 

Waiting for Dispatcher Objects. A thread can synchronize with a dispatcher object by waiting 
for the object’s handle. Doing so causes the kernel to put the thread in a wait state.  

At any given moment, a synchronization object is in one of two states: signaled state or 
nonsignaled state. A thread can’t resume its execution until its wait is satisfied. This change 
occurs when the dispatcher object whose handle the thread is waiting for also undergoes a state 
change, from the nonsignaled state to the signaled state (when a thread sets an event object, for 
example). To synchronize with an object, a thread calls one of the wait system services that the 
object manager supplies, passing a handle to the object it wants to synchronize with. The thread 
can wait for one or several objects and can also specify that its wait should be canceled if it hasn’t 
ended within a certain amount of time. Whenever the kernel sets an object to the signaled state, 
the kernel’s KiWaitTest function (or sometimes, specialized inline code) checks to see whether 
any threads are waiting for the object and not also waiting for other objects to become signaled. If 
there are, the kernel releases one or more of the threads from their waiting state so that they can 
continue executing. 

The following example of setting an event illustrates how synchronization interacts with 
thread dispatching: 

■ A user-mode thread waits for an event object’s handle. 

■ The kernel changes the thread’s scheduling state to waiting and then adds the thread to a 
list of threads waiting for the event. 

■ Another thread sets the event. 

■ The kernel marches down the list of threads waiting for the event. If a thread’s conditions 
for waiting are satisfied (see the following note), the kernel takes the thread out of the waiting 
state. If it is a variable-priority thread, the kernel might also boost its execution priority. (For 
details on thread scheduling, see Chapter 5.)  

Note Some threads might be waiting for more than one object, so they continue waiting, 
unless they specified a WaitAny wait, which will wake them up as soon as one object (instead of 
all) is signaled. 

What Signals an Object? The signaled state is defined differently for different objects. A 
thread object is in the nonsignaled state during its lifetime and is set to the signaled state by the 
kernel when the thread terminates. Similarly, the kernel sets a process object to the signaled state 
when the process’s last thread terminates. In contrast, the timer object, like an alarm, is set to “go 
off” at a certain time. When its time expires, the kernel sets the timer object to the signaled state. 

When choosing a synchronization mechanism, a program must take into account the rules 
governing the behavior of different synchronization objects. Whether a thread’s wait ends when an 
object is set to the signaled state varies with the type of object the thread is waiting for, as Table 
3-16 illustrates. 
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      When an object is set to the signaled state, waiting threads are generally released from their 
wait states immediately. Some of the kernel dispatcher objects and the system events that induce 
their state changes are shown in Figure 3-23. 
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For example, a notification event object (called a manual reset event in the Windows API) is 
used to announce the occurrence of some event. When the event object is set to the signaled state, 
all threads waiting for the event are released. The exception is any thread that is waiting for more 
than one object at a time; such a thread might be required to continue waiting until additional 
objects reach the signaled state. 

In contrast to an event object, a mutex object has ownership associated with it (unless it was 
acquired during a DPC). It is used to gain mutually exclusive access to a resource, and only one 
thread at a time can hold the mutex. When the mutex object becomes free, the kernel sets it to the 
signaled state and then selects one waiting thread to execute. The thread selected by the kernel 
acquires the mutex object, and all other threads continue waiting.  

This brief discussion wasn’t meant to enumerate all the reasons and applications for using the 
various executive objects but rather to list their basic functionality and synchronization behavior. 
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For information on how to put these objects to use in Windows programs, see the Windows 
reference documentation on synchronization objects or Jeffrey Richter’s book Windows via 
C/C++. 

Data Structures Two data structures are key to tracking who is waiting for what: 
dispatcher headers and wait blocks. Both these structures are publicly defined in the WDK include 
file Ntddk.h. The definitions are reproduced here for convenience: 

1. typedef struct _DISPATCHER_HEADER {   
2. union {   
3. struct {   
4. UCHAR Type;   
5. union {   
6. UCHAR Abandoned;   
7. UCHAR Absolute;   
8. UCHAR NpxIrql;   
9. BOOLEAN Signalling;   
10. } DUMMYUNIONNAME;   
11. union {   
12. UCHAR Size;   
13. UCHAR Hand;   
14. } DUMMYUNIONNAME2;   
15. union {   
16. UCHAR Inserted;   
17. BOOLEAN DebugActive;   
18. BOOLEAN DpcActive;   
19. } DUMMYUNIONNAME3;   
20. } DUMMYSTRUCTNAME;   
21. volatile LONG Lock;   
22. } DUMMYUNIONNAME;   
23. LONG SignalState;   
24. LIST_ENTRY WaitListHead;   
25. } DISPATCHER_HEADER;   
26. typedef struct _KWAIT_BLOCK {   
27. LIST_ENTRY WaitListEntry;   
28. struct _KTHREAD *Thread;   
29. PVOID Object;   
30. struct _KWAIT_BLOCK *NextWaitBlock;   
31. USHORT WaitKey;   
32. UCHAR WaitType;   
33. UCHAR SpareByte;   
34. #if defined(_AMD64_)   
35. LONG SpareLong;   
36. #endif  
37. } KWAIT_BLOCK, *PKWAIT_BLOCK, *PRKWAIT_BLOCK;  
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The dispatcher header is a packed structure because it needs to hold lots of information in a 
fixed-size structure. One of the main tricks is to define mutually exclusive flags at the same 
memory location (offset) in the structure. By using the Type field, the kernel knows which of 
these fields actually applies. For example, a mutex can be abandoned, but a timer can be absolute 
or relative. Similarly, a timer can be inserted into the timer list, but the debug active field only 
makes sense for processes. On the other hand, the dispatcher header does contain information 
generic for any dispatcher object: the object type, signaled state, and a list of the threads waiting 
for that object. 

Note The debug active flag used to determine whether a process is currently being debugged 
is actually a bit mask that specifies which debug registers on the CPU are in use. Because the valid 
debug registers are DR0–3, DR6, and DR7, the bit positions for DR4 and 5 are overloaded with 
other meanings. For example, the kernel uses the fifth bit (0x20—DR4) to disable CPU cycle time 
accounting for the process. (CPU cycle time accounting is described in Chapter 5.)  

The wait block represents a thread waiting for an object. Each thread that is in a wait state 
has a list of the wait blocks that represent the objects the thread is waiting for. Each dispatcher 
object has a list of the wait blocks that represent which threads are waiting for the object. This list 
is kept so that when a dispatcher object is signaled, the kernel can quickly determine who is 
waiting for that object. The wait block has a pointer to the object being waited for, a pointer to the 
thread waiting for the object, and a pointer to the next wait block (if the thread is waiting for more 
than one object). It also records the type of wait (any or all) as well as the position of that entry in 
the array of handles passed by the thread on the WaitForMultipleObjects call (position 0 if the 
thread was waiting for only one object). 

Figure 3-24 shows the relationship of dispatcher objects to wait blocks to threads. In this 
example, thread 1 is waiting for object B, and thread 2 is waiting for objects A and B. If object A 
is signaled, the kernel will see that because thread 2 is also waiting for another object, thread 2 
can’t be readied for execution. On the other hand, if object B is signaled, the kernel can ready 
thread 1 for execution right away because it isn’t waiting for any other objects. 
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EXPERIMENT: Looking at Wait Queues  

You can see the list of objects a thread is waiting for with the kernel debugger’s !thread 
command. For example, the following excerpt from the output of a !process command shows that 
the thread is waiting for an event object:  

1. kd> !process   
2. §   
3. THREAD 8952d030 Cid 0acc.050c Teb: 7ffdf000 Win32Thread: fe82c4

c0 WAIT:   

4. (WrUserRequest) UserMode Non-Alertable   
5. 89dd01c8 SynchronizationEvent  

You can use the dt command to interpret the dispatcher header of the object like this:  
1. lkd> dt nt!_DISPATCHER_HEADER 89dd01c8  
2. +0x000 Type : 0x1 ''  
3. +0x001 Abandoned : 0 ''  
4. +0x001 Absolute : 0 ''  
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5. +0x001 NpxIrql : 0 ''  
6. +0x001 Signalling : 0 ''  
7. +0x002 Size : 0x4 ''  
8. +0x002 Hand : 0x4 ''  
9. +0x003 Inserted : 0x89 ''  
10.+0x003 DebugActive : 0x89 ''  

11.+0x003 DpcActive : 0x89 ''  

12.+0x000 Lock : -1996226559  

13.+0x004 SignalState : 0  

14.+0x008 WaitListHead : _LIST_ENTRY [ 0x89dd01d0 - 0x89dd01d0 ]  

Note that you should ignore the 0x89 value: none of the Inserted, DebugActive, or DpcActive 
fields apply to event objects, so the kernel has simply not bothered to initialize those fields to 0 as 
an optimization. As a result, they contain whatever value was previously stored. (We can assume a 
pointer was there previously because 0x89 seems to be the beginning of the address of the 
dispatcher header.) Table 3-17 lists the dispatcher header flags and the objects to which they 
apply.  

  

Apart from these flags, the Type field contains the identifier for the object. This identifier 
corresponds to a number in the KOBJECTS enumeration, which you can dump with the debugger: 

1. lkd> dt nt!_KOBJECTS   

2. EventNotificationObject = 0  

3. EventSynchronizationObject = 1  

4. MutantObject = 2  

5. ProcessObject = 3  

6. QueueObject = 4  

7. SemaphoreObject = 5  

8. ThreadObject = 6  
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9. GateObject = 7  

10. TimerNotificationObject = 8  

11. TimerSynchronizationObject = 9  

12. Spare2Object = 10  

13. Spare3Object = 11  

14. Spare4Object = 12  

15. Spare5Object = 13  

16. Spare6Object = 14  

17. Spare7Object = 15  

18. Spare8Object = 16  

19. Spare9Object = 17  

20. ApcObject = 18  

21. DpcObject = 19  

22. DeviceQueueObject = 20  

23. EventPairObject = 21  

24. InterruptObject = 22  

25. ProfileObject = 23  

26. ThreadedDpcObject = 24  

27. MaximumKernelObject = 25  

The wait list head pointers are identical, so there are no waiting threads waiting on this object. 
Dumping a wait block for an object that is part of a multiple wait from a thread, or that multiple 
threads are waiting on, could yield the following:  

1. lkd> dt nt!_KWAIT_BLOCK 0x879796c8  

2. +0x000 WaitListEntry : _LIST_ENTRY [ 0x89d65d80 - 0x89d65d80 ]   

3. +0x008 Thread : 0x87979610 _KTHREAD   

4. +0x00c Object : 0x89d65d78  

5. +0x010 NextWaitBlock : 0x879796e0 _KWAIT_BLOCK   

6. +0x014 WaitKey : 0  

7. +0x016 WaitType : 0x1 ''  

8. +0x017 SpareByte : 0x1 ''  

If the wait list had more than one entry, you could execute the same command on the second 
pointer value in the WaitListEntry field of each wait block (by executing !thread on the thread 
pointer in the wait block) to traverse the list and see what other threads are waiting for the object. 
This would indicate more than one thread waiting on this object. On the other hand, when dealing 
with an object that’s part of a collection of objects being waited on by a single thread, you will 
have to parse the NextWaitBlock field instead.  

Keyed Events 

A synchronization object called a keyed event bears special mention because of the role it 
plays in user-mode-exclusive synchronization primitives. Keyed events were originally 
implemented to help processes deal with low-memory situations when using critical sections, a 
user-mode synchronization object we’ll see more about shortly. A keyed event, which is not 
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documented, allows a thread to specify a “key” for which it waits, where the thread wakes when 
another thread of the same process signals the event with the same key. 

If there is contention, EnterCriticalSection dynamically allocates an event object, and the 
thread wanting to acquire the critical section waits for the thread that owns the critical section to 
signal it in LeaveCriticalSection. Unfortunately, this introduces a new problem. Before keyed 
events were implemented, it was possible for the system to be critically out of memory and for 
critical section acquisition to fail because the system was unable to allocate the event object 
required. The low-memory condition itself may have been caused by the application trying to 
acquire the critical section, so the system would deadlock in this situation. Low memory isn’t the 
only scenario that could have caused this to fail: a less likely scenario is handle exhaustion. If the 
process had reached its 16 million handle limit, the new handle for the event object could fail. 

The failure caused by low-memory conditions would typically be an exception from the code 
responsible for acquiring the critical section. Unfortunately, the result would also be a damaged 
critical section, which made the situation hard to debug, and the object useless for a reacquisition 
attempt. Attempting a LeaveCriticalSection would attempt another event object allocation, further 
generating exceptions and corrupting the structure. An initial “solution” to the problem was 
introduced through a magic value to the InitializeCriticalSectionAndSpinCount API. By making 
the spin count have its high bit set (ORing with the 0x80000000 value), this preallocated the event, 
which avoided the issue but reverted back to the scalability problems of Windows NT 4. 

Having allocated a global standard event object would not have fixed the issue, because 
standard event primitives can only be used for a single object. Each critical section in the process 
would still require its own event object, so the same problem would resurface. The 
implementation of keyed events allows multiple critical sections (waiters) to use the same global 
(per-process) keyed event handle. This allows the critical section functions to operate properly 
even when memory is temporarily low. 

When a thread signals a keyed event or performs a wait on it, it uses a unique identifier called 
a key, which identifies the instance of the keyed event (an association of the keyed event to a 
single critical section). When the owner thread releases the keyed event by signaling it, only a 
single thread waiting on the key is woken up (the same behavior as synchronization events in 
contrast to notification events). Additionally, only the waiters in the current process are awakened, 
so the key is even isolated across processes, meaning that there is actually only a single keyed 
event object for the entire system. When a critical section uses the keyed event, 
EnterCriticalSection sets the key as the address of the critical section and performs a wait. 
Returning to critical sections, the use of keyed events was improved even further with the release 
of Windows Vista. When EnterCriticalSection calls NtWaitForKeyedEvent to perform a wait on 
the keyed event, it can now specify a handle of NULL for the keyed event, telling the kernel that it 
was unable to create a keyed event. The kernel recognizes this behavior and uses a global keyed 
event named ExpCritSecOutOfMemoryEvent. The primary benefit is that processes don’t need to 
waste a handle for a named keyed event anymore because the kernel keeps track of the object and 
its references. 

However, keyed events are more than just fallback objects for low-memory conditions. When 
multiple waiters are waiting on the same key and need to be woken up, the key is actually signaled 
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multiple times, which requires the object to keep a list of all the waiters so that it can perform a 
“wake” operation on each of them (recall that waking a keyed event is the same as waking a 
synchronization event). However, it’s possible for a thread to signal a keyed event without any 
threads on the waiter list. In this scenario, the setting thread will actually perform a wait of its own! 
Without this fallback, it would be possible for a setter thread to signal the keyed event during the 
time that the user-mode code saw the keyed event as unsignaled and attempt a wait. The wait 
might have come after the setting thread signaled the keyed event, resulting in a missed pulse, so 
the waiting thread would deadlock. By forcing the setting thread to wait in this scenario, it will 
only actually signal the keyed event when someone is looking (waiting). 

Note When the keyed event wait code itself needs to perform a wait, it uses a built-in 
semaphore located in the kernel-mode thread object (ETHREAD) called KeyedWaitSemaphore. 
(This semaphore actually shares its location with the ALPC wait semaphore.) See Chapter 5 for 
more information on thread objects. 

Keyed events, however, do not replace standard event objects in the critical section 
implementation. The initial reason, during the Windows XP timeframe, was that keyed events do 
not offer scalable performance in heavy-usage scenarios. Recall that all the algorithms described 
were only meant to be used in critical, low-memory scenarios, when performance and scalability 
aren’t all that important. To replace the standard event object would place strain on eyed events 
that they weren’t implemented to handle. The primary performance bottleneck was that keyed 
events maintained the list of waiters described in a doubly linked list. This kind of list has poor 
traversal speed, meaning the time required to loop through the list. In this case, this time depended 
on the number of waiter threads. Because the object is global, it would be possible for dozens of 
threads to be on the list, requiring long traversal times every single time a key was set or waited 
on.  

Note The head of the list is kept in the keyed event object, while the threads are actually 
linked through the KeyedWaitChain field (which is actually shared with the thread’s exit time, 
stored as a LARGE_INTEGER, the same size as a doubly linked list) in the kernel-mode thread 
object (ETHREAD). See Chapter 5 for more information on this object.  

Windows improves keyed event performance by using a hash table instead of a linked list to 
hold the waiter threads. This optimization allows Windows to include three new lightweight 
user-mode synchronization primitives (to be discussed shortly) that all depend on the keyed event. 
Critical sections, however, still continue to use event objects, primarily for application 
compatibility and debugging, because the event object and internals are well-known and 
documented, while keyed events are opaque and not exposed to the Win32 API. 

Fast Mutexes and Guarded Mutexes  

Fast mutexes, which are also known as executive mutexes, usually offer better performance 
than mutex objects because, although they are built on dispatcher event objects, they perform a 
wait through the dispatcher only if the fast mutex is contended, unlike a standard mutex, which 
will always attempt the acquisition through the dispatcher. This gives the fast mutex especially 
good performance in a multiprocessor environment. Fast mutexes are used widely in device 
drivers. 
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However, fast mutexes are suitable only when normal kernel-mode APC (described earlier in 
this chapter) delivery can be disabled. The executive defines two functions for acquiring them: 
ExAcquireFastMutex and ExAcquireFastMutexUnsafe. The former function blocks all APC 
delivery by raising the IRQL of the processor to APC level. The latter expects to be called with 
normal kernel-mode APC delivery disabled, which can be done by raising the IRQL to APC level. 
Another limitation of fast mutexes is that they can’t be acquired recursively, like mutex objects 
can Guarded mutexes are essentially the same as fast mutexes (although they use a different 
synchronization object, the KGATE, internally). They are acquired with the KeAcquireGuarded- 

Mutex and KeAcquireGuardedMutexUnsafe functions, but instead of disabling APCs by raising 
the IRQL to APC level, they disable all kernel-mode APC delivery by calling KeEnterGuarded- 
Region. Recall that a guarded region, unlike a critical region, disables both special and normal 
kernel-mode APCs, hence allowing the guarded mutex to avoid raising the IRQL. 

Three implementation changes made the guarded mutex faster than a fast mutex: 

■ By avoiding raising the IRQL, the kernel can avoid talking to the local APIC of every 
processor on the bus, which is a significant operation on heavy SMP systems. On uniprocessor 
systems this isn’t a problem because of lazy IRQL evaluation, but lowering the IRQL may still 
require accessing the PIC. 

■ The gate primitive is an optimized version of the event. By not having both 
synchronization and notification versions, and by being the exclusive object that a thread can wait 
on, the code for acquiring and releasing a gate is heavily optimized. Gates even have their own 
dispatcher lock instead of acquiring the entire dispatcher database. 

■ In the noncontended case, acquisition and release of a guarded mutex works on a single bit, 
with an atomic bit test-and-reset operation instead of the more complex integer operations fast 
mutexes perform. 

Note The code for a fast mutex is also optimized to account for almost all these 
optimizations—it uses the same atomic lock operation, and the event object is actually a gate 
object (although by dumping the type in the kernel debugger, you would still see an event object 
structure; this is actually a compatibility lie). However, fast mutexes still raise the IRQL instead of 
using guarded regions. 

Because the flag responsible for special kernel APC delivery disabling (and the guarded 
region functionality) was not added until Windows Server 2003, most drivers do not yet take 
advantage of guarded mutexes. Doing so would raise compatibility issues with earlier versions of 
Windows, which require a recompiled driver making use only of fast mutexes.  

Internally, however, the Windows kernel has replaced almost all uses of fast mutexes with 
guarded mutexes, as the two have identical semantics and can be easily interchanged. Another 
problem related to the guarded mutex was the kernel function KeAreApcsDisabled. Prior to 
Windows Server 2003, this function indicated whether normal APCs were disabled by checking if 
the code was running inside a critical section. In Windows Server 2003, this function 

was changed to indicate whether the code was in a critical, or guarded, region, changing the 
functionality to also return TRUE if special kernel APCs are also disabled. 
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Because there are certain operations that drivers should not perform when special kernel 
APCs are disabled, it makes sense to call KeGetCurrentIrql to check whether the IRQL is APC 
level or not, which is the only way special kernel APCs could have been disabled. However, 
because the memory manager makes use of guarded mutexes instead, this check fails because 
guarded mutexes do not raise IRQL. Drivers should therefore call KeAreAllApcsDisabled for this 
purpose. This function checks whether special kernel APCs are disabled and/or whether the IRQL 
is APC level—the sure-fire way to detect both guarded mutexes and fast mutexes. 

Executive Resources 

Executive resources are a synchronization mechanism that supports shared and exclusive 
access, and, like fast mutexes, they require that normal kernel-mode APC delivery be disabled 
before they are acquired. They are also built on dispatcher objects that are only used when there is 
contention. Executive resources are used throughout the system, especially in filesystem drivers. 

Threads waiting to acquire a resource for shared access wait for a semaphore associated with 
the resource, and threads waiting to acquire a resource for exclusive access wait for an event. A 
semaphore with unlimited count is used for shared waiters because they can all be woken and 
granted access to the resource when an exclusive holder releases the resource simply by signaling 
the semaphore. When a thread waits for exclusive access of a resource that is currently owned, it 
waits on a synchronization event object because only one of the waiters will wake when the event 
is signaled. 

Because of the flexibility that shared and exclusive access offers, there are a number of 
functions for acquiring resources: ExAcquireResourceSharedLite, ExAcquireResourceExclusive- 
Lite, ExAcquireSharedStarveExclusive, ExAcquireWaitForExclusive, and ExTryToAcquire- 
ResourceExclusiveLite. These functions are documented in the WDK. 

EXPERIMENT: Listing Acquired executive resources 

The kernel debugger !locks command searches paged pool for executive resource objects and 
dumps their state. By default, the command lists only executive resources that are currently owned, 
but the –d option will list all executive resources. Here is partial output of the command: 

1. lkd> !locks   

2. **** DUMP OF ALL RESOURCE OBJECTS ****   

3. KD: Scanning for held locks.   

4. Resource @ 0x89929320 Exclusively owned   

5. Contention Count = 3911396  

6. Threads: 8952d030-01< *>   

7. KD: Scanning for held locks.......................................   

8. Resource @ 0x89da1a68 Shared 1 owning threads   

9. Threads: 8a4cb533-01< *> *** Actual Thread 8a4cb530  

Note that the contention count, which is extracted from the resource structure, records the number 
of times threads have tried to acquire the resource and had to wait because it was already owned.  

You can examine the details of a specific resource object, including the thread that owns the 
resource and any threads that are waiting for the resource, by specifying the–v switch and the 
address of the resource: 
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1. lkd> !locks -v 0x89929320  

2. Resource @ 0x89929320 Exclusively owned   

3. Contention Count = 3913573  

4. Threads: 8952d030-01< *>   

5. THREAD 8952d030 Cid 0acc.050c Teb: 7ffdf000 Win32Thread: fe82c4c0         

RUNNING on   

6. processor 0  

7. Not impersonating   

8. DeviceMap 9aa0bdb8  

9. Owning Process 89e1ead8 Image: windbg.exe   

10. Wait Start TickCount 24620588 Ticks: 12 (0:00:00:00.187)   

11. Context Switch Count 772193  

12. UserTime 00:00:02.293  

13. KernelTime 00:00:09.828  

14. Win32 Start Address windbg (0x006e63b8)   

15. Stack Init a7eba000 Current a7eb9c10 Base a7eba000 Limit a7eb7000 Call 0  

16. Priority 10 BasePriority 8 PriorityDecrement 0 IoPriority 2                 

PagePriority 5  

17. Unable to get context for thread running on processor 1, HRESULT           

0x80004001  

18. 1 total locks, 1 locks currently held  

Pushlocks  

Pushlocks are another optimized synchronization mechanism built on gate objects, and, like 
guarded mutexes, they wait for a gate object only when there’s contention on the lock. They offer 
advantages over the guarded mutex in that they can be acquired in shared or exclusive mode. 
However, their main advantage is their size: a resource object is 56 bytes, but a pushlock is 
pointer-size. Unfortunately, they are not documented in the WDK and are therefore reserved for 
use by the operating system (although the APIs are exported, so internal drivers do use them). 

There are two types of pushlocks: normal and cache-aware. Normal pushlocks require only 
the size of a pointer in storage (4 bytes on 32-bit systems, and 8 bytes on 64-bit systems). When a 
thread acquires a normal pushlock, the pushlock code marks the pushlock as owned if it is not 
currently owned. If the pushlock is owned exclusively or the thread wants to acquire the thread 
exclusively and the pushlock is owned on a shared basis, the thread allocates a wait block on the 
thread’s stack, initializes a gate object in the wait block, and adds the wait block to the wait list 
associated with the pushlock. When a thread releases a pushlock, the thread wakes a waiter, if any 
are present, by signaling the event in the waiter’s wait block. 

Because a pushlock is only pointer-sized, it actually contains a variety of bits to describe its 
state. The meaning of those bits changes as the pushlock changes from being contended to 
noncontended. In its initial state, the pushlock contains the following structure: 

■ 1 lock bit, set to 1 if the lock is acquired 

■ 1 waiting bit, set to 1 if the lock is contended and someone is waiting on it 
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■ 1 waking bit, set to 1 if the lock is being granted to a thread and the waiter’s list needs to be 
optimized 

■ 1 multiple shared bit, set to 1 if the pushlock is shared and currently acquired by more than 
one thread 

■ 28 share count bits, containing the number of threads that have acquired the pushlock 

As discussed previously, when a thread acquires a pushlock exclusively while the pushlock is 
already acquired by either multiple readers or a writer, the kernel will allocate a pushlock wait 
block. The structure of the pushlock value itself changes. The 28 share count bits now become the 
pointer to the wait block. Because this wait block is allocated on the stack and the header files 
contain a special alignment directive to force it to be 16-byte aligned, the bottom 4 bits of any 
pushlock wait-block structure will be all zeros. Therefore, those bits are ignored for the purposes 
of pointer dereferencing, and instead, the 4 bits shown earlier are combined with the pointer value. 
Because this alignment removes the share count bits, the share count is now stored in the wait 
block instead. 

A cache-aware pushlock adds layers to the normal (basic) pushlock by allocating a pushlock 
for each processor in the system and associating it with the cache-aware pushlock. When a thread 
wants to acquire a cache-aware pushlock for shared access, it simply acquires the pushlock 
allocated for its current processor in shared mode; to acquire a cache-aware pushlock exclusively, 
the thread acquires the pushlock for each processor in exclusive mode.  

Other than a much smaller memory footprint, one of the large advantages that pushlocks have 
over executive resources is that in the noncontended case they do not require lengthy accounting 
and integer operations to perform acquisition or release. By being as small as a pointer, the kernel 
can use atomic CPU instructions to perform these tasks (lock cmpxchg is used, which atomically 
compares and exchanges the old lock with a new lock). If the atomic compare and exchange fails, 
the lock contains values the caller did not expect (callers usually expect the lock to be unused or 
acquired as shared), and a call is then made to the more complex contended version. To push 
performance even further, the kernel exposes the pushlock functionality as inline functions, 
meaning that no function calls are ever generated during noncontended acquisition—the assembly 
code is directly in each function. This increases code size slightly, but it avoids the slowness of a 
function call. Finally, pushlocks use several algorithmic tricks to avoid lock convoys (a situation 
that can occur when multiple threads of the same priority are all waiting on a lock and no actual 
work gets done), and they are also self-optimizing: the list of threads waiting on a pushlock will be 
periodically rearranged to provide fairer behavior when the pushlock is released. 

Areas in which pushlocks are used include the object manager, where they protect global 
object manager data structures and object security descriptors, and the memory manager, where 
they protect Address Windowing Extension (AWE) data structures.  

Deadlock Detection with Driver Verifier 

A deadlock is a synchronization issue resulting from two threads or processors holding 
resources that the other wants and neither yielding what it has. This situation might result in 
system or process hangs. Driver Verifier, described in Chapter 7 and Chapter 9, has an option to 
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check for deadlocks involving spinlocks, fast mutexes, and mutexes. For information on when to 
enable Driver Verifier to help resolve system hangs, see Chapter 14. 

Critical Sections 

Critical sections are one of the main synchronization primitives that Windows provides to 
user-mode applications on top of the kernel-based synchronization primitives. Critical sections 
and the other user-mode primitives we’ll see later have one major advantage over their kernel 
counterparts, which is saving a round-trip to kernel mode in cases in which the lock is 
noncontended (which is typically 99% of the time or more). Contended cases will still require 
calling the kernel, however, because it is the only piece of the system that is able to perform the 
complex waking and dispatching logic required to make these objects work.  

Critical sections are able to remain in user mode by using a local bit to provide the main 
exclusive locking logic, much like a spinlock. If the bit is 0, the critical section can be acquired, 
and the owner sets the bit to 1. This operation doesn’t require calling the kernel but uses the 
interlocked CPU operations discussed earlier. Releasing the critical section behaves similarly, 
with bit state changing from 1 to 0 with an interlocked operation. On the other hand, as you can 
probably guess, when the bit is already 1 and another caller attempts to acquire the critical section, 
the kernel must be called to put the thread in a wait state.  

Critical sections also provide more fine-grained locking mechanisms than kernel primitives. 
A critical section can be acquired for shared or for exclusive mode, allowing it to function as a 
multiple-reader (shared), single-writer (exclusive) lock for data structures such as databases. 
When a critical section is acquired in shared mode and other threads attempt to acquire the same 
critical section, no trip to the kernel is required because none of the threads will be waiting. Only 
when a thread attempts to acquire the critical section for exclusive access, or the critical section is 
already locked by an exclusive owner, will this be required. 

To make use of the same dispatching and synchronization mechanism we’ve seen in the 
kernel, critical sections actually make use of existing kernel primitives. A critical section data 
structure actually contains a kernel mutex as well as a kernel semaphore object. When the critical 
section is acquired exclusively by more than one thread, the mutex is used because it permits only 
one owner. When the critical section is acquired in shared mode by more than one thread, a 
semaphore is used because it allows multiple owner counts. This level of detail is typically hidden 
from the programmer, and these internal objects should never be used directly. 

Finally, because critical sections are actually not full-blown kernel objects, they do have 
certain limitations. The primary one is that you cannot obtain a kernel handle to a critical section, 
and as such, no security, naming, or other object manager functionality can be applied to a critical 
section. Two processes cannot use the same critical section to coordinate their operations, nor can 
duplication or inheritance be used. 

Condition Variables 

Condition variables provide a Windows native implementation for synchronizing a set of 
threads that are waiting on a specific result to a conditional test. While this operation was possible 
with other user-mode synchronization methods, there was no atomic mechanism to check the 
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result of the conditional test and to begin waiting on a change in the result. This required that 
additional synchronization be used around such pieces of code. 

A user-mode thread initializes a condition variable by calling InitializeConditionVariable to 
set up the initial state. When it wants to initiate a wait on the variable, it can call 
SleepConditionVariableCS, which uses a critical section (that the thread must have initialized) to 
wait for changes to the variable. The setting thread must use WakeConditionVariable (or 
WakeAllConditionVariable) after it has modified the variable (there is no automatic detection 
mechanism). This call will release the critical section of either one or all waiting threads, 
depending on which function was used. 

Before condition variables, it was common to use either a notification event or a 
synchronization event (recall that these are referred to as auto-reset or manual-reset in the 
Windows API) to signal the change to a variable such as the state of a worker queue. Waiting for a 
change required a critical section to be acquired and then released, followed by a wait on an event. 
After the wait, the critical section would have to be re-acquired. During this series of acquisitions 
and releases, the thread may have switched contexts, causing problems if one of the threads called 
PulseEvent (a similar problem to the one that keyed events solve by forcing a wait for the setting 
thread if there is no waiter). With condition variables, acquisition of the critical section can be 
maintained by the application while SleepConditionVariableCS is called and be released only after 
the actual work is done. This makes writing work-queue code (and similar implementations) much 
simpler and predictable. 

Internally, conditional variables can be thought of as a port of the existing pushlock 
algorithms present in kernel mode, with the additional complexity of acquiring and releasing 
critical sections in the SleepConditionVariableCS API. Conditional variables are pointer-size (just 
like pushlocks), avoid using the dispatcher (which requires a ring transition to kernel mode in this 
scenario, making the advantage even more noticeable), automatically optimize the wait list during 
wait operations, and protect against lock convoys. Additionally, condition variables make full use 
of keyed events instead of the regular event object that developers would have used on their own, 
which makes even contended cases more optimized. 

Slim Reader Writer Locks 

Although condition variables are a synchronization mechanism, they are not fully primitive 
locking objects. As we’ve seen, they still depend on the critical section lock, whose acquisition 
and release uses standard dispatcher event objects, so trips through kernel mode can still happen 
and callers still require the initialization of the large critical section object. If condition variables 
share a lot of similarities with pushlocks, slim reader writer (SRW) locks are nearly identical. 
They are also pointer-size, use atomic operations for acquisition and release, rearrange their waiter 
lists, protect against lock convoys, and can be acquired both in shared and exclusive mode. Some 
differences from pushlocks, however, include the fact that SRW locks cannot be “upgraded” or 
converted from shared to exclusive or vice versa. Additionally, they cannot be recursively 
acquired. Finally, SRW locks are exclusive to user-mode code, while pushlocks are exclusive to 
kernel-mode code, and the two cannot be shared or exposed from one layer to the other. 
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Not only can SRW locks entirely replace critical sections in application code, but they also 
offer multiple-reader, single-writer functionality. SRW locks must first be initialized with 
InitializeSRWLock, after which they can be acquired or released in either exclusive or shared 
mode with the appropriate APIs: AcquireSRWLockExclusive, ReleaseSRWLockExclusive, 
AcquireSRWLockShared, and ReleaseSRWLockShared. 

Note Unlike most other Windows APIs, the SRW locking functions do not return with a 
value—instead they generate exceptions if the lock could not be acquired. This makes it obvious 
that an acquisition has failed so that code that assumes success will terminate instead of 
potentially proceeding to corrupt user data. 

The Windows SRW locks do not prefer readers or writers, meaning that the performance for 
either case should be the same. This makes them great replacements for critical sections, which 
are writer-only or exclusive synchronization mechanisms. If SRW locks were optimized for 
readers, they would be poor exclusive-only locks, but this isn’t the case. As a result, the design of 
the condition variable mechanism introduced earlier also allows for the use of SRW locks instead 
of critical sections, through the SleepConditionVariableSRW API. Finally, SRW locks also use 
keyed events instead of standard event objects, so the combination of condition variables and 
SRW locks results in scalable, pointer-size synchronization mechanisms with very few trips to 
kernel mode—except in contended cases, which are optimized to take less time and memory to 
wake and set because of the use of keyed events. 

Run Once Initialization 

The ability to guarantee the atomic execution of a piece of code responsible for performing 
some sort of initialization task—such as allocating memory, initializing certain variables, or even 
creating objects on demand—is a typical problem in multithreaded programming. In a piece of 
code that can be called simultaneously by multiple threads (a good example is the DllMain routine, 
which initializes DLLs) there are several ways of attempting to ensure the correct, atomic, and 
unique execution of initialization tasks. 

In this scenario, Windows implements init once, or one-time initialization (also called run 
once initialization internally). This mechanism allows for both synchronous (meaning that the 
other threads must wait for initialization to complete) execution of a certain piece of code, as well 
as asynchronous (meaning that the other threads can attempt to do their own initialization and race) 
execution. We’ll look at the logic behind asynchronous execution later after explaining the 
synchronous mechanism.  

In the synchronous case, the developer writes the piece of code that would normally have 
executed after double-checking the global variable in a dedicated function. Any information that 
this routine needs can be passed through the parameter variable that the init-once routine accepts. 
Any output information is returned through the context variable (the status of the initialization 
itself is returned as a Boolean). All the developer has to do to ensure proper execution is call 
InitOnceExecuteOnce with the parameter, context, and run-once function pointer after initializing 
an InitOnce object with InitOnceInitialize API. The system will take care of the rest. 

For applications that want to use the asynchronous model instead, the threads call 
InitOnceBeginInitialize and receive a pending status and the context described earlier. If the 
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pending status is FALSE, initialization has already taken place, and the thread uses the context 
value for the result. (It’s also possible for the function itself to return FALSE, meaning that 
initialization failed.) However, if the pending status comes back as TRUE, the thread should now 
race to be the first to create the object. The code that will follow will perform whatever 
initialization tasks are required, such as creating some sort of object or allocating memory. When 
this work is done, the thread calls InitOnceComplete with the result of the work as the context and 
receives a status. If the status is TRUE, the thread won the race, and the object it created or 
allocated should be the global object. The thread can now save this object or return it to a caller, 
depending on the usage.  

In a more complex scenario when the status is FALSE, this means that the thread lost the race. 
The thread must now undo all the work it did, such as deleting the object or freeing the memory, 
and then call InitOnceBeginInitialize again. However, instead of requesting to start a race as it did 
initially, it uses the INIT_ONCE_CHECK_ONLY flag, knowing that it has lost, and requests the 
winner’s context instead (for example, the object or memory that had to be created or allocated). 
This returns another status, which can be TRUE, meaning that the context is valid and should be 
used or returned to the caller, or FALSE, meaning that initialization failed and nobody has 
actually been able to perform the work (such as in the case of a lowmemory condition, perhaps). 

In both cases, the mechanism for run once initialization is similar to the mechanism for 
condition variables and slim reader writer locks. The init once structure is pointer-size, and inline 
assembly versions of the SRW acquisition/release code are used for the noncontended case, while 
keyed events are used when contention has occurred (which happens when the mechanism is used 
in synchronous mode) and the other threads must wait for initialization. In the asynchronous case, 
the locks are used in shared mode, so multiple threads can perform initialization at the same time. 

3.4 System Worker Threads 

During system initialization, Windows creates several threads in the System process, called 
system worker threads, which exist solely to perform work on behalf of other threads. In many 
cases, threads executing at DPC/dispatch level need to execute functions that can be performed 
only at a lower IRQL. For example, a DPC routine, which executes in an arbitrary thread context 
(because DPC execution can usurp any thread in the system) at DPC/dispatch level IRQL, might 
need to access paged pool or wait for a dispatcher object used to synchronize execution with an 
application thread. Because a DPC routine can’t lower the IRQL, it must pass such processing to a 
thread that executes at an IRQL below DPC/dispatch level. 

Some device drivers and executive components create their own threads dedicated to 
processing work at passive level; however, most use system worker threads instead, which avoids 
the unnecessary scheduling and memory overhead associated with having additional threads in the 
system. An executive component requests a system worker thread’s services by calling the 
executive functions ExQueueWorkItem or IoQueueWorkItem. Device drivers should only use the 
latter (because this associates the work item with a Device object, allowing for greater 
accountability and the handling of scenarios in which a driver unloads while its work item is 
active). These functions place a work item on a queue dispatcher object where the threads look for 
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work. (Queue dispatcher objects are described in more detail in the section “I/O Completion 
Ports” in Chapter 7.) 

The IoQueueWorkItemEx, IoSizeofWorkItem, IoInitializeWorkItem, and IoUninitialize- 
WorkItem APIs act similarly, but they create an association with a driver’s Driver object or one of 
its Device objects.  

Work items include a pointer to a routine and a parameter that the thread passes to the routine 
when it processes the work item. The device driver or executive component that requires 
passive-level execution implements the routine. For example, a DPC routine that must wait for a 
dispatcher object can initialize a work item that points to the routine in the driver that waits for the 
dispatcher object, and perhaps points to a pointer to the object. At some stage, a system worker 
thread will remove the work item from its queue and execute the driver’s routine. When the 
driver’s routine finishes, the system worker thread checks to see whether there are more work 
items to process. If there aren’t any more, the system worker thread blocks until a work item is 
placed on the queue. The DPC routine might or might not have finished executing when the 
system worker thread processes its work item. 

There are three types of system worker threads: 

■ Delayed worker threads execute at priority 12, process work items that aren’t considered 
time-critical, and can have their stack paged out to a paging file while they wait for work items. 
The object manager uses a delayed work item to perform deferred object deletion, which deletes 
kernel objects after they have been scheduled for freeing. 

■ Critical worker threads execute at priority 13, process time-critical work items, and on 
Windows Server systems have their stacks present in physical memory at all times.  

■ A single hypercritical worker thread executes at priority 15 and also keeps its stack in 
memory. The process manager uses the hypercritical work item to execute the thread “reaper” 
function that frees terminated threads. 

The number of delayed and critical worker threads created by the executive’s 
ExpWorker-Initialization function, which is called early in the boot process, depends on the 
amount of memory present on the system and whether the system is a server. Table 3-18 shows 
the initial number of threads created on default configurations. You can specify that 
ExpInitializeWorker create up to 16 additional delayed and 16 additional critical worker threads 
with the AdditionalDelayedWorkerThreads and AdditionalCriticalWorkerThreads values under 
the registry key  HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Executive. 

  



 198

The executive tries to match the number of critical worker threads with changing workloads 
as the system executes. Once every second, the executive function ExpWorkerThreadBalance- 
Manager determines whether it should create a new critical worker thread. The critical worker 
threads that are created by ExpWorkerThreadBalanceManager are called dynamic worker threads, 
and all the following conditions must be satisfied before such a thread is created: 

■ Work items exist in the critical work queue. 

■ The number of inactive critical worker threads (ones that are either blocked waiting for 
work items or that have blocked on dispatcher objects while executing a work routine) must be 
less than the number of processors on the system. 

■ There are fewer than 16 dynamic worker threads. 

Dynamic worker threads exit after 10 minutes of inactivity. Thus, when the workload dictates, 
the executive can create up to 16 dynamic worker threads. 

EXPERIMENT: Listing System Worker Threads 

You can use the !exqueue kernel debugger command to see a listing of system worker 
threads classified by their type: 

1. lkd> !exqueue   

2. Dumping ExWorkerQueue: 820FDE40  

3. **** Critical WorkQueue( current = 0 maximum = 2 )   

4. THREAD 861160b8 Cid 0004.001c Teb: 00000000 Win32Thread: 00000000 WAIT   

5. THREAD 8613b020 Cid 0004.0020 Teb: 00000000 Win32Thread: 00000000 WAIT   

6. THREAD 8613bd78 Cid 0004.0024 Teb: 00000000 Win32Thread: 00000000 WAIT   

7. THREAD 8613bad0 Cid 0004.0028 Teb: 00000000 Win32Thread: 00000000 WAIT   

8. THREAD 8613b828 Cid 0004.002c Teb: 00000000 Win32Thread: 00000000 WAIT   

9. **** Delayed WorkQueue( current = 0 maximum = 2 )   

10. THREAD 8613b580 Cid 0004.0030 Teb: 00000000 Win32Thread: 00000000 WAIT   

11. THREAD 8613b2d8 Cid 0004.0034 Teb: 00000000 Win32Thread: 00000000 WAIT   

12. THREAD 8613c020 Cid 0004.0038 Teb: 00000000 Win32Thread: 00000000 WAIT   

13. THREAD 8613cd78 Cid 0004.003c Teb: 00000000 Win32Thread: 00000000 WAIT   

14. THREAD 8613cad0 Cid 0004.0040 Teb: 00000000 Win32Thread: 00000000 WAIT   

15. THREAD 8613c828 Cid 0004.0044 Teb: 00000000 Win32Thread: 00000000 WAIT   

16. THREAD 8613c580 Cid 0004.0048 Teb: 00000000 Win32Thread: 00000000 WAIT   

17. **** HyperCritical WorkQueue( current = 0 maximum = 2 )   

18. THREAD 8613c2d8 Cid 0004.004c Teb: 00000000 Win32Thread: 00000000 WAIT  

3.5 Windows global Flags 

Windows has a set of flags stored in a systemwide global variable named NtGlobalFlag that 
enable various internal debugging, tracing, and validation support in the operating system. The 
system variable NtGlobalFlag is initialized from the registry key HKLM\SYSTEM 
\CurrentControlSet\Control\Session Manager in the value GlobalFlag at system boot time. By 
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default, this registry value is 0, so it’s likely that on your systems, you’re not using any global 
flags. In addition, each image has a set of global flags that also turn on internal tracing and 
validation code (although the bit layout of these flags is entirely different from the systemwide 
global flags). 

Fortunately, the Windows SDK and the debugging tools contain a utility named Gflags.exe 
that allows you to view and change the system global flags (either in the registry or in the running 
system) as well as image global flags. Gflags has both a command-line and a GUI interface. To 
see the command-line flags, type gflags /?. If you run the utility without any switches, the dialog 
box shown in Figure 3-25 is displayed. 

  

You can configure a variable’s settings in the registry on the System Registry page or the 
current value of a variable in system memory on the Kernel Flags page. You must click the Apply 
button to make the changes. (You’ll exit if you click the OK button.) 

The Image File page requires you to fill in the file name of an executable image. Use this 
option to change a set of global flags that apply to an individual image (rather than to the whole 
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system). In Figure 3-26, notice that the flags are different from the operating system ones shown 
in Figure 3-25. 

  

EXPERIMENT: Viewing and Setting NtGlobalFlag 

You can use the !gflag kernel debugger command to view and set the state of the 
NtGlobalFlag kernel variable. The !gflag command lists all the flags that are enabled. You can 
use !gflag -? to get the entire list of supported global flags. 

1. lkd> !gflag   

2. Current NtGlobalFlag contents: 0x00004400  

3. ptg - Enable pool tagging   

4. otl - Maintain a list of objects for each type  
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3.6 Advanced Local Procedure Calls (ALPCs) 

An advanced local procedure call (ALPC) is an interprocess communication facility for 
highspeed message passing. It is not directly available through the Windows API; it is an internal 
mechanism available only to Windows operating system components. Here are some examples of 
where ALPCs are used: 

■ Windows applications that use remote procedure calls (RPCs), a documented API, 
indirectly use ALPCs when they specify local-RPC, a form of RPC used to communicate between 
processes on the same system. 

■ A few Windows APIs result in sending messages to the Windows subsystem process. 

■ Winlogon uses ALPCs to communicate with the local security authentication server 
process, LSASS. 

■ The security reference monitor (an executive component explained in Chapter 6) uses 
ALPCs to communicate with the LSASS process. 

Note Before ALPCs were introduced in Windows Vista, the kernel supported an IPC 
mechanism called simply LPC (local procedure call). LPC’s scalability limitations and inherent 
deadlock scenarios made them a poor choice for the implementation of the User-Mode Driver 
Framework (UMDF), which requires high-speed, scalable communication with UMDF 
components in the executive to perform hardware operations. Supporting UMDF was one of the 
many reasons the ALPC mechanism was written to supplant LPC. (For more information on 
UMDF, see Chapter 7.) 

EXPERIMENT: Viewing ALPC Port Objects 

You can see named ALPC port objects with the WinObj tool from Sysinternals. Run 
Winobj.exe and select the root directory. A gear icon identifies the port objects, as shown here: 
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To see the ALPC port objects used by RPC, select the \RPC Control directory, as shown 
here: 
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    Typically, ALPCs are used between a server process and one or more client processes of that 
server. An ALPC connection can be established between two user-mode processes or between a 
kernel-mode component and a user-mode process. For example, as noted in Chapter 2, Windows 
processes send occasional messages to the Windows subsystem by using ALPCs. Also, some 
system processes use ALPCs to communicate, such as Winlogon and Lsass. 

An example of a kernel-mode component using an ALPC to talk to a user process is the 
communication between the security reference monitor and the Lsass process. 

ALPCs support the following three methods of exchanging messages: 

■ A message that is shorter than 256 bytes can be sent by calling the ALPC with a buffer 
containing the message. This message is then copied from the address space of the sending 
process into system address space, and from there to the address space of the receiving process. 

■ If a client and a server want to exchange more than 256 bytes of data, they can choose to 
use a shared section to which both are mapped. The sender places message data in the shared 
section and then sends a small message to the receiver with pointers to where the data is to be 
found in the shared section. 
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■ When a server wants to read or write larger amounts of data than will fit in a shared section, 
data can be directly read from or written to a client’s address space. An ALPC exports a single 
executive object called the port object to maintain the state needed for communication. Although 
an ALPC uses a single ALPC port object, it has several kinds of ports: 

■ Server connection port A named port that is a server connection request point. Clients can 
connect to the server by connecting to this port. 

■ Server communication port An unnamed port a server uses to communicate with a 
particular client. The server has one such port per active client. 

■ Client communication port An unnamed port a particular client thread uses to communicate 
with a particular server. 

ALPCs are typically used as follows: A server creates a named server connection port object. 
A client makes a connect request to this port. If the request is granted, two new unnamed ports, a 
client communication port and a server communication port, are created. The client gets a handle 
to the client communication port, and the server gets a handle to the server communication port. 
The client and the server will then use these new ports for their communication. 

ALPC supports several features and behaviors that offer communication abilities for 
processes. For example, applications can create their own sections to associate with an ALPC port 
and manage (create and delete) views of the section. As mentioned earlier, when a server wants to 
read or write larger amounts of data than will fit in a shared section, data can be directly read from 
or written to a client’s address space. The ALPC component supplies two functions that a server 
can use to accomplish this. A message sent by the first function is used to synchronize the 
message passing. Another option is to create a message zone, a lockeddown buffer in system 
memory that will never be paged out and allows messages to be copied back and forth without 
attaching to the correct process, which is useful when using the I/O completion port feature 
described later. Yet a third capability in terms of memory requirements is to request the kernel to 
reserve ALPC resources so that messages can still be delivered during low-memory situations 
(such messages may be critical to solving or notifying the kernel about the situation in the first 
place). 

From a throughput and performance point of view, ALPC ports can be configured to perform 
work over an I/O completion port instead of the typical request/reply synchronous wait 
mechanism that LPCs use. This allows for large-scale communication to occur, and the ALPC port 
object will automatically balance the number of messages and threads for highspeed 
communication. Additionally, ALPC messages can be batched together so that multiple replies 
and requests can be sent, minimizing trips from user to kernel mode and vice versa. Finally, apart 
from limits on message data and header size, applications can also set bandwidth limits and 
maximum section, view, and pool usage. 

The ALPC mechanism is also secured. ALPC objects are managed by the same object 
manager interfaces that manage object security, and secure ports can be created, allowing only a 
specific SID to use them. Applications can also easily get a handle to the sender thread (and 
process) of an ALPC message to perform actions such as impersonation. Furthermore, 
applications have fine control over the security context associated with an ALPC port—for 
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example, they can set and query per-message SID information, as well as test for changes in the 
security context of a token associated with the ALPC message.ALPC messages can be fully 
logged and traced to any thread participating in ALPC communications. Additionally, new Event 
Tracing for Windows (ETW) messages and logging can be enabled for IT administrators and 
troubleshooters to monitor ALPC messages. A completed connection between a client and a server 
is shown in Figure 3-27. 

 

3.7 Kernel event Tracing 

Various components of the Windows kernel and several core device drivers are instrumented 
to record trace data of their operations for use in system troubleshooting. They rely on a common 
infrastructure in the kernel that provides trace data to the user-mode Event Tracing for Windows 
(ETW) facility. An application that uses ETW falls into one or more of three categories: 

■ Controller A controller starts and stops logging sessions and manages buffer pools. 
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■ Provider A provider defines GUIDs (globally unique identifiers) for the event classes it can 
produce traces for and registers them with ETW. The provider accepts commands from a 
controller for starting and stopping traces of the event classes for which it’s responsible. 

■ Consumer A consumer selects one or more trace sessions for which it wants to read trace 
data. They can receive the events in buffers in real-time or in log files. 

Windows Server systems include several built-in providers in user mode, including ones for 
Active Directory, Kerberos, and Netlogon. ETW defines a logging session with the name NT 
Kernel Logger (also known as the kernel logger) for use by the kernel and core drivers. The 
provider for the NT Kernel Logger is implemented by the ETW code in Ntoskrnl.exe and by the 
core drivers sending traces. 

When a controller in user mode enables the kernel logger, the ETW library, which is 
implemented in \Windows\System32\Ntdll.dll, calls the NtTraceControl system call, telling the 
ETW code in the kernel which event classes the controller wants to start tracing. If file logging is 
configured (as opposed to in-memory logging to a buffer), the kernel creates a system thread in 
the system process that creates a log file. When the kernel receives trace events from the enabled 
trace sources, it records them to a buffer. If it was started, the file logging thread wakes up once 
per second to dump the contents of the buffers to the log file. 

Trace records generated for the kernel logger have a standard ETW trace event header, which 
records time stamp, process, and thread IDs, as well as information on what class of event the 
record corresponds to. Event classes can provide additional data specific to their events. For 
example, disk event class trace records indicate the operation type (read or write), disk number at 
which the operation is directed, and sector offset and length of the operation. 

The trace classes that can be enabled for the kernel logger and the component that generates 
each class include: 

■ Disk I/O Disk class driver 

■ File I/O File system drivers 

■ File I/O Completion File system drivers 

■ Hardware Configuration Plug and Play manager (See Chapter 7 for information on the Plug 
and Play manager.) 

■ Image Load/Unload The system image loader in the kernel 

■ Page Faults Memory manager (See Chapter 9 for more information on page faults.) 

■ Hard Page Faults Memory manager 

■ Process Create/Delete Process manager (See Chapter 5 for more information on the process 
manager.) 

■ Thread Create/Delete Process manager 

■ Registry Activity Configuration manager (See “The Registry” section in Chapter 4 for 
more information on the configuration manager.) 
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■ Network TCP/IP TCP/IP driver 

■ Process Counters Process manager 

■ Context Switches Kernel dispatcher 

■ Deferred Procedure Calls Kernel dispatcher 

■ Interrupts Kernel dispatcher 

■ System Calls Kernel dispatcher 

■ Sample Based Profiling Kernel dispatcher and HAL 

■ Driver Delays I/O manager 

■ ALPC Advanced local procedure call 

You can find more information on ETW and the kernel logger, including sample code for 
controllers and consumers, in the Windows SDK. 

EXPERIMENT: Tracing TCP/iP Activity with the Kernel Logger  

To enable the kernel logger and have it generate a log file of TCP/IP activity, follow these 
steps: 

1. Run the Reliability and Performance Monitor, and click on Data Collector Sets, User 
Defined. 

2. Right-click on User Defined, choose New, and select Data Collector Set.  

3. When prompted, enter a name for the data collector set (for example, experiment), and 
choose Create Manually (Advanced). 

4. In the dialog box that opens, select Create Data Logs, check Event Trace Data, and then 
click Next. In the Providers area, click Add, and locate Windows Kernel Trace. In the Properties 
list, select Keywords(Any), and then click Edit. 
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5. From this list, check only Net for Network TCP/IP, and then click OK. 
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6. Select a location to save the files. By default, this location is C:\Perflogs\experiment\, if 
this is how you named the data collector set. Click Next, and in the Run As edit box, enter the 
Administrator account name and set the password to match it. Click Finish. You should now see a 
window similar to the one shown here: 

  

7. Right-click on “experiment” (or whatever name you gave your data collector set), and then 
click Start. Now generate some network activity by opening a browser and visiting a Web site. 

8. Right-click on the data collector set node again, and then click Stop. 

9. Open a command prompt, and change to the C:\Perflogs\experiment\00001 directory (or 
the directory into which you specified that the trace log file be 

stored). 

10. Run tracerpt and pass it the name of the trace log file: tracerpt DataCollector01.etl –o 
dumpfile.csv –of CSV 

11. Open dumpfile.csv in Microsoft Excel or in a text editor. You should see TCP and/or 
UDP trace records like the following: 

1. TcpIp SendIPV4 0xFFFFFFFF 1.28663E+17 0 0 1992 1388 157.54.86.28           

 172.31.234.35 80 49414 646659 646661  

2. UdpIp RecvIPV4 0xFFFFFFFF 1.28663E+17 0 0 4 50 172.31.239.255  

172.31.233.110 137 137 0 0x0  

3. UdpIp RecvIPV4 0xFFFFFFFF 1.28663E+17 0 0 4 50 172.31.239.255  

172.31.234.162 137 137 0 0x0  

4. TcpIp RecvIPV4 0xFFFFFFFF 1.28663E+17 0 0 1992 1425 157.54.86.28  

172.31.234.35 80 49414 0 0x0  

5. TcpIp RecvIPV4 0xFFFFFFFF 1.28663E+17 0 0 1992 1380 157.54.86.28  
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172.31.234.35 80 49414 0 0x0  

6. TcpIp RecvIPV4 0xFFFFFFFF 1.28663E+17 0 0 1992 45 157.54.86.28  

172.31.234.35 80 49414 0 0x0  

7. TcpIp RecvIPV4 0xFFFFFFFF 1.28663E+17 0 0 1992 1415 157.54.86.28  

172.31.234.35 80 49414 0 0x0  

8. TcpIp RecvIPV4 0xFFFFFFFF 1.28663E+17 0 0 1992 740 157.54.86.28  

172.31.234. 

3.8 Wow64 

Wow64 (Win32 emulation on 64-bit Windows) refers to the software that permits the 
execution of 32-bit x86 applications on 64-bit Windows. It is implemented as a set of user-mode 
DLLs: 

■ Wow64.dll: Manages process and thread creation, and hooks exception dispatching and 
base system calls exported by Ntoskrnl.exe. It also implements file system redirection and registry 
redirection and reflection. 

■ Wow64Cpu.dll: Manages the 32-bit CPU context of each running thread inside Wow64 
and provides processor architecture-specific support for switching CPU mode from 32-bit to 
64-bit and vice versa. 

■ Wow64Win.dll: Intercepts the GUI system calls exported by Win32k.sys.  

■ IA32Exec.bin and Wowia32x.dll on IA64 systems: Contain the IA-32 software emulator 
and its interface library. Because Itanium processors cannot natively execute x86 32-bit 
instructions, software emulation is required through the use of these two additional components. 

The relationship of these DLLs is shown in Figure 3-28. 
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3.8.1 Wow64 Process Address Space Layout 

Wow64 processes may run with 2 GB or 4 GB of virtual space. If the image header has the 
large address aware flag set, then the memory manager will reserve the user-mode address space 
above the 4 GB boundary through the end of the user-mode boundary. If the image is not marked 
large address space aware, the memory manager will reserve the user-mode address space above 2 
GB. (For more information on large address space support, see the section “x86 User Address 
Space Layouts” in Chapter 9.) 

3.8.2 System Calls 

Wow64 hooks all the code paths where 32-bit code would transition to the native 64-bit 
system or when the native system needs to call into 32-bit user-mode code. During process 
creation, the process manager maps into the process address space the native 64-bit Ntdll.dll, as 
well as the 32-bit Ntdll.dll for Wow64 processes. When the loader initialization is called, it calls 
the Wow64 initialization code inside Wow64.dll. Wow64 then sets up the startup context inside 
Ntdll, switches the CPU mode to 32-bits, and starts executing the 32-bit loader. From this point 
onward, execution continues as if the process is running on a native 32-bit system.  

Special 32-bit versions of Ntdll.dll, User32.dll, and Gdi32.dll are located in the \Windows\ 
Syswow64 folder. These call into Wow64 rather than issuing the native 32-bit system call 
instruction. Wow64 transitions to native 64-bit mode, captures the parameters associated with the 
system call (converting 32-bit pointers to 64-bit pointers), and issues the corresponding native 
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64-bit system call. When the native system call returns, Wow64 converts any output parameters if 
necessary from 64-bit to 32-bit formats before returning to 32-bit mode. 

3.8.3 Exception Dispatching  

Wow64 hooks exception dispatching through Ntdll’s KiUserExceptionDispatcher. Whenever 
the 64-bit kernel is about to dispatch an exception to a Wow64 process, Wow64 captures the 
native exception and context record in user mode and then prepares a 32-bit exception and context 
record and dispatches it the same way the native 32-bit kernel would do.  

3.8.4 User Callbacks 

Wow64 intercepts all callbacks from the kernel into user mode. Wow64 treats such calls as 
system calls; however, the data conversion is done in the reverse order: input parameters are 
converted from 64 bits to 32 bits and output parameters are converted when the callback returns 
from 32 bits to 64 bits. 

3.8.5 File System Redirection 

To maintain application compatibility and to reduce the effort of porting applications from 
Win32 to 64-bit Windows, system directory names were kept the same. Therefore, the 
\Windows\System32 folder contains native 64-bit images. Wow64, as it hooks all the system calls, 
translates all the path-related APIs and replaces the path name of the \Windows\System32 folder 
with \Windows\Syswow64. Wow64 also redirects \Windows\LastGood to \Windows\LastGood 
\syswow64 and \Windows\Regedit.exe to \Windows\syswow64\Regedit.exe. Through the use of 
system environment variables, the %PROGRAMFILES% variable is also set to \Program Files 
(x86) for 32-bit applications, while it is set to the normal \Program Files folder for 64-bit 
applications. 

Note Because certain 32-bit applications may indeed be aware and able to deal with 64-bit 
images, a virtual directory, \Windows\Sysnative, allows any I/Os originating from a 32-bit 
application to this directory to be exempted from file redirection. This directory doesn’t actually 
exist—it is a virtual path that allows access to the real System32 directory, even from an 
application running under Wow64. 

There are a few subdirectories of \Windows\System32 that, for compatibility reasons, are 
exempted from being redirected such that accesses to them made by 32-bit applications actually 
access the real one. These directories include: 

■ %windir%\system32\drivers\etc 

■ %windir%\system32\spool 

■ %windir%\system32\catroot and %windir%\system32\catroot2 
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■ %windir%\system32\logfiles 

Finally, Wow64 provides a mechanism to control the file system redirection built into 
Wow64 on a per-thread basis through the Wow64DisableWow64FsRedirection and 
Wow64RevertWow64FsRedirection functions. 

3.8.6 Registry Redirection and Reflection 

Applications and components store their configuration data in the registry. Components 
usually write their configuration data in the registry when they are registered during installation. If 
the same component is installed and registered both as a 32-bit binary and a 64-bit binary, then the 
last component being registered will override the registration of the previous component as they 
both write to the same location in the registry. 

To help solve this problem transparently without introducing any code changes to 32-bit 
components, the registry is split into two portions: Native and Wow64. By default, 32-bit 
components access the 32-bit view, and 64-bit components access the 64-bit view. This provides a 
safe execution environment for 32-bit and 64-bit components and separates the 32-bit application 
state from the 64-bit one if it exists. 

To implement this, Wow64 intercepts all the system calls that open registry keys and 
retranslates the key path to point it to the Wow64 view of the registry. Wow64 splits the registry 
at these points: 

■ HKLM\SOFTWARE 

■ HKEY_CLASSES_ROOT 

Under each of these keys, Wow64 creates a key called Wow6432Node. Under this key 
isstored 32-bit configuration information. All other portions of the registry are shared between 
32-bit and 64-bit applications (for example, HKLM\SYSTEM). For applications that need to 
explicitly specify a registry key for a certain view, the following flags on the RegOpenKeyEx, 
RegCreateKeyEx, and RegDeleteKeyEx functions permit this: 

■ KEY_WOW64_64KEY – explicitly opens a 64-bit key from either a 32-bit or 64-bit 
application 

■■ KEY_WOW64_32KEY – explicitly opens a 32-bit key from either a 32-bit or 64-bit 
application 

To enable interoperability through 32-bit and 64-bit COM components, Wow64 mirrors 
certain portions of the registry when updated in one view to the other. It does this by intercepting 
updates to any of the reflected keys and mirroring the changes intelligently to the other view of the 
registry. The list of reflected keys is:  

■ HKEY_LOCAL_MACHINE\SOFTWARE\Classes (except the Installer subkey) 

■ HKEY_LOCAL_MACHINE\SOFTWARE\Ole 

■ HKEY_LOCAL_MACHINE\SOFTWARE\Rpc 
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■ HKEY_LOCAL_MACHINE\SOFTWARE\COM3 

■ HKEY_LOCAL_MACHINE\SOFTWARE\EventSystem 

Reflection of HKLM\SOFTWARE\Classes\CLSID is intelligent; only LocalServer32 
CLSIDs are reflected because they run out of process, thus they can be COM-activated by 32-bit 
or 64-bit applications. However, InProcServer32 CLSIDs are not reflected because 32-bit COM 
DLLs can’t be loaded in a 64-bit process, and likewise 64-bit COM DLLs can’t be loaded in a 
32-bit process. 

When reflecting a key/value, the registry reflector marks the key so that it understands that it 
has been created by the reflector. This is to help the deletion case when deleting a key that has 
been reflected; thus the reflector will be able to tell if it needs to delete the reflected key if it has 
been written by the reflector. 

3.8.7  I/O Control Requests 

Besides normal read and write operations, applications can communicate with some device 
drivers through device I/O control functions using the Windows DeviceIoControlFile API. The 
application may specify an input and/or output buffer along with the call. If the buffer contains 
pointer-dependent data, and the process sending the control request is a Wow64 process, then the 
view of the input and/or output structure is different between the 32-bit application and the 64-bit 
driver, since pointers are 4 bytes for 32-bit applications and 8 bytes for 64-bit applications. In this 
case, the kernel driver is expected to convert the associated pointer-dependent structures. Drivers 
can call the IoIs32bitProcess function to detect if an I/O request originated from a Wow64 process 
or not.  

3.8.8 16-Bit Installer Applications 

Wow64 doesn’t support running 16-bit applications. However, since many application 
installers are 16-bit programs, Wow64 has special case code to make references to certain 
wellknown 16-bit installers work. These installers include: 

■ Microsoft ACME Setup version: 2.6, 3.0, 3.01, and 3.1. 

■ InstallShield version 5.x (where x is any minor version number). 

Whenever a 16-bit process is about to be created using the CreateProcess() API, Ntvdm64.dll 
is loaded and control is transferred to it to inspect whether the 16-bit executable is one of the 
supported installers. If it is, another CreateProcess is issued to launch a 32-bit version of the 
installer with the same command-line arguments.  

3.8.9  Printing 
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32-bit printer drivers cannot be used on 64-bit Windows. Print drivers must be ported to 
native 64-bit versions. However, since printer drivers run in the user-mode address space of the 
requesting process, and since only native 64-bit printer drivers are supported on 64-bit Windows, a 
special mechanism is needed to support printing from 32-bit processes. This is done by redirecting 
all printing functions to Splwow64.exe, the Wow64 RPC print server. Since Splwow64 is a 64-bit 
process, it can load 64-bit printer drivers.  

3.8.10  Restrictions 

Wow64 does not support the execution of 16-bit applications (this is supported on 32-bit 
versions of Windows) or the loading of 32-bit kernel-mode device drivers (they must be ported to 
native 64-bits). Wow64 processes can only load 32-bit DLLs and can’t load native 64-bit DLLs. 
Likewise, native 64-bit processes can’t load 32-bit DLLs. The one exception is the ability to load 
resource-only DLLs cross-architecture, which is allowed because those DLLs only contain 
resource data, not code. 

In addition to the above, due to page size differences, Wow64 on IA64 systems does not 
support the ReadFileScatter, WriteFileGather, GetWriteWatch, or AWE functions. Also, hardware 
acceleration through DirectX is not available (software emulation is provided for Wow64 
processes). 

3.9 user-Mode Debugging 

Support for user-mode debugging is split into three different modules. The first one is located in 
the executive itself and has the prefix dbgk, which stands for debugging framework. It provides 
the necessary internal functions for registering and listening for debug events, managing the debug 
object, and packaging the information for consumption by its usermode counterpart. The 
user-mode component that talks directly to dbgk is located in the native system library, Ntdll.dll, 
under a set of APIs that begin with the prefix DbgUi. These APIs are responsible for wrapping the 
underlying debug object implementation (which is opaque) and allow all subsystem applications 
to use debugging by wrapping their own APIs around the DbgUi implementation. Finally, the 
third component in user-mode debugging belongs to the subsystem DLLs. It is the exposed, 
documented API (located in Kernel32.dll for the Windows subsystem) that each subsystem 
supports for performing debugging of other applications. 

3.9.1 Kernel Support 

The kernel supports user-mode debugging through an object mentioned earlier, the debug 
object. It provides a series of system calls, most of which map directly to the Windows debugging 
API, typically accessed through the DbgUi layer first. The debug object itself is a simple construct, 
composed of a series of flags that determine state, an event to notify any waiters that debugger 
events are present, a doubly linked list of debug events waiting to be processed, and a fast mutex 
used for locking the object. This is all the information that the kernel requires for successfully 
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receiving and sending debugger events, and each debugged process has a debug port member in its 
structure pointing to this debug object.. Once a process has an associated debug port, a couple of 
different events can cause a debug event to be inserted into the list of events. Table 3-19 describes 
these events. 

 

 

  

Apart from the causes mentioned in the table, there are a couple of special triggering cases 
outside the regular scenarios that occur at the time a debugger object first becomes associated with 
a process. The first create process and create thread messages will be manually sent when the 
debugger is attached, first for the process itself and its main thread, followed by create thread 
messages for all the other threads in the process. Finally, load dll events for the executable being 
debugged (Ntdll.dll) and then all the current DLLs loaded in the debugged process will be sent.       
Once a debugger object has been associated with a process, all the threads in the process are 
suspended. At this point, it is the debugger’s responsibility to start requesting that debug events be 
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sent through. Debuggers request that debug events be sent back to user mode by performing a wait 
on the debug object. This call will loop the list of debug events. As each request is removed from 
the list, its contents are converted from the internal dbgk structure to the native structure that the 
next layer up understands. As we’ll see, this structure is different from the Win32 structure as well, 
and another layer of conversion has to occur. Even after all pending debug messages have been 
processed by the debugger, the kernel will not automatically resume the process. It is the 
debugger’s responsibility to call the ContinueDebugEvent function to resume execution. Apart 
from some more complex handling of certain multithreading issues, the basic model for the 
framework is a simple matter of producers—code in the kernel that generates the debug events in 
the previous table—and consumers—the debugger waiting on these events and acknowledging 
their receipt.  

3.9.2 Native Support 

Although the basic protocol for user-mode debugging is quite simple, it’s not directly usable 
by Windows applications—instead, it’s wrapped by the DbgUi functions in Ntdll.dll. This 
abstraction is required to allow native applications, as well as different subsystems, to use these 
routines (because code inside Ntdll.dll has no dependencies). The functions that this component 
provides are mostly analogous to the Windows API functions and related system 
calls. Internally the code also provides the functionality required to create a debug object 
associated with the thread. The handle to a debug object that is created is never exposed. It is 
saved instead in the thread environment block (TEB) of the debugger’s thread that is performing 
the attachment. (For more information on the TEB, see Chapter 5.) This value is saved in 
DbgSsReserved[1]. When a debugger attaches to a process, it expects the process to be broken 
into—that is to say, an int 3 (breakpoint) operation should have happened, generated by a thread 
injected into the process; otherwise, the debugger would never actually be able to take control of 
the process and would merely see debug events flying by. Ntdll.dll is responsible for creating and 
injecting that thread into the target process. Finally, Ntdll.dll also provides APIs to convert the 
native structure for debug events into the structure that the Windows API understands. 
EXPERIMENT: Viewing Debugger Objects  
  Although we’ve been using WinDbg to do kernel-mode debugging, you can also use it to debug 
user-mode programs. Go ahead and try starting Notepad.exe with the debugger attached using 
these steps: 
1. Run WinDbg, and then click File, Open Executable. 
2. Navigate to the \Windows\System32\ directory, and choose Notepad.exe. 
3. We’re not going to do any debugging, so simply ignore whatever might come up. 

 You can type g in the command window to instruct WinDbg to continue executing Notepad. 
Now run Process Explorer, and be sure the lower pane is enabled and configured to show open 
handles. (Click on View, Lower Pane View, and then Handles.) We also want to look at unnamed 
handles, so click on View, Show Unnamed Handles And Mappings. Now click on the Windbg.exe 
process, and look at its handle table. You should see an open, unnamed handle to a debug object. 
(You can organize the table by Type to find this entry more readily.) You should see information 
something like the following:  
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You can try right-clicking on the handle and closing it. Notepad should disappear, and the 
following message should appear in WinDbg: ERROR: WaitForEvent failed, NTSTATUS 
0xC0000354 This usually indicates that the debuggee has been killed out from underneath the 
debugger.  

You can use .tlist to see if the debuggee still exists. WaitForEvent failed. In fact, if you look 
at the description for the NTSTATUS code given, you will find the text: “An attempt to do an 
operation on a debug port failed because the port is in the process of being deleted,” which is 
exactly what we’ve done by closing the handle. As you can see, the native DbgUi interface 
doesn’t do much work to support the framework except for this abstraction. In fact, the most 
complicated task it does is the conversion between native and Win32 debugger structures. This 
involves several additional changes to the structures.  

3.9.3 Windows Subsystem Support  

The final component responsible for allowing debuggers such as Microsoft Visual Studio or 
WinDbg to debug user-mode applications is in Kernel32.dll. It provides the documented.Windows 
APIs enumerated at the beginning of our discussion. Apart from this trivial conversion of one 
function name to another, there is one important management job that this side of the debugging 
infrastructure is responsible for: managing the duplicated file and thread handles. Recall that each 
time a load DLL event is sent, a handle to the image file is duplicated by the kernel and handed off 
in the event structure, as is the case with the handle to the process executable during the create 
process event. During each wait call, Kernel32.dll checks whether this is an event that results in 
new duplicated process and/or thread handles from the kernel (the two create events). If so, it 
allocates a structure in which it stores the process ID, thread ID, and the thread and/or process 
handle associated with the event. This structure is linked into the first DbgSsReserved array index 
in the TEB, where we mentioned the debug object handle is stored. Likewise, Kernel32.dll will 
also check for exit events. When it detects such an event, it will “mark” the handles in the data 
structure.  

Once the debugger is finished using the handles and performs the continue call, Kernel32.dll 
will parse these structures, look for any handles whose threads have exited, and close the handles 
for the debugger. Otherwise, those threads and processes would actually never exit, because there 
would always be open handles to them as long as the debugger was running. 

3.10 Image Loader 

When a process is started on the system, the kernel creates a process object to represent it 
(see Chapter 5 for more information on processes) and performs various kernel-related 
initialization tasks. However, these tasks do not result in the execution of the application but 
merely in the preparation of its context and environment. In fact, unlike drivers, which are 
kernel-mode code, applications execute in user mode, so most of the actual initialization work is 
done outside the kernel. This work is performed by the image loader, also internally referred as 
Ldr.  
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The image loader lives in the user-mode system DLL Ntdll.dll and not in the kernel library. 
Therefore, it behaves just like standard code that is part of a DLL, and it is subject to the same 
restrictions in terms of memory access and security rights. What makes this code special is the 
guaranty that it will always be present in the running process (Ntdll.dll is always loaded) and that 
it is the first piece of code to run in user mode as part of a new application. (When the system 
builds the initial context, the program counter, or instruction pointer, is set to an initialization 
function inside Ntdll.dll. See Chapter 5 for more information.) 

Because the loader runs before the actual application code, it is usually invisible to users and 
developers. Additionally, although the loader’s initialization tasks are hidden, a program typically 
does interact with its interfaces during the run time of a program—for example, whenever loading 
or unloading a DLL or querying the base address of one. Some of the main tasks the loader is 
responsible for include: 

■ Initializing the user-mode state for the application, such as creating the initial heap and 
etting up the thread local storage (TLS) and fiber local storage (FLS) slots 

■ Parsing the import table (IAT) of the application to look for all DLLs that it requires (and 
hen recursively parsing the IAT of each DLL), followed by parsing the export table of he DLLs to 
make sure the function is actually present (Special forwarder entries can also edirect an export to 
yet another DLL.) 

■ Loading and unloading DLLs at run time, as well as on demand, and maintaining a list f all 
loaded modules (the module database) 

■ Allowing for run-time patching (called hotpatching) support, explained later in the hapter 

■ Handling manifest files 

■ Reading the application compatibility database for any shims, and loading the shim ngine 
DLL if required 

As you can see, most of these tasks are critical to enabling an application to actually run its 
code; otherwise, everything from calling external functions to using the heap would immediately 
fail. After the process has been created, the loader will call a special native API to continue 
execution based on a context frame located on the stack. This context frame, built by the kernel, 
will contain the actual entry point of the application. Therefore, because the loader doesn’t use a 
standard call or jump into the running application, you will never see the loader initialization 
functions as part of the call tree in a stack trace for a thread.  

EXPERIMENT: Watching the image Loader 

In this experiment, we’re going to use global flags to enable a debugging feature called 
loader snaps. This will allow us to see debug output from the image loader while debugging 
application startup. 

1. From the directory where you’ve installed WinDbg, launch the Gflags.exe application, and 
then click on the Image File tab. 

2. In the Image field, type Notepad.exe, and then press the Tab key. This should enable the 
check boxes. Check the Show Loader Snaps option, and then click OK to dismiss the dialog box. 
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3. Now follow the steps in the experiment “Viewing Debugger Options” to start debugging 
the Notepad.exe application. 

4. You should now see a couple of screens of debug information similar to that shown here: 

1.    0924:0248 @ 116983652 - LdrpInitializeProcess - INFO:             

       Initializing process 0x924  

2.     0924:0248 @ 116983652 - LdrpInitializeProcess - INFO:  

       Beginning execution of notepad.exe (C:\Windows\notepad.exe)   

3.    0924:0248 @ 116983652 - LdrpLoadDll - INFO: Loading DLL  

       "kernel32.dll" from path   

4.     C:\Windows;C:\Windows\system32;C:\Windows\system;    

C:\Windows; 

5.     0924:0248 @ 116983652 - LdrpMapDll - INFO:  

       Mapped DLL "kernel32.dll" at address  76BD000  

6.     0924:0248 @ 116983652 - LdrGetProcedureAddressEx - INFO: 

       Locating procedure  "BaseThreadInitThunk"   by name 

7.     0924:0248 @ 116983652 - LdrpRunInitializeRoutines - INFO: 

       Calling init routine   

8.     76C14592 for DLL "C:\Windows\system32\kernel32.dll"  

9.     0924:0248 @ 116983652 - LdrGetProcedureAddressEx - INFO:  

       Locating procedure "BaseQueryModuleData" by name 

5. Eventually, the debugger will break somewhere inside the loader code, at a special place 
where the image loader checks whether a debugger is attached and fires a breakpoint. If you press 
the G key to continue execution, you will see even more messages from the loader, and Notepad 
will appear.  

6. Try interacting with Notepad and see how certain operations will invoke the loader. A 
good experiment is to try opening the Save/Open dialog. This will demonstrate that the loader not 
only runs at startup, but continuously responds to user requests that can cause delayed loads of 
other modules (which can then be unloaded after use). 

3.10.1 Early Process Initialization 

Because the loader is present in Ntdll.dll, which is a native DLL that’s not attached to any 
subsystem, all applications on a Windows machine will be subject to the same loader behavior 
(with some minor differences). In Chapter 5, we’ll look in detail at the steps that lead to the 
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creation of a process in kernel mode, as well as some of the work performed by the Windows 
function CreateProcess. Here, however, we will cover the work that takes place in user mode, 
independent of any subsystem, as soon as the first user-mode instruction starts execution. Here are 
some of the main steps performed by the loader when a process starts up. The loader will:  

1. Build the image path name for the application and query the Image File Execution Options 
key for the application. 

2. Look inside the executable’s header to see whether it is a .NET application (specified by 
the presence of a .NET-specific image directory). 

3. Initialize the National Language Support (NLS for internationalization) tables for the 
process. 

4. Load any configuration options specified in the configuration directory of the image 
executable’s header. This image directory contains settings for the behavior of the executable, 
which a developer can define when compiling the application. 

5. Set the affinity mask if one was specified in the image header. 

6. Set up support for fiber local storage (FLS) and thread local storage (TLS). 

7. Initialize the heap manager for the current process and create the first process heap. 

8. Allocate an SxS (Side-by-Side Assembly)/Fusion activation context for the process. This 
allows the system to use the appropriate DLL version file, instead of defaulting to the DLL that 
shipped with the operating system. (See Chapter 5 for more information.) 

9. Open the \KnownDlls object directory and build the known DLL path.  

10. Figure out the current directory and the default path (used when loading images). 

11. Build the first loader data table entries for the application executable and Ntdll.dll, and 
insert them into the module database. 

At this point, the image loader is ready to start parsing the import table of the executable 
belonging to the application and start loading any DLLs that were dynamically linked during the 
compilation of the application. Because each imported DLL can also have its own import table, 
this operation will continue recursively until all DLLs have been satisfied and all functions to be 
imported have been found. As each DLL is loaded, the loader will keep state information for it 
and build the module database. 

3.10.2 Loaded Module Database 

Just as the kernel maintains a list of all kernel-mode drivers that have been loaded, the loader 
also maintains a list of all modules (DLLs as well as the primary executable) that have been 
loaded by a process. This information is stored in a per-process structure called the Process 
Environment Block, or PEB (see Chapter 5 for a full description of the PEB), namely in a 
substructure identified by Ldr and called PEB_LDR_DATA. In the structure, the loader maintains 
three doubly linked lists, all containing the same information but ordered differently (either by 
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load order, memory location, or initialization order). These lists contain structures called loader 
data table entries (LDR_DATA_TABLE_ENTRY) that store information about each module. 
Table 3-20 lists the various pieces of information the loader maintains in an entry.  

    One way to look at a process’s loader database is to use WinDbg and its formatted output of 
the PEB. The next experiment shows you how to do this and how to look at the LDR_DATA_ 
TABLE_ENTRY structures on your own. 

EXPERIMENT: Dumping the Loaded Modules Database 

Before starting the experiment, perform the same steps as in the previous two experiments to 
launch Notepad.exe with WinDbg as the debugger. When you get to the first prompt (where 
you’ve been instructed to type g until now), follow these instructions:  

1. You can look at the PEB of the current process with the !peb command. For now, we’re 
only interested in the Ldr data that will be displayed. (See Chapter 5 for details about other 
information stored in the PEB.) 

1. 0:001> !peb   

2. PEB at 7ffde000  
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3. InheritedAddressSpace: No   

4. ReadImageFileExecOptions: No   

5. BeingDebugged: Yes   

6. ImageBaseAddress: 00d80000  

7. Ldr 76fd4cc0  

8. Ldr.Initialized: Yes   

9. Ldr.InInitializationOrderModuleList: 001c1d78 . 001d9830  

10. Ldr.InLoadOrderModuleList: 001c1cf8 . 001d9820  

11. Ldr.InMemoryOrderModuleList: 001c1d00 . 001d9828  

12. Base TimeStamp Module   

13. d80000 47918ea2 Jan 19 00:46:10 2008 C:\Windows\notepad.exe   

14. 76f10000 4791a7a6 Jan 19 02:32:54 2008 C:\Windows\system32\ntdll.dll   

15. 76bd0000 4791a76d Jan 19 02:31:57 2008 C:\Windows\system32\kernel32.dll   

16. 76b00000 4791a64b Jan 19 02:27:07 2008 C:\Windows\system32\ADVAPI32.dll   

17. 75950000 4791a751 Jan 19 02:31:29 2008 C:\Windows\system32\RPCRT4.dll  

2. The address shown on the Ldr line is a pointer to the PEB_LDR_DATA structure 
described earlier. Notice that WinDbg shows you the address of the three lists and dumps the 
initialization order list for you, displaying the full path, time stamp, and base address of each 
module. 

3. You can also analyze each module entry on its own by going through the module list and 
then dumping the data at each address, formatted as a LDR_DATA_TABLE_ENTRY structure. 
Instead of doing this for each entry, however, WinDbg can do most of the work by using the !list 
extension and the following syntax:  

1. !list –t ntdll!_LiST_eNTrY.Flink –x "dt ntdll!_LDr_DATA_TAbLe_eNTrY 

  

2. @$extret\" 001c1cf8  

Note that the last number is variable: it depends on whatever is shown on your machine under 
Ldr.InLoadOrderModuleList. 

4. You should then see the actual entries for each module: 

1. 0:001> !list -t ntdll!_LIST_ENTRY.Flink -x "dt  

ntdll!_LDR_DATA_TABLE_ENTRY   

2. @$extret\" 001c1cf8  

3. +0x000 InLoadOrderLinks : _LIST_ENTRY [ 0x1c1d68 - 0x76fd4ccc ]   

4. +0x008 InMemoryOrderLinks : _LIST_ENTRY [ 0x1c1d70 - 0x76fd4cd4 ]   

5. +0x010 InInitializationOrderLinks : _LIST_ENTRY [ 0x0 - 0x0 ]   

6. +0x018 DllBase : 0x00d80000  

7. +0x01c EntryPoint : 0x00d831ed   

8. +0x020 SizeOfImage : 0x28000  

9. +0x024 FullDllName : _UNICODE_STRING "C:\Windows\notepad.exe"  

10. +0x02c BaseDllName : _UNICODE_STRING "notepad.exe"  

11. +0x034 Flags : 0x4010  
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Looking at the list in this raw format gives you some extra insight into the loader’s internals, 
such as the flags field, which contains state information that !peb on its own would not show you. 
See Table 3-21 for their meaning.  

 

3.10.3 Import Parsing 

Now that we’ve explained the way the loader keeps track of all the modules loaded for a 
process, we can continue analyzing the startup initialization tasks performed by the loader. During 
this step, the loader will: 

1. Load each DLL referenced in the import table of the process’s executable image. 

2. Check whether the DLL has already been loaded by checking the module database. If it 
doesn’t find it in the list, the loader will open the DLL and map it into memory. 

3. During the mapping operation, the loader will first look at the various paths where it 
should attempt to find this DLL, as well as whether this DLL is a “known DLL,” meaning that the 
system has already loaded it at startup and provided a global memory mapped file for accessing it. 
Certain deviations from the standard lookup algorithm can also occur, either through the use of 
a .local file (which forces the loader to use DLLs in the local path) or through a manifest file, 
which can specify a redirected DLL to use to guarantee a specific version. 
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4. After the DLL has been found on disk and mapped, the loader checks whether the kernel 
has loaded it somewhere else—this is called relocation. If the loader detects relocation, it will 
parse the relocation information in the DLL and perform the operations required. If no relocation 
information is present, DLL loading will fail.  

5. The loader will then create a loader data table entry for this DLL and insert it into the 
database. 

6. After a DLL has been mapped, the process is repeated for this DLL to parse its import 
table and all its dependencies. 

7. After each DLL is loaded, the loader parses the IAT to look for specific functions that are 
being imported. Usually this is done by name, but it can also be done by ordinal (an index 
number). For each name, the loader parses the export table of the imported DLL and tries to locate 
a match. If no match is found, the operation is aborted.  

8. The import table of an image can also be bound. This means that at link time, the 
developers already assigned static addresses pointing to imported functions in external DLLs. This 
removes the need to do the lookup for each name, but it assumes that the DLLs the application 
will use will always be located at the same address. Because Windows uses address space 
randomization (see Chapter 9 for more information on Address Space Load Randomization, or 
ASLR), this is usually not the case for system applications and libraries. 

9. The export table of an imported DLL can use a forwarder entry, meaning that the actual 
function is implemented in another DLL. Essentially this must be treated like an import or 
dependency, so after parsing the export table, each DLL referenced by a forwarder is also loaded 
and goes back to step 1. 

After all imported DLLs (and their own dependencies, or imports) have been loaded, all the 
required imported functions have been looked up and found, and all forwarders also loaded and 
processed, the step is complete: all dependencies that were defined at compile time by the 
application and its various DLLs have now been fulfilled. During execution, delayed dependencies 
(called delay load), as well as run-time operations (such as calling LoadLibrary) can call into the 
loader and essentially repeat the same tasks. Note, however, that a failure in these steps will result 
in an error launching the application if they are done during process startup. For example, 
attempting to run an application that requires a function that isn’t present in the current version of 
the operating system can result in a message similar to the one in Figure 3-29. 

  

Figure 3-29 Dialog box shown when a required (imported) function is not present in a DLL 
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3.10.4 Post Import Process Initialization 

After the required dependencies have been loaded, there are several initialization tasks that 
must be performed to fully finalize launching the application. In this step, the loader will:  

1. Check if the application itself requires relocation and process the relocation entries for the 
application. If the application cannot be relocated, or does not have relocation information, the 
loading will fail. 

2. Check if the application makes use of TLS and look in the application executable for the 
TLS entries it needs to allocate and configure. 

3. At this point, the initial debugger breakpoint will be hit when using a debugger such as 
WinDbg. This is where you had to type “go” to continue execution in the earlier experiments. 

4. Make sure that the application will be able to run properly if the system is a multiprocessor 
system. 

5. Set up the default data execution prevention (DEP) options. (See Chapter 9 for more 
information on DEP.) 

6. Check whether this application requires any application compatibility work, and load the 
shim engine if required. 

7. Detect if this application is protected by SecuROM, SafeDisc, and other kinds of wrapper 
or protection utilities that could have issues with DEP (and reconfigure DEP settings in those 
cases). 

8. Run the initializers for all the loaded modules. 

Running the initializers is the last main step in the loader’s work. This is the step that will 
call the DllMain routine for each DLL (allowing each DLL to perform its own initialization work, 
which may even include loading new DLLs at run time) as well as process the TLS initializers of 
each DLL. This is one of the last steps in which loading an application can fail. If all the loaded 
DLLs do not return a successful return code after finishing their DllMain routines, the loader will 
abort starting the application. As a very last step, the loader will call the TLS initializer of the 
actual application. 

As you can see, before a single line of code from the application’s main entry point executes, 
there are possibly thousands of lines of code being executed by the loader, followed by every 
single DLL that has been imported. The Windows kernel has been improved to decrease startup 
time, most recently with the introduction of SuperFetch, which directly affects the time it takes to 
load all the DLLs during startup. (For more information on SuperFetch, see Chapter 9.) 

3.11 Hypervisor (Hyper-V) 

One of the key technologies in the software industry, used by system administrators, 
developers, and testers alike, is called virtualization, and it refers to the ability to run multiple 



 227

operating systems simultaneously. One operating system, in which the virtualization software is 
executing, is called the host, while the other operating systems are running as guests inside the 
virtualization software. The usage scenarios for this model cover everything from being able to 
test an application on different platforms to having fully virtual servers all actually running as part 
of the same machine and managed through one central point. 

Until recently, all the virtualization was done by the software itself, sometimes assisted by 
hardware-level virtualization technology (called host-based virtualization). Thanks to hardware 
virtualization, the CPU can do most of the notifications required for trapping instructions and 
virtualizing access to memory. These notifications, as well as the various configuration steps 
required for allowing guest operating systems to run concurrently, must be handled by a piece of 
infrastructure compatible with the CPU’s virtualization support. Instead of relying on a piece of 
separate software running inside a host operating system to perform these tasks, a thin piece of 
low-level system software, which uses strictly hardware-assisted virtualization support, can be 
used—a hypervisor. Figure 3-30 shows a simple architectural overview of these two kinds of 
systems. 

  

With Hyper-V, Windows Server 2008 computers can install support for hypervisor-based 
virtualization as a special role (as long as an edition with Hyper-V support is licensed). Because 
the hypervisor is part of the operating system, managing the guests inside it, as well as interacting 
with them, is fully integrated in the operating system through standard management mechanisms 
such as WMI and services (see Chapter 4 for more information on these topics), and there are no 
complex third-party tools involved that require training or servicing.  

Finally, apart from having a hypervisor that allows running other guests managed by a 
Windows Server host, both client and server editions of Windows also ship with enlightenments, 
which are special optimizations in the kernel and possibly device drivers that detect that the code 
is being run as a guest under a hypervisor and perform certain tasks differently, or more efficiently, 
considering this environment. We will look at some of these improvements later; for now, we’ll 
take a look at the basic architecture of the Windows virtualization stack, shown in Figure 3-31. 
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3.11.1 Partitions 

One of the key architectural components behind the Windows hypervisor is the concept of a 
partition. A partition essentially references an instance of an operating system installation, which 
could refer either to what’s traditionally called the host or to the guest. Under the Windows 
hypervisor model, these two terms are not used; instead, we talk of either a root partition or a child 
partition, respectively. Consequently, at a minimum, a Hyper-V system will have a root partition, 
which is recommended to contain a Windows Server Core installation, as well as the virtualization 
stack and its associated components. Although this installation type is recommended because it 
allows minimizing patches and reducing security surface area, resulting in increased availability of 
the server, a full installation is also supported. Each operating system running within the 
virtualized environment will represent a child partition, which may contain certain additional tools 
that optimize access to the hardware or allow management of the operating system. 

3.11.2 Root Partition 

One of the main goals behind the design of the Windows hypervisor was to have it as small 
and modular as possible, much like a microkernel, instead of providing a full, monolithic module. 
This means that most of the virtualization work is actually done by a separate virtualization stack 
and that there are also no hypervisor drivers. In lieu of these, the hypervisor uses the existing 
Windows driver architecture and talks to actual Windows device drivers. This architecture results 
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in several components that provide and manage this behavior, which are collectively called the 
hypervisor stack. 

Logically, it is the root partition that is responsible for providing the hypervisor, as well as 
the entire hypervisor stack. Because these are Microsoft components, only a Windows machine 
can be a root partition, naturally. A root partition should have almost no resource usage for itself 
because its role is to run other operating systems. The main components that the root partition 
provides are shown in Figure 3-32. 

  

Root Partition Operating System 

The Windows installation (typically the minimal footprint server installation, called 
Windows Server Core, to minimize resource usage) is responsible for providing the hypervisor 
and the device drivers for the hardware on the system (which the hypervisor will need to access), 
as well as for running the hypervisor stack. It is also the management point for all the child 
partitions. 

VM Service and Worker Processes 

The virtual machine service is responsible for providing the WMI interface to the hypervisor, 
which allows managing the child partitions through a Microsoft Management Console (MMC) 
plug-in. It is also responsible for communicating requests to applications that need to 
communicate to the hypervisor or to child partitions. It controls settings such as which devices are 
visible to child partitions, how the memory and processor allocation for each partition is defined, 
and more. 

The worker processes, on the other hand, perform various virtualization work that a typical 
monolithic hypervisor would perform (similar as well to the work of a software-based 
virtualization solution). This means managing the state machine for a given child partition (to 
allow support for features such as snapshots and state transitions), responding to various 
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notifications coming in from the hypervisor, performing the emulation of certain devices exposed 
to child partitions, and collaborating with the VM service and configuration component.  

On a system with child partitions performing lots of I/O or privileged operations, you would 
expect most of the CPU usage to be visible in the root partition: you can identify them by the 
name Vmwp.exe (one for each child partition). The worker process also includes components 
responsible for remote management of the virtualization stack, as well as an RDP component that 
allows using the remote desktop client to connect to any child partition and remotely view its user 
interface and interact with it. 

Virtualization Service Providers 

Virtualization service providers (VSPs) are responsible for the high-speed emulation of 
certain devices visible to child partitions (the exact difference between VSP-emulated devices and 
user-mode–process-emulated devices will be explained later), and unlike the VM service and 
processes, VSPs can also run in kernel mode as drivers. More detail on VSPs will follow in the 
section that describes device architecture in the virtualization stack. 

VM Infrastructure Driver and Hypervisor API Library 

Because the hypervisor cannot be directly accessed by user-mode applications, such as the 
VM service that is responsible for management, the virtualization stack must actually talk to a 
driver in kernel mode that is responsible for relaying the requests to the hypervisor. This is the job 
of the VM infrastructure driver (VID). The VID also provides support for certain lowmemory 
memory devices, such as MMIO and ROM emulation. 

A library located in kernel mode provides the actual interface to the hypervisor (called 
hypercalls). Messages can also come from child partitions (which will perform their own 
hypercalls), because there is only one hypervisor for the whole system and it can listen to 
messages coming from any partition. You can find this functionality in the Winhv.sys device 
driver.  

Hypervisor 

At the bottom of the architecture is the hypervisor itself, which registers itself with the 
processor at system boot-up time and provides its services for the stack to use (through the use of 
the hypercall interface). This early initialization is performed by the hvboot.sys driver, which is 
configured to start early on during a system boot. Because Intel and AMD processors have slightly 
differing implementations of hardware-assisted virtualization, there are actually two different 
hypervisors—the correct one is selected at boot-up time by querying the processor through 
CPUID instructions. On Intel systems, the Hvix64.exe binary is loaded, while on AMD systems, 
the Hvax64.exe image is used. 

3.11.3 Child Partitions 

The child partition, as discussed earlier, is an instance of any operating system running 
parallel to the root partition. (Because you can save or pause the state of any child, it might not 
necessarily be running, but there will be a worker process for it.) Unlike the root partition, which 
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has full access to the APIC, I/O ports, and physical memory, child partitions are limited for 
security and management reasons to their own view of address space (the Guest Virtual Address 
Space, or GVA, which is managed by the hypervisor), and have no direct access to hardware. In 
terms of hypervisor access, it is also limited mainly to notifications and state changes. For 
example, a child partition doesn’t have control over other partitions (and can’t create new ones). 

Child partitions have many fewer virtualization components than a root partition, because 
they are not responsible for running the virtualization stack—only for communicating with it. Also, 
these components can also be considered optional because they enhance performance of the 
environment but are not critical to its use. Figure 3-33 shows the components present in a typical 
Windows child partition. 

  

Virtualization Service Clients 

Virtualization service clients (VSCs) are the child partition analogues of VSPs. Like VSPs, 
VSCs are used for device emulation, which is a topic of later discussion. 

Enlightenments 

Enlightenments are one of the key performance optimizations that Windows virtualization 
takes advantage of. They are direct modifications to the standard Windows kernel code that can 
detect that this operating system is running in a child partition and perform work differently. 
Usually, these optimizations are highly hardware-specific and result in a hypercall to notify the 
hypervisor. An example is notifying the hypervisor of a long busy-wait spin loop. The hypervisor 
can keep some state stale in this scenario instead of keeping track of the state at every single loop 
instruction. Entering and exiting an interrupt state can also be coordinated with the hypervisor, as 
well as access to the APIC, which can be enlightened to avoid trapping the real access and then 
virtualizing it. 

Another example has to do with memory management, specifically TLB flushing and 
changing address space. (See Chapter 9 for more information on these concepts.) Usually, the 
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operating system will execute a CPU instruction to flush this information, which affects the entire 
processor. However, because a child partition could be sharing a CPU with many other child 
partitions, such an operation would also flush this information for those operating systems, 
resulting in noticeable performance degradation. If Windows is running under a hypervisor, it will 
instead issue a hypercall to have the hypervisor flush only the specific information belonging to 
the child partition. 

3.11.4 Hardware Emulation and Support 

A virtualization solution must also provide optimized access to devices. Unfortunately, most 
devices aren’t made to accept multiple requests coming in from different operating systems. The 
hypervisor steps in by providing the same level of synchronization where possible and by 
emulating certain devices when real access to hardware cannot be permitted. In addition to devices, 
memory and processors must also be virtualized. Table 3-22 describes the three types of hardware 
that the hypervisor must manage.  

  

Instead of exposing actual hardware to child partitions, the hypervisor exposes virtual devices 
(called VDevs). VDevs are packaged as COM components that run inside a VM worker process, 
and they are the central manageable object behind the device. (Usually, VDevs expose a WMI 
interface.) The Windows virtualization stack provides support for two kinds of virtual devices: 
emulated devices and synthetic devices (also called enlightened I/O). The former provide support 
for various devices that the operating systems on the child partition would expect to find, while 
the latter requires specific support from the guest operating system. Onthe other hand, synthetic 
devices provide a significant performance benefit by reducing CPU overhead. 

Emulated Devices 

Emulated devices work by presenting the child partition with a set of I/O ports, memory 
ranges, and interrupts that are being controlled and monitored by the hypervisor. When access to 
these resources is detected, the VM worker process eventually gets notified through the 
virtualization stack (shown earlier in Figure 3-31). The process will then emulate whatever action 
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is expected from the device and complete the request, going back through the hypervisor and then 
to the child partition. From this topological view alone, one can see that there is a definite loss in 
performance, without even considering that the software emulation of a hardware device is usually 
slow. 

The need for emulated devices comes from the fact that the hypervisor needs to support 
nonhypervisor-aware operating systems, as well as the early installation steps of even Windows 
itself. During the boot process, the installer can’t simply load all the child partition’s required 
components (such as VSCs) to use synthetic devices, so a Windows installation will always use 
emulated devices (which is why installation will seem very slow, but once installed the operating 
system will run quite close to native speed). Emulated devices are also used for hardware that 
doesn’t require high-speed emulation and for which software emulation may even be faster. This 
includes items such as COM (serial) ports, parallel ports, or the motherboard itself. 

Note Hyper-V emulates an Intel i440BX motherboard, an S3 Trio video card, and an Intel 
21140 NIC. 

Synthetic Devices 

Although emulated devices work adequately for 10-Mbit network connections, lowresolution 
VGA displays, and 16-bit sound cards, the operating systems and hardware that child partitions 
will usually require in today’s usage scenarios require a lot more processing power, such as 
support for 1000-Mbit GbE connections; full-color, high-resolution 3D support; and high-speed 
access to storage devices. To support this kind of virtualized hardware access at an acceptable 
CPU usage level and virtualized throughput, the virtualization stack uses a variety of components 
to optimize device I/Os to their fullest (similar to kernel enlightenments). Three components are 
part of this support, and they all belong to what’s presented to the user as integration components 
or ICs. They include: 

■ Virtualization service providers 

■ Virtualization service clients/consumers 

■ VMBus 

Figure 3-34 shows a diagram of how an enlightened, or synthetic storage I/O, is handled by 
the virtualization stack. 
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As shown in Figure 3-32, VSPs run in the root partition, where they are associated with a 
specific device that they are responsible for enlightening. (We’ll use that as a term instead of 
emulating when referring to synthetic devices.) VSCs reside in the child partition and are also 
associated with a specific device. Note, however, that the term provider can refer to multiple 
components spread across the device stack. For example, a VSP can either be: 

■ A user-mode service 

■ A user-mode COM component 

■ A kernel-mode driver 

In all three cases, the VSP will be associated with the actual virtual device inside the VM 
worker process. VSCs, on the other hand, are almost always designed to be drivers sitting at the 
lowest level of the device stack (see Chapter 7 for more information on device stacks) and 
intercept I/Os to a device and redirect them through a more optimized path. The main optimization 
that is performed by this model is to avoid actual hardware access and use VMBus instead. Under 
this model, the hypervisor is unaware of the I/O, and the VSP redirects it directly to the root 
partition’s kernel storage stack, avoiding a trip to user mode as well. Other VSPs can perform 
work directly on the device, by talking to the actual hardware and bypassing any driver that may 
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have been loaded on the root partition. Another option is to have a user-mode VSP, which can 
make sense when dealing with lower-bandwidth devices.  

As described earlier, VMBus is the name of the bus transport used to optimize device access 
by implementing a communications protocol using hypervisor services. VMBus is a bus driver 
present on both the root partition and the child partitions responsible for the Plug and Play 
enumeration of synthetic devices in a child. It also contains the optimized cross-partition 
messaging protocol that uses a transport method that is appropriate for the data size. One of these 
methods is to provide a shared ring buffer between each partition—essentially an area of memory 
on which a certain amount of data is loaded on one side and unloaded on the other side. No 
memory needs to be allocated or freed because the buffer is continuously reused and simply 
“rotated.” Eventually, it may become full with requests, which would mean that newer I/Os would 
overwrite older I/Os. In this uncommon scenario, VMBus will simply delay newer requests until 
older ones complete. The other messaging transport is direct child memory mapping to the parent 
address space for large enough transfers. 

Virtual Processors 

Just as the hypervisor doesn’t allow direct access to hardware (or to memory, as we’ll see 
later, child partitions don’t really see the actual processors on the machine but have a virtualized 
view of CPUs as well. On the root machine, the administrator and the operating system deal with 
logical processors, which are the actual processors on which threads can run (for example, a dual 
quad-core machine has eight logical processors), and assign these processors to various child 
partitions. For example, one child partition could be assigned logical processors 1, 2, 3, and 4, 
while the second child partition might be assigned processors 4, 6, 7, and 8. Note that the second 
child partition will never have access to processor 5 and that processor 4 will be shared across 
multiple partitions. These operations are all made possible through the use of virtual processors, or 
VPs. 

Because processors can be shared across multiple child partitions, the hypervisor includes its 
own scheduler that distributes the workload of the various partitions across each processor. 
Additionally, the hypervisor maintains the register state for each virtual processor and to an 
appropriate “processor switch” when the same logical processor is now being used by another 
child partition. The root partition has the ability to access all these contexts and modify them as 
required, an essential part of the virtualization stack that must respond to certain instructions and 
perform actions. 

The hypervisor is also directly responsible for virtualizing processor APICs and providing a 
simpler, less featured virtual APIC, including support for the timer that’s found on most APICs 
(however, at a slower rate). Because not all operating systems support APICs, the hypervisor also 
allows for the injection of interrupts through a hypercall, which permits the virtualization stack to 
emulate a standard i8059 PIC. 

Finally, because Windows supports dynamic processor addition, it’s possible for an 
administrator to add new processors to a child partition at run time to increase the responsiveness 
of the guest operating systems if it’s under heavy load.  

Memory Virtualization 
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The final piece of hardware that must be abstracted away from child partitions is memory, 
not only for the normal behavior of the guest operating systems, but also for security and stability. 
Improperly managing the child partitions’ access to memory could result in privacy disclosures 
and data corruption, as well as possible malicious attacks by “escaping” the child partition and 
attacking the root (which would then allow attacks on the other children). Apart from this aspect, 
there is also the matter of the guest operating system’s view of physical address space. Almost all 
operating systems expect memory to begin at address 0 and be somewhat contiguous, so simply 
assigning chunks of physical memory to each child partition wouldn’t work even if enough 
memory was available on the system. 

To solve this problem, the hypervisor implements an address space called the guest physical 
address space (GPA space). The GPA starts at address 0, which satisfies the needs of operating 
systems inside child partitions. However, the GPA is not a simple mapping to a chunk of physical 
memory because of the second problem (the lack of contiguous memory). As such, GPAs can 
point to any location in the machine’s physical memory (which is called the system physical 
address space, or SPA space), and there must be a translation system to go from one address type 
to another. This translation system is maintained by the hypervisor and is nearly identical to the 
way virtual memory is mapped to physical memory on x86 and x86-64 processors. (See Chapter 9 
for more information on the memory manager and address translation.) 

As for actual virtual addresses in the child partition (which are called guest virtual address 
space—GVA space), these continue to be managed by the operating system without any change in 
behavior. What the operating system believes are real physical addresses in its own page tables 
will actually be SPAs. Figure 3-35 shows an overview of the mapping between each level. 

  

This means that when a guest operating system boots up and creates the page tables to map 
virtual to physical memory, the hypervisor intercepts SPAs and keeps its own copy of the page 
tables. Conceptually, whenever a piece of code accesses a virtual address inside a guest operating 
system, the hypervisor does the initial page table translation to go from the guest virtual address to 
the GPA and then maps that GPA to the respective SPA. In reality, this operation is optimized 
through the use of shadow page tables (SPTs), which the hypervisor maintains to have direct GVA 
to SPA translations and simply loads when appropriate so that the guest accesses the SPA directly. 

Intercepts 
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We’ve talked about the various ways in which access to hardware, processors, and memory is 
virtualized by the hypervisor and sometimes handed off to a VM worker process, but we haven’t 
yet talked about the mechanism that allows this to happen—intercepts. Intercepts are configurable 
“hooks” that a root partition can install and configure in order to respond to. These can include: 

■ I/O intercepts, useful for device emulation 

■ MSR intercepts, useful for APIC emulation and profiling 

■ Access to GPAs, useful for device emulation, monitoring, and profiling (Additionally, the 
intercept can be fine-tuned to a specific access, such as read, write, or execute.) 

■ Exception intercepts such as page faults, useful for maintaining machine state and memory 
emulation (for example, maintaining copy-on-write) 

Once the hypervisor detects an event for which an intercept has been registered, it sends an 
intercept message through the virtualization stack and puts the VP in a suspended state. The 
virtualization stack (usually the worker process) must then handle the event and resume the VP 
(typically with a modified register state that reflects the work performed to handle the intercept). 

3.12 Kernel Transaction Manager 

One of the more tedious aspects of software development is handling error conditions. This is 
especially true if, in the course of performing a high-level operation, an application has completed 
one or more subtasks that result in changes to the file system or registry. For example, an 
application’s software updating service might make several registry updates, replace one of the 
application’s executables, and then be denied access when it attempts to update a second 
executable. If the service doesn’t want to leave the application in the resulting inconsistent state, it 
must track all the changes it makes and be prepared to undo them. Testing the error-recovery code 
is difficult, and consequently often skipped, so errors in the recovery code can negate the effort. 

Applications can, with very little effort, gain automatic error-recovery capabilities by using a 
kernel mechanism called the Kernel Transaction Manager (KMT), which provides the facilities 
required to perform such transactions and enables services such as the distributed transaction 
coordinator (DTC) in user mode to take advantage of them. Any developer who uses the 
appropriate APIs can take advantage of these services as well. 

KTM does more than solve large-scale issues such as the one presented. Even on single-user 
home computers, installing a service patch or performing a system restore are large operations that 
involve both files and registry keys. Unplug an older Windows computer during such an operation, 
and the chances for a successful boot are very slim. Even though the NT File System (NTFS) has 
always had a log file permitting the file system to guarantee atomic operations (see Chapter 11 for 
more information on NTFS), this only means that whichever file was being written to during the 
process will get fully written or fully deleted—it does not guarantee the entire update or restore 
operation. Likewise, the registry has had numerous improvements over the years to deal with 
corruption (see Chapter 4 for more information on the registry), but the fixes apply only at the 
key/value level. 
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As the heart of transaction support, KTM allows transactional resource managers such as 
NTFS and the registry to coordinate their updates for a specific set of changes made by an 
application. NTFS uses an extension to support transactions, called TxF. The registry uses a 
similar extension, called TxR. These kernel-mode resource managers work with KTM to 
coordinate the transaction state, just as user-mode resource managers use DTC to coordinate 
transaction state across multiple user-mode resource managers. Third parties can also use KTM to 
implement their own resource managers. 

TxF and TxR both define a new set of file system and registry APIs that are similar to 
existing ones, except that they include a transaction parameter. If an application wants to create a 
file within a transaction, it first uses KTM to create the transaction, and then it passes the resulting 
transaction handle to the new file creation API. Although we’ll look at the registry and NTFS 
implementations of KTM later, these are not its only possible uses. In fact, it  rovides three 
system objects that allow a variety of different operations to be supported. These are listed in 
Table 3-23. 

  

EXPERIMENT: Listing Transaction Managers 

Windows ships with a built-in tool called Ktmutil.exe that allows you to see ongoing 
transactions as well as registered transaction managers on the system (and force the outcome of 
ongoing transactions). In this experiment, we will use it to display the transaction managers 
typically seen on a Windows machine.  

Start an elevated command prompt and type: 

Ktmutil.exe list tms 

Here’s an example of output on a typical Windows Vista system: 
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1. C:\Windows\system32>ktmutil list tms   

2. TmGuid TmLogPath   

3. -------------------------------------- ----------------------------- 

4. {0f69445a-6a70-11db-8eb3-806e6f6e6963} \SystemRoot\System32\Config 

\TxR\{250834B7-750C-   

5. 494d-BDC3-DA86B6E2101B}.TM   

6. {0f694463-6a70-11db-8eb3-985e31beb686} \Device\HarddiskVolume3 

\Windows\   

7. ServiceProfiles\NetworkService\ntuser.dat   

8. {0f694461-6a70-11db-8eb3-985e31beb686}.TM   

9. {0f694467-6a70-11db-8eb3-985e31beb686} \Device\HarddiskVolume3 

\Windows\ServiceProfiles\   

10. LocalService\ntuser.dat{0f694465-6a70-11db-8eb3-   

11. 985e31beb686}.TM   

12. {7697f183-6b73-11dc-9bbd-00197edc55d8} \Device\HarddiskVolume3 

\Users\Bob\ntuser.dat 

13. {0f69446d-6a70-11db-8eb3-985e31beb686}.TM   

14. {7697f187-6b73-11dc-9bbd-00197edc55d8} \Device\HarddiskVolume3 

\Users\Bob\AppData\Local\   

15. Microsoft\Windows\UsrClass.dat 

{7697f185-6b73-11dc-9bbd-00197edc55d8}.TM   

16. {cf7234df-39e3-11dc-bdce-00188bdd5f49} \Device\HarddiskVolume2 

\$Extend\$RmMetadata\   

17. $TxfLog\$TxfLog::KtmLog  {cf7234e6-39e3-11dc-bdce-00188bdd5f49}  

\Device\HarddiskVolume3\$Extend\$RmMetadata\   

18. $TxfLog\$TxfLog::KtmLog  

3.13 Hotpatch Support 

Rebooting a machine to apply the latest patches can mean significant downtime for a server, 
which is why Windows supports a run-time method of patching, called a hot patch (or simply 
hotpatch), in contrast to a cold patch, which requires a reboot. Hotpatching doesn’t simply allow 
files to be overwritten during execution; instead it includes a complex series of operations that can 
be requested (and combined). These operations are listed in Table 3-24.  
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Although hotpatches utilize internal kernel mechanisms, their actual implementation is no 
different from coldpatches. The patch is delivered through Windows Update, typically as an 
executable file containing a program called Update.exe that will perform the extraction of the 
patch and the update process. For hotpatches, however, an additional hotpatch file, containing 
the .hp extension, will be present. This file contains a special PE header  called .HOT1. This 
header will contain a data structure describing the various patch descriptors present inside the file. 
Each of these descriptors identifies the offset in the original file that needs to be patched, a 
validation mechanism (which can include a simple comparison of the old data, a checksum, or a 
hash), and the new data to be patched. The kernel will parse these descriptors and apply the 
appropriate modifications. In the case of a protected process (see Chapter 5 for more information 
on processes) and other digitally signed images, the hotpatch must also be digitally signed, in 
order to prevent “fake” patches from being performed to sensitive files or processes. 

Note Because the hotpatch file also includes the original data, the hotpatching mechanism 
can also be used to uninstall a patch at run time. 
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Compile-time hotpatching support works by adding 7 dummy bytes to the beginning of each 
function—4 are considered part of the end of the previous function, and 2 are part of the function 
prolog; that is, the function’s beginning. Here’s an example of a function that was built with 
hotpatching information: 

1. lkd> u NtCreateFile - 5  

2. nt!FsRtlTeardownPerFileContexts+0x169:  

3. 82227ea5 90 nop   

4. 82227ea6 90 nop   

5. 82227ea7 90 nop   

6. 82227ea8 90 nop   

7. 82227ea9 90 nop   

8. nt!NtCreateFile:   

9. 82227eaa 8bff mov edi,edi   

Notice that the five nop instructions don’t actually do anything, while the mov edi, edi at the 
beginning of the NtCreateFile function are also essentially meaningless—no actual statechanging 
operation takes place. Because 7 bytes are available, the NtCreateFile prologue can be 
transformed into a short jump to the buffer of five instructions available, which are then converted 
to a near jump instruction to the patched routine. Here’s NtCreateFile after having been 
hotpatched: 

1. lkd> u NtCreateFile - 5  

2. nt!FsRtlTeardownPerFileContexts+0x169:  

3. 82227ea5 e93d020010 jmp nt_patch!NtCreateFile (922280e7)   

4. nt!NtCreateFile:   

5. 82227ea5 ebfc jmp nt!FsRtlTeardownPerFileContexts+0x169 (82227ea5)   

This method allows only the addition of 2 bytes to each function by jumping into the 
previous function’s alignment padding that it would most likely have at its end anyway.  

There are some limitations to the hotpatching functionality: 

■ Patches that third-party applications such as security software might block or that might be 
incompatible with the operation of third-party applications 

■ Patches that modify a file’s export table or import table 

■ Patches that change data structures, fix infinite loops, or contain inline assembly code  

3.14 Kernel Patch Protection 

Some 32-bit device drivers modify the behavior of Windows in unsupported ways. For 
example, they patch the system call table to intercept system calls or patch the kernel image in 
memory to add functionality to specific internal functions. 

To prevent these kinds of changes, Windows implements Kernel Patch Protection (KPP), also 
referred to as PatchGuard. KPP’s job on the system is similar to what its name implies—it 
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attempts to deter common techniques for patching the system, or hooking it. Table 3-25 lists 
which components or structures are protected and for what purpose. 
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Note Because certain 64-bit Intel processors implement a slightly different feature set of 
the  x64 architecture, the kernel needs to perform run-time code patching to work around the lack 
of a prefetch instruction. KPP can deter kernel patching even on these processors, by exempting 
those specific patches from detection. Additionally, because of hypervisor (Hyper-V) 
enlightenments (more information on the hypervisor is provided earlier in this chapter), certain 
functions in the kernel are patched at boot time, such as the swap context routine. These patches 
are also allowed by very explicit checks to make sure they are known patches to the 
hypervisorenlightened versions. 

When KPP detects a change in any of the structures mentioned (as well as some other 
internal consistency checks), it crashes the system with code  

0x109—CRITICAL_STRUCTURE_CORRUPTION. 

For third-party developers who used techniques that KPP deters, the following supported 
techniques can be used: 

■ File system minifilters (see Chapter 7 for more information on these) to hook all file 
operations, including loading image files and DLLs, that can be intercepted to purge malicious 
code on-the-fly or block reading of known bad executables. 
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■ Registry filter notifications (see Chapter 4 for more information on these notifications) to 
hook all registry operations. Security software can block modification of critical parts of the 
registry, as well as heuristically determine malicious software by registry access patterns or known 
bad registry keys. 

■ Process notifications (see Chapter 5 for more information on these notifications). Security 
software can monitor the execution and termination of all processes and threads on the system, as 
well as DLLs being loaded or unloaded. With the enhanced notifications added in Windows Vista 
SP1 and Windows Server 2008, they also have the ability to block process launch. 

■ Object manager filtering (explained in the object manager section earlier). Security 
software can remove certain access rights being granted to processes and/or threads to defend their 
own utilities against certain operations. 

3.15 Code integrity 

Code integrity is a Windows mechanism that authenticates the integrity and source of 
executable images (such as applications, DLLs, or drivers) by validating a digital certificate 
contained within the image’s resources. This mechanism works in conjunction with system 
policies, defining how signing should be enforced. One of these policies is the Kernel Mode Code 
Signing (KMCS) policy, which requires that kernel-mode code be signed with a valid 
Authenticode certificate rooted by one of several recognized code signing authorities, such as 
Verisign or Thawte. 

To address backward compatibility concerns, the KMCS policy is only fully enforced on 
64-bit machines, as those drivers have to be recompiled recently in order to run on that Windows 
architecture. This in turn implies that a company or individual is still responsible for maintaining 
the driver and is able to sign it. On 32-bit machines, however, many older devices ship with 
outdated drivers, possibly from out-of-business companies, so signing those drivers would 
sometimes be unfeasible. Figure 3-36 shows the warning displayed on 64-bit Windows machines 
that attempt to load an unsigned driver. 

Note Windows also has a second driver signing policy, part of the Plug and Play manager. 
This policy is applied solely to Plug and Play drivers, and unlike the kernel-mode code signing 
policy, it can be configured to allow unsigned Plug and Play drivers (but not on 64-bit systems, 
where the KMCS policy takes precedence). See Chapter 7 for more information on the Plug and 
Play manager. 
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Note that even on 32-bit machines, code integrity will generate a warning when such a driver 
is loaded, which can be viewed in the Event Log. 

Note Protected Media Path applications can also query the kernel for its integrity state, which 
includes information on whether or not unsigned 32-bit drivers are loaded on the system. In such 
scenarios, they are allowed to disable protected, high-definition media playback as a method to 
ensure the security and reliability of the encrypted stream. 

The code integrity mechanism doesn’t stop at driver load time, however. Stronger measures 
also exist to authenticate per-page image contents for executable pages. This requires using a 
special flag while signing the driver binary and will generate a catalog with the cryptographic hash 
of every executable page on which the driver will reside. (Pages are a unit of protection on the 
CPU; for more information, see Chapter 9.) This method allows for detection of modification of 
an existing driver, which may either happen at run time by another driver or through a page file or 
hibernation file attack (in which the contents of memory are edited on the disk and then reloaded 
into memory). Generating such per-page hashes is also a requirement for the new filtering model, 
as well as Protected Media Path components.  

3.16 Conclusion 

In this chapter, we’ve examined the key base system mechanisms on which the Windows 
executive is built. In the next chapter, we’ll look at three important mechanisms involved with the 
management infrastructure of Windows: the registry, services, and Windows Management 
Instrumentation (WMI). 
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4. Management Mechanisms 

This chapter describes four fundamental mechanisms in the Windows operating system that  

are critical to its management and configuration: 

■ The registry 

■ Services 

■ Windows Management Instrumentation 

■ Windows Diagnostics Infrastructure 

4.1 The Registry 

The registry plays a key role in the configuration and control of Windows systems. It is the 
repository for both systemwide and per-user settings. Although most people think of the registry 
as static data stored on the hard disk, as you’ll see in this section, the registry is also a window into 
various in-memory structures maintained by the Windows executive and kernel.  

We’ll start by providing you with an overview of the registry structure, a discussion of the 
data types it supports, and a brief tour of the key information Windows maintains in the registry. 
Then we’ll look inside the internals of the configuration manager, the executive component 
responsible for implementing the registry database. Among the topics we’ll cover are the internal 
on-disk structure of the registry, how Windows retrieves configuration  information when an 
application requests it, and what measures are employed to protect this critical system database. 

4.1.1 Viewing and Changing the Registry 

In general, you should never have to edit the registry directly: application and system settings 
stored in the registry that might require manual changes should have a corresponding user 
interface to control their modification. However, as you’ve already seen a number of times in this 
book, some advanced and debug settings have no editing user interface. Therefore, both graphical 
user interface (GUI) and command-line tools are included with Windows to enable you to view 
and modify the registry.  

Windows comes with one main GUI tool for editing the registry—Regedit.exe—and a 
number of command-line registry tools. Reg.exe, for instance, has the ability to import, export, 
back up, and restore keys, as well as to compare, modify, and delete keys and values.Regini.exe, 
on the other hand, allows  you to import registry data based on text files that contain ASCII or 
Unicode configuration data. 

4.1.2 Registry Usage 
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There are four principal times that configuration data is read:  

■ During the initial boot process, the boot loader reads the list of boot device drivers to load 
into memory before initializing the kernel. 

■ During the kernel boot process, the kernel reads settings that specify which device drivers 
to load and how various subsystems—such as the memory manager and process 
manager—configure themselves and tune system behavior. 

■ During logon, Explorer and other Windows components read per-user preferences from the 
registry, including network drive-letter mappings, desktop wallpaper, screen saver, menu behavior, 
and icon placement. 

■ During their startup, applications read systemwide settings, such as a list of optionally 
installed components and licensing data, as well as per-user settings that might include menu and 
toolbar placement and a list of most-recently accessed documents.  

However, the registry can be read at other times as well, such as in response to a modification 
of a registry value or key. Some applications monitor their configuration settings in the registry 
and read updated settings when they see a change. In general, however, on an idle system there 
should be no registry activity. 

The registry is commonly modified in the following cases: 

■ Although not a modification, the registry’s initial structure and many default settings are 
defined by a prototype version of the registry that ships on the Windows setup media that is 
copied onto a new installation. 

■ Application setup utilities create default application settings and settings that reflect 
installation configuration choices. 

■ During the installation of a device driver, the Plug and Play system creates settings in the 
registry that tell the I/O manager how to start the driver and creates other settings that configure 
the driver’s operation. (See Chapter 7 for more information on how device drivers are installed.) 

■ When you change application or system settings through user interfaces, the changes are 
often stored in the registry. 

Note Sadly, some applications poll the registry looking for changes when they should be 
using the registry’s RegNotifyChangeKey function, which puts a thread to sleep until a change 
occurs to the area of the registry in which they’re interested. 

4.1.3 Registry Data Types 

The registry is a database whose structure is similar to that of a disk volume. The registry 
contains keys, which are similar to a disk’s directories, and values, which are comparable to files 
on a disk. A key is a container that can consist of other keys (subkeys) or values. Values, on the 
other hand, store data. Top-level keys are root keys. Throughout this section, we’ll use the words 
subkey and key interchangeably. 
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Both keys and values borrow their naming convention from the file system. Thus, you can 
uniquely identify a value with the name mark, which is stored in a key called trade, with the name 
trade\mark. One exception to this naming scheme is each key’s unnamed value. Regedit displays 
the unnamed value as (Default). 

Values store different kinds of data and can be one of the 14 types listed in Table 4-1. The 
majority of registry values are REG_DWORD, REG_BINARY, or REG_SZ. Values of type 
REG_ DWORD can store numbers or Booleans (on/off values); REG_BINARY values can store 
numbers 

larger than 32 bits or raw data such as encrypted passwords; REG_SZ values store strings 
(Unicode, of course) that can represent elements such as names, file names, paths, and types.  

  

The REG_LINK type is particularly interesting because it lets a key transparently point to 
another key or value. When you traverse the registry through a link, the path searching continues 
at the target of the link. For example, if \Root1\Link has a REG_LINK value of \Root2\RegKey, 
and RegKey contains the value RegValue, two paths identify RegValue: \Root1\Link\RegValue 
and \Root2\RegKey\RegValue. As explained in the next section, Windows  prominently uses 
registry links: three of the six registry root keys are links to subkeys within the three nonlink root 
keys. 

4.1.4 Registry Logical Structure 
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You can chart the organization of the registry via the data stored within it. There are six root 
keys (and you can’t add new root keys or delete existing ones) that store information, as shown in 
Table 4-2. 

 

Why do root-key names begin with an H? Because the root-key names represent Windows 
handles (H) to keys (KEY). As mentioned in Chapter 1, HKLM is an abbreviation used for 
HKEY_LOCAL_MACHINE. Table 4-3 lists all the root keys and their abbreviations. The 
following sections explain in detail the contents and purpose of each of these six root keys. 

  

HKEY_CURRENT_USER 

The HKCU root key contains data regarding the preferences and software configuration of 
the locally logged-on user. It points to the currently logged-on user’s user profile, located on the 
hard disk at \Users\< username>\Ntuser.dat. (See the section “Registry Internals” later in this 
chapter to find out how root keys are mapped to files on the hard disk.) Whenever a user profile is 
loaded (such as at logon time or when a service process runs under the  context of a specific user 
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name), HKCU is created to map to the user’s key under HKEY_USERS. Table 4-4 lists some of 
the subkeys under HKCU. 

 

HKEY_USERS 

HKU contains a subkey for each loaded user profile and user class registration database on 
the system. It also contains a subkey named HKU\.DEFAULT that is linked to the profile for the 
system (which is used by processes running under the local system account and is described in 
more detail in the section “Services” later in this chapter). This is the profile used by Winlogon, 
for example, so that changes to the desktop background settings in that profile will be 
implemented on the logon screen. When a user logs on to a system for the first time and her 
account does not depend on a roaming domain profile (that is, the user’s profile is obtained from a 
central network location at the direction of a domain controller), the system creates a profile for 
her account that’s based on the profile stored in %SystemDrive%\Users\Default. 

The location under which the system stores profiles is defined by the registry value 
HKLM\Software\Microsoft\Windows NT\CurrentVersion\ProfileList\ProfilesDirectory, which is 
by default set to %SystemDrive%\Users. The ProfileList key also stores the list of profiles present 
on a system. Information for each profile resides under a subkey that has a name reflecting the 
security identifier (SID) of the account to which the profile corresponds. (See Chapter 6 for more 
information on SIDs.) Data stored in a profile’s key includes the time of the last load of the profile 
in the ProfileLoadTimeLow and ProfileLoadTimeHigh values, the binary representation of the 
account SID in the Sid value, and the path to the profile’s on-disk hive (which is described later in 
this chapter in the “Hives” section) in the ProfileImagePath directory. Windows shows the list of 
profiles stored on a system in the User Profiles management dialog box, shown in Figure 4-1, 
which you access by clicking Settings in the User Profiles section of the Advanced Tab in the 
System Control Panel applet. 
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EXPERIMENT: Watching Profile loading and Unloading 

You can see a profile load into the registry and then unload by using the Runas command to 
launch a process in an account that’s not currently logged on to the machine. While the new 
process is running, run Regedit and note the loaded profile key under HKEY_USERS. After 
terminating the process, perform a refresh in Regedit by pressing the F5 key and the profile should 
no longer be present. 

HKEY_CLASSES_ROOT 

HKCR consists of three types of information: file extension associations, COM class 
registrations, and the virtualized registry root for User Account Control (UAC). (See Chapter 6 for 
more information on UAC.) A key exists for every registered file name extension. Most keys 
contain a REG_SZ value that points to another key in HKCR containing the association 
information for the class of files that extension represents. 

For example, HKCR\.xls would point to information on Microsoft Office Excel files in a key 
such as HKCU\Excel.Sheet.8. Other keys contain configuration details for COM objects registered 
on the system. The UAC virtualized registry is located in the VirtualStore key, which is not related 
to the other kinds of data stored in HKCR. 

The data under HKEY_CLASSES_ROOT comes from two sources: 

■ The per-user class registration data in HKCU\SOFTWARE\Classes (mapped to the file on 
hard disk \Users\< username>\AppData\Local\Microsoft\Windows\Usrclass.dat) 

■ Systemwide class registration data in HKLM\SOFTWARE\Classes  

The reason that there is a separation of per-user registration data from systemwide 
registration data is so that roaming profiles can contain these customizations. It also closes a 
security hole: a nonprivileged user cannot change or delete keys in the systemwide version 
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HKEY_CLASSES_ROOT, and thus cannot affect the operation of applications on the system. 
Nonprivileged users and applications can read systemwide data and can add new keys and values 
to systemwide data (which are mirrored in their per-user data), but they can modify existing keys 
and values in their private data only. 

HKEY_LOCAL_MACHINE 

HKLM is the root key that contains all the systemwide configuration subkeys: BCD, 
COMPONENTS, HARDWARE, SAM, SECURITY, SOFTWARE, and SYSTEM. The 
HKLM\BCD subkey contains the Boot Configuration Database (BCD) information loaded as a 
registry hive. This database replaces the Boot.ini file that was used before Windows Vista and 
adds greater flexibility and isolation of per-installation boot configuration data. (For more 
information on the BCD, see Chapter 13.) 

Each entry in the BCD, such as a Windows installation or the command-line settings for the 
installation, is stored in the Objects subkey, either as an object referenced by a GUID (in the case 
of a boot entry) or as a numeric subkey called an element. Most of these raw elements are 
documented in the BCD reference in the MSDN Library and define various command-line settings 
or boot parameters. The value associated with each element subkey corresponds to the value for its 
respective command-line flag or boot parameter. 

The BCDEdit command-line utility allows you to modify the BCD using symbolic names for 
the elements and objects. It also provides extensive help for all the boot options available; 
unfortunately, it only works locally. Because the registry can be opened remotely as well as 
imported from a hive file, you can modify or read the BCD of a remote computer by using the 
Registry Editor. The following experiment shows you how to enable kernel debugging by using 
the Registry Editor. 

EXPERIMENT: Offline or Remote bCD editing 

In this experiment, you will enable debugging through editing the BCD inside the registry. 
For the purposes of this example, you’ll be editing the local copy of the BCD, but the point of this 
technique is that it can be used on any BCD hive. Follow these steps to add the /DEBUG 
command-line flag: 

1. Open the Registry Editor, and then navigate to the HKLM\BCD00000000 key. 

Expand every subkey so that the numerical identifiers of each “Elements” key are fully 
visible. 
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2. Identify the boot entry for your Windows installation by locating Description elements, 
which have an ID of 0x12000004. In the Element value of those subkeys, you should find one 
called Windows Vista or Windows Server 2008. If you have more than one Windows installation 
on your machine, you need to check the 0x22000002 subkey, which contains the path, such as 
\Windows. 

3. Now that you’ve found the correct GUID for your Windows installation, create a new 
subkey under the Elements subkey for that GUID and call it 0x260000a0. If this subkey already 
exists, simply navigate to it. 

4. If you had to create the subkey, now create a binary value called Element inside it.  

5. Edit the value and set it to 01. This will enable kernel-mode debugging. Here’s what these 
changes should look like: 
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Note The 0x12000004 ID corresponds to BcdLibraryString_ApplicationPath, while the 
0x22000002 ID corresponds to BcdOSLoaderString_SystemRoot. Finally, the ID we added, 
0x260000a0, corresponds to BcdOSLoaderBoolean_KernelDebuggerEnabled. These  alues are 
documented in the BCD reference in MSDN Library. 

The HKLM\COMPONENTS subkey contains information pertinent to the Component Based 
Servicing (CBS) stack. This stack contains various files and resources that are part of a Windows 
installation image (used by the Automated Installation Kit or the OEM Preinstallation Kit) or an 
active installation. The CBS APIs that exist for servicing purposes use the information located in 
this key to identify installed components and their configuration information. This information is 
used whenever components are installed, updated, or removed either individually (called units) or 
in groups (called packages). 

The HKLM\HARDWARE subkey maintains descriptions of the system’s hardware and all 
hardware device-to-driver mappings. The Device Manager tool (which is available by running 
System from Control Panel and then clicking Device Manager) lets you view registry hardware 
information that it obtains by simply reading values out of the HARDWARE key. 

EXPERIMENT: Fun with the Hardware Key 

You can fool your coworkers or friends into thinking that you have the latest and greatest 
processor by modifying the value of the ProcessorNameString value under HKLM\ 
HARDWARE\DESCRIPTION\System\CentralProcessor\0. The System item in Control Panel 
displays the ProcessorNameString value on the main page. Changes you make to other values in 
that key, such as the ~MHz value, do not have any effect on what the System item displays, 
however, because the system caches many of the values for use by functions that applications use 
to query the system’s processor capabilities. 

HKLM\SAM holds local account and group information, such as user passwords, group 
definitions, and domain associations. Windows Server systems that are operating as domain 
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controllers store domain accounts and groups in Active Directory, a database that stores 
domainwide settings and information. (Active Directory isn’t described in this book.) By default, 
the security descriptor on the SAM key is configured so that even the administrator account 
doesn’t have access. 

HKLM\SECURITY stores systemwide security policies and user-rights assignments. 
HKLM\SAM is linked into the SECURITY subkey under HKLM\SECURITY\SAM. By default, 
you can’t view the contents of HKLM\SECURITY or HKLM\SAM\SAM because the security 
settings of those keys allow access only by the System account. (System accounts are discussed in 
greater detail later in this chapter.) You can change the security descriptor to allow read access to 
administrators, or you can use PsExec to run Regedit in the local system account if you want to 
peer inside. However, that glimpse won’t be very revealing because the data is undocumented and 
the passwords are encrypted with one-way mapping—that is, you can’t determine a password 
from its encrypted form. 

HKLM\SOFTWARE is where Windows stores systemwide configuration information not 
needed to boot the system. Also, third-party applications store their systemwide settings here, such 
as paths to application files and directories and licensing and expiration date information. 

HKLM\SYSTEM contains the systemwide configuration information needed to boot the 
system, such as which device drivers to load and which services to start. Because this information 
is critical to starting the system, Windows also maintains a copy of part of this information, called 
the last known good control set, under this key. The maintenance of a copy allows an 
administrator to select a previously working control set in the case that configuration changes 
made to the current control set prevent the system from booting. For details on when Windows 
declares the current control set “good,” see the section “Accepting the Boot and Last Known 
Good” later in this chapter. 

HKEY_CURRENT_CONFIG 

HKEY_CURRENT_CONFIG is just a link to the current hardware profile, stored under 
HKLM\SYSTEM\CurrentControlSet\Hardware Profiles\Current. Hardware profiles allow an 
administrator to configure variations to the base system driver settings. Although the underlying 
profile might change from boot to boot, applications can always reference the currently active 
profile through this key. Hardware profile management is managed through the Hardware Profiles 
dialog box that you access by clicking Settings in the Hardware Profiles section on the Hardware 
page of the Control Panel’s System item. During the boot process, Winload will prompt you to 
specify which profile it should use if there is more than one. 

HKEY_PERFORMANCE_DATA 

The registry is the mechanism to access performance counter values on Windows, whether 
those are from operating system components or server applications. One of the side benefits of 
providing access to the performance counters via the registry is that remote performance 
monitoring works “for free” because the registry is easily accessible remotely through the normal 
registry APIs. 

You can access the registry performance counter information directly by opening a special 
key named HKEY_PERFORMANCE_DATA and querying values beneath it. You won’t find this 
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key by looking in the Registry Editor; this key is available only programmatically through the 
Windows registry functions, such as RegQueryValueEx. Performance information isn’t actually 
stored in the registry; the registry functions use this key to locate the information from 
performance data providers. 

You can also access performance counter information by using the Performance Data Helper 
(PDH) functions available through the Performance Data Helper API (Pdh.dll). Figure 4-2 shows 
the components involved in accessing performance counter information. 

4.1.5 Transactional Registry (TxR) 

Before Windows Vista, there was no easy, guaranteed way to perform transactional 
operations on the registry, and it was even harder to link those operations with other, nonregistry 
operations, such as file operations. Thanks to the Kernel Transaction Manager (KTM; for more 
information see the section about the KTM in Chapter 3), developers now have access to a 
straightforward API that allows them to implement robust error-recovery capabilities when 
performing registry operations.  

Three APIs support transactional modification of the registry: RegCreateKeyTransacted, 
RegOpenKeyTransacted, and RegDeleteKeyTransacted. These new routines take the same 
parameters as their nontransacted analogues, except that a new transaction handle parameter is 
added. A developer supplies this handle after calling the KTM function CreateTransaction. 

After a transacted create or open operation, all subsequent registry operations, such as 
creating, deleting, or modifying values inside the key, will also be transacted. However, operations 
on the subkeys of a transacted key will not be automatically transacted, which is why the third 
API,  RegDeleteKeyTransacted exists. It allows the transacted deletion of subkeys, which 
RegDeleteKeyEx would not normally do. 
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Data for these transacted operations is written to log files using the common logging file 
system (CLFS) services, similar to other KTM operations. Until the transaction itself is committed 
or rolled back (both of which might happen programmatically or as a result of a power failure or 
system crash, depending on the state of the transaction), the keys, values, and other registry 
modifications performed with the transaction handle will not be visible to external applications 
through the nontransacted APIs. Also, transactions are isolated from each other; modifications 
made inside one transaction will not be visible from inside other transactions or outside the 
transaction until the transaction is committed.  

Note A nontransactional writer will abort a transaction in case of conflict—for example, if a 
value was created inside a transaction and later, while the transaction is still active, a 
nontransactional writer tries to create a value under the same key. The nontransactional operation 
will succeed and all operations in the conflicting transaction will be aborted. 

The isolation level (the “I” in ACID) implemented by TxR resource managers is read-commit, 
which means that changes become available to other readers (transacted or not) immediately after 
being committed. This mechanism is important for people who are familiar with transactions in 
databases, where the isolation level is predictable-reads (or cursor-stability, as it is called in 
database literature). With a predictable-reads isolation level, after you read a value inside a 
transaction, subsequent reads will give you back the same data. Read-commit does not make this 
guarantee. One of the consequences is that registry transactions can’t be used for “atomic” 
increment/decrement operations on a registry value.  

To make permanent changes to the registry, the application that has been using the 
transaction handle must call the KTM function CommitTransaction. (If the application decides to 
undo the changes, such as during a failure path, it can call the RollbackTransaction API.) The 
changes will then be visible through the regular registry APIs as well.  

Note If a transaction handle created with CreateTransaction is closed before the transaction is 
committed (and there are no other handles open to that transaction), the system will roll back that 
transaction. 

Apart from using the CLFS support provided by the KTM, TxR also stores its own internal 
log files in the %SystemRoot%\System32\Config\Txr folder on the system volume; these files 
have a .regtrans-ms extension and are hidden by default. Even if there are no third-party 
applications installed, it is likely that your system will contain files in this directory because 
Windows Update and Component Based Servicing take advantage of TxR to atomically write 
data  to the registry to avoid system failure or inconsistent component data in the case of an 
incomplete update. In fact, if you take a look at some of the transaction files, you should be able to 
see the key names on which the transaction was being performed. 

There is a global registry resource manager (RM) that services all the hives that are mounted 
at boot time. For every hive that is mounted explicitly, an RM is created. For applications that use 
registry transactions, the creation of an RM is transparent because KTM ensures that all RMs 
taking part in the same transaction are coordinated in the two-phase commit/abort protocol. For 
the global registry RM, the CLFS log files are stored, as mentioned earlier, inside 
System32\Config\Txr. For other hives, they are stored alongside the hive (in same directory). 
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They are hidden and follow the same naming convention, ending in .regtrans-ms. The log file 
names are prefixed with the name of the hive to which they correspond. 

4.1.6 Monitoring Registry Activity 

Because the system and applications depend so heavily on configuration settings to guide 
their behavior, system and application failures can result from changing registry data or security. 
When the system or an application fails to read settings that it assumes it will always be able to 
access, it may not function properly, display error messages that hide the root cause, or even crash. 
It’s virtually impossible to know what registry keys or values are misconfigured without 
understanding how the system or the application that’s failing is accessing the registry. In such 
situations, the Process Monitor utility from Windows Sysinternals (www.microsoft.com 
/technet/sysinternals) might provide the answer.  

Process Monitor lets you monitor registry activity as it occurs. For each registry access, 
Process Monitor shows you the process that performed the access; the time, type, and result of the 
access; and the stack of the thread at the moment of the access. This information is useful for 
seeing how applications and the system rely on the registry, discovering where applications and 
the system store configuration settings, and troubleshooting problems related to applications 
having missing registry keys or values. Process Monitor includes advanced filtering and 
highlighting so that you can zoom in on activity related to specific keys or values or to the activity 
of particular processes. 

Process Monitor Internals 

Process Monitor relies on a device driver that it extracts from its executable image at run time 
and then starts. Its first execution requires that the account running it have the Load Driver 
privilege as well as the Debug privilege; subsequent executions in the same boot session require 
only the Debug privilege because once loaded, the driver remains resident.  

EXPERIMENT: Viewing Registry activity on an idle System 

Because the registry implements the RegNotifyChangeKey function that applications can use 
to request notification of registry changes without polling for them, when you launch Process 
Monitor on a system that’s idle you should not see repetitive accesses to the same registry keys or 
values. Any such activity identifies a poorly written application that unnecessarily negatively 
affects a system’s overall performance. 

Run Process Monitor, and after several seconds examine the output log to see whether you 
can spot polling behavior. Right-click on an output line associated with polling, and then choose 
Process Properties from the context menu to view details about the process performing the 
activity. 

EXPERIMENT: Using Process Monitor to locate application Registry Settings 

In some troubleshooting scenarios, you might need to determine where in the registry the 
system or an application stores particular settings. This experiment has you use Process Monitor to 
discover the location of Notepad’s settings. Notepad, like most Windows applications, saves user 
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preferences—such as word-wrap mode, font and font size, and window position—across 
executions. By having Process Monitor watching when Notepad reads or writes its settings, you 
can identify the registry key in which the settings are stored. Here are the steps for doing this: 

1. Have Notepad save a setting that you can easily search for in a Process Monitor trace. You 
can do this by running Notepad, setting the font to Times New Roman, and then exiting Notepad. 

2. Run Process Monitor. Open the filter dialog box, and the Process Name filter, and enter 
notepad.exe as the string to match. This step specifies that Process Monitor will log only activity 
by the notepad.exe process. 

3. Run Notepad again, and after it has launched stop Process Monitor’s event capture by 
toggling Capture Events on the Process Monitor File menu. 

4. Scroll to the top line of the resultant log and select it.  

5. Press Ctrl+F to open a Find dialog box, and search for times new. Process Monitor should 
highlight a line like the one shown in the following screen that 

represents Notepad reading the font value from the registry. Other operations in the 
immediate vicinity should relate to other Notepad settings. 

 

6. Finally, double-click the highlighted line. Process Monitor will execute Regedit (if it’s not 
already running) and cause it to navigate to and select the Notepadreferenced registry value. 

Process Monitor Troubleshooting Techniques 

Two basic Process Monitor troubleshooting techniques are effective for discovering the cause 
of registry-related application or system problems: 

■ Look at the last thing in the Process Monitor trace that the application did before it failed. 
This action might point to the problem. 

■ Compare a Process Monitor trace of the failing application with a trace from a working 
system. 

To follow the first approach, run Process Monitor and then run the application. At the point 
the failure occurs, go back to Process Monitor and stop the logging (by pressing Ctrl+E). Then go 
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to the end of the log and find the last operations performed by the application before it failed (or 
crashed, hung, or whatever). Starting with the last line, work your way backward, examining the 
files, registry keys, or both that were referenced—often this will help pinpoint the problem. 

Use the second approach when the application fails on one system but works on another. 
Capture a Process Monitor trace of the application on the working and failing systems, and save 
the output to a log file. Then open the good and bad log files with Microsoft Excel (accepting the 
defaults in the Import wizard), and delete the first three columns. (If you don’t delete the first 
three columns, the comparison will show every line as different because the first three columns 
contain information that is different from run to run, such as the time and the process ID.) Finally, 
compare the resulting log files. (You can do this by using WinDiff, which is included in the 
Windows SDK). 

Entries in a Process Monitor trace that have values of NAME NOT FOUND or ACCESS 
DENIED in the Result column are ones that you should investigate. NAME NOT FOUND is 
reported when an application attempts to read from a registry key or value that doesn’t exist. In 
many cases, a missing key or value is innocuous because a process that fails to read a setting from 
the registry simply falls back on default values. In some cases, however, applications expect to 
find values for which there is no default and will fail if they are missing.  

Access-denied errors are a common source of registry-related application failures and occur 
when an application doesn’t have permission to access a key the way that it wants. Applications 
that do not validate registry operation results or perform proper error recovery will fail. 

A common result string that might appear suspicious is BUFFER OVERFLOW. It does not 
indicate a buffer-overflow exploit in the application that receives it. Instead, it’s used by the 
configuration manager to inform an application that the buffer it specified to store a registry value 
is too small to hold the value. Application developers often take advantage of this behavior to 
determine how large a buffer to allocate to store a value. They first perform a registry query with a 
0-length buffer that returns a buffer-overflow error and the length of the data it attempted to read. 
The application then allocates a buffer of the indicated size and rereads the value. You should 
therefore see operations that return BUFFER OVERFLOW repeat with a successful result. 

In one example of Process Monitor being used to troubleshoot a real problem, it saved a user 
from doing a complete reinstall of his Windows system. The symptom was that Internet Explorer 
would hang on startup if the user did not first manually dial the Internet connection. This Internet 
connection was set as the default connection for the system, so starting Internet Explorer should 
have caused an automatic dial-up to the Internet (because Internet Explorer was set to display a 
default home page upon startup). 

An examination of a Process Monitor log of Internet Explorer startup activity, going 
backward from the point in the log where Internet Explorer hung, showed a query to a key under 
HKCU\Software\Microsoft\RAS Phonebook. The user reported that he had previously uninstalled 
the dialer program associated with the key and manually created the dial-up connection. Because 
the dial-up connection name did not match that of the uninstalled dialer program, it appeared that 
the key had not been deleted by the dialer’s uninstall program and that it was causing Internet 
Explorer to hang. After the key was deleted, Internet Explorer functioned as expected. 
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Logging Activity in Unprivileged Accounts or During Logon/Logoff 

A common application-failure scenario is that an application works when run in an account 
that has Administrative group membership but not when run in the account of an unprivileged user. 
As described earlier, executing Process Monitor requires security privileges that are not normally 
assigned to standard user accounts, but you can capture a trace of applications executing in the 
logon session of an unprivileged user by using the Runas command to execute Process Monitor in 
an administrative account. 

If a registry problem relates to account logon or logoff, you’ll also have to take special steps 
to be able to use Process Monitor to capture a trace of those phases of a logon session. 
Applications that are run in the local system account are not terminated when a user logs off, and 
you can take advantage of that fact to have Process Monitor run through a logoff and subsequent 
logon. You can launch Process Monitor in the local system account either by using the At 
command that’s built into Windows and specifying the /interactive flag, or by using the 
Sysinternals PsExec utility, like this: 

1. psexec –i 0 –s –d c:\procmon.exe  

The –i switch directs PsExec to have Process Monitor’s window appear on the interactive 
console, the –s switch has PsExec run Process Monitor in the local system account, and the –d 
switch has PsExec launch Process Monitor and exit without waiting for Process Monitor to 
terminate. When you execute this command, the instance of Process Monitor that executes will 
survive logoff and reappear on the desktop when you log back on, having captured the registry 
activity of both actions. 

Another way to monitor registry activity during the logon, logoff, boot, or shutdown process 
is to use the Process Monitor log boot feature, which you can enable by selecting Log Boot on the 
Options menu. The next time you boot the system, the Process Monitor device driver logs registry 
activity from early in the boot to %SystemRoot%\Procmon.pml. It will continue logging to that 
file until disk space runs out, the system shuts down, or you run Process Monitor. A log file 
storing a registry trace of startup, logon, logoff, and shutdown on a Windows system will typically 
be between 50 and 150 MB in size. 

4.1.7 Registry Internals 

In this section, you’ll find out how the configuration manager—the executive subsystem that 
implements the registry—organizes the registry’s on-disk files. We’ll examine how the 
configuration manager manages the registry as applications and other operating system 
components read and change registry keys and values. We’ll also discuss the mechanisms by 
which the configuration manager tries to ensure that the registry is always in a recoverable state, 
even if the system crashes while the registry is being modified. 

Hives 

On disk, the registry isn’t simply one large file but rather a set of discrete files called hives. 
Each hive contains a registry tree, which has a key that serves as the root or starting point of the 
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tree. Subkeys and their values reside beneath the root. You might think that the root keys 
displayed by the Registry Editor correlate to the root keys in the hives, but such is not the case. 
Table 4-5 lists registry hives and their on-disk file names. The path names of all hives except for 
user profiles are coded into the configuration manager. As the configuration manager loads hives, 
including system profiles, it notes each hive’s path in the values under the 
HKLM\SYSTEM\CurrentControlSet\Control\Hivelist subkey, removing the path if the hive is 
unloaded. It creates the root keys, linking these hives together to build the registry structure you’re 
familiar with and that the Registry Editor displays. 

You’ll notice that some of the hives listed in Table 4-5 are volatile and don’t have associated 
files. The system creates and manages these hives entirely in memory; the hives are therefore 
temporary. The system creates volatile hives every time it boots. An example of a volatile hive is 
the HKLM\HARDWARE hive, which stores information about physical devices and the devices’ 
assigned resources. Resource assignment and hardware detection occur every time the system 
boots, so not storing this data on disk is logical. 

 

EXPERIMENT: Manually loading and Unloading Hives 
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Regedit has the ability to load hives that you can access through its File menu. This 
capability can be useful in troubleshooting scenarios where you want to view or edit a hive from 
an unbootable system or a backup medium. In this experiment, you’ll use Regedit to load a 
version of the HKLM\SYSTEM hive that Windows Setup creates during the install process. 

1. Hives can be loaded only underneath HKLM or HKU, so open Regedit, select HKLM, and 
choose Load Hive from the Regedit File menu. 

2. Navigate to the %SystemRoot%\System32\Config directory in the Load Hive dialog box, 
select System.sav, and open it. When prompted, enter Test as the name of the key under which it 
will load. 

3. Open the newly created HKLM\Test key, and explore the contents of the hive.  

4. Open HKLM\SYSTEM\CurrentControlSet\Control\Hivelist, and locate the entry 
\Registry\Machine\Test, which demonstrates how the configuration manager lists loaded hives in 
the Hivelist key. 

5. Select HKLM\Test, and then choose Unload Hive from the Regedit File menu to unload 
the hive. 

Hive Size Limits 

In some cases, hive sizes are limited. For example, Windows places a limit on the size of the 
HKLM\SYSTEM hive. It does so because Winload reads the entire HKLM\SYSTEM hive into 
physical memory near the start of the boot process when virtual memory paging is not enabled. 
Winload also loads Ntoskrnl and boot device drivers into physical memory, so it must constrain 
the amount of physical memory assigned to HKLM\SYSTEM. (See Chapter 13 for more 
information on the role Winload plays during the startup process.) On 32-bit systems, Winload 
allows the hive to be as large as 400 MB or one-half the amount of physical memory on the 
system, whichever is lower. On x64 systems, the lower bound is 1.5 GB. On Itanium systems, it is 
32 MB. 

To avoid using too much virtual memory for registry hives at one time, especially in the case 
of a Terminal Server, which must have the per-user registry settings of dozens of users available 
for reading and writing, the configuration manager on 32-bit versions of Windows does not use 
paged pool and instead relies on the memory manager’s memory-mapping functions to map into 
system memory only the portions of registry hives that it’s accessing at any given point in time. 
This allows the total size of loaded hives not to constrain the scalability of Terminal Services. 
Because 64-bit systems have ample virtual address space, and because of the additional 
bookkeeping that memory-mapping requires, 64-bit Windows uses paged pool instead. 

A special type of key known as a symbolic link makes it possible for the configuration 
manager to link keys to organize the registry. A symbolic link is a key that redirects the 
configuration manager to another key. Thus, the key HKLM\SAM is a symbolic link to the key at 
the root of the SAM hive. Symbolic links are created by specifying the REG_CREATE_LINK 
parameter to RegCreateKey or RegCreateKeyEx. Internally, the configuration  manager will 
create a REG_LINK value called SymbolicLinkValue, which will contain the path to the target 
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key. Because this value is a REG_LINK instead of a REG_SZ, it will not be visible with 
Regedit—it is, however, part of the on-disk registry hive. 

EXPERIMENT: looking at Hive Handles 

The configuration manager opens hives by using the kernel handle table (described in 
Chapter 3) so that it can access hives from any process context. Using the kernel handle table is an 
efficient alternative to approaches that involve using drivers or executive components to access 
from the System process only handles that must be protected from user processes. You can use 
Process Explorer to see the hive handles, which will be displayed as being opened in the System 
process. Select the System process, and then select Handles from the Lower Pane View menu 
entry on the View menu. Sort by handle type, and scroll until you see the hive files, as shown in 
the following screen. 

Hive Structure 

The configuration manager logically divides a hive into allocation units called blocks in 
much the same way that a file system divides a disk into clusters. By definition, the registry block 
size is 4096 bytes (4 KB). When new data expands a hive, the hive always expands in 
blockgranular increments. The first block of a hive is the base block. 

The base block includes global information about the hive, including a signature—regf—that 
identifies the file as a hive, updated sequence numbers, a time stamp that shows the last time a 
write operation was initiated on the hive, information on registry repair or recovery performed by 
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Winload, the hive format version number, a checksum, and the hive file’s internal file name (for 
example, \Device\HarddiskVolume1\WINDOWS\SYSTEM32\CONFIG\SAM). We’ll clarify the 
significance of the updated sequence numbers and time stamp when we describe how data is 
written to a hive file. 

The hive format version number specifies the data format within the hive. The configuration 
manager uses hive format version 1.3 (this version improved searching by caching the first four 
characters of the name inside the cell index structure for quick lookups) for all hives except for 
System and Software for roaming profile compatibility with Windows 2000. For System and 
Software hives, it uses version 1.5 because of the later format’s optimizations for large values 
(values larger than 1 MB are supported) and searching (instead of caching the first four characters 
of a name, a hash of the entire name is used to reduce collisions).  

Windows organizes the registry data that a hive stores in containers called cells. A cell can 
hold a key, a value, a security descriptor, a list of subkeys, or a list of key values. A field at the 
beginning of a cell’s data describes the data’s type. Table 4-6 describes each cell data type in 
detail. A cell’s header is a field that specifies the cell’s size. When a cell joins a hive and the hive 
must expand to contain the cell, the system creates an allocation unit called a bin. A bin is the size 
of the new cell rounded up to the next block or page boundary, whichever is higher. The system 
considers any space between the end of the cell and the end of the bin to be free space that it can 
allocate to other cells. Bins also have headers that contain a signature, hbin, and a field that 
records the offset into the hive file of the bin and the bin’s size.  
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By using bins, instead of cells, to track active parts of the registry, Windows minimizes some 
management chores. For example, the system usually allocates and deallocates bins less frequently 
than it does cells, which lets the configuration manager manage memory more efficiently. When 
the configuration manager reads a registry hive into memory, it reads the whole hive, including 
empty bins, but it can choose to discard them later. When the system adds and deletes cells in a 
hive, the hive can contain empty bins interspersed with active bins. This situation is similar to disk 
fragmentation, which occurs when the system creates and deletes files on the disk. When a bin 
becomes empty, the configuration manager joins to the empty bin any adjacent empty bins to form 
as large a contiguous empty bin as possible. The configuration manager also joins adjacent deleted 
cells to form larger free cells. (The configuration manager shrinks a hive only when bins at the end 
of the hive become free. You can compact the registry by backing it up and restoring it using the 
Windows RegSaveKey and RegReplaceKey functions, which are used by the Windows Backup 
utility.)  

The links that create the structure of a hive are called cell indexes. A cell index is the offset 
of a cell into the hive file minus the size of the base block. Thus, a cell index is like a pointer from 
one cell to another cell that the configuration manager interprets relative to the start of a hive. For 
example, as you saw in Table 4-6, a cell that describes a key contains a field specifying the cell 
index of its parent key; a cell index for a subkey specifies the cell that describes the subkeys that 
are subordinate to the specified subkey. A subkey-list cell contains a list of cell indexes that refer 
to the subkey’s key cells. Therefore, if you want to locate, for example, the key cell of subkey A, 
whose parent is key B, you must first locate the cell containing key B’s subkey list using the 
subkey-list cell index in key B’s cell. Then you locate each of key B’s subkey cells by using the 
list of cell indexes in the subkey-list cell. For each subkey cell, you check to see whether the 
subkey’s name, which a key cell stores, matches the one you want to locate, in this case, subkey 
A. 

The distinction between cells, bins, and blocks can be confusing, so let’s look at an example 
of a simple registry hive layout to help clarify the differences. The sample registry hive file in 
Figure 4-3 contains a base block and two bins. The first bin is empty, and the second bin contains 
several cells. Logically, the hive has only two keys: the root key Root, and a subkey of Root, Sub 
Key. Root has two values, Val 1 and Val 2. A subkey-list cell locates the root key’s subkey, and a 
value-list cell locates the root key’s values. The free spaces in the second bin are empty cells. 
Figure 4-3 doesn’t show the security cells for the two keys, which would be present in a hive. 

Figure 4-4 shows an example of the Disk Probe utility (Dskprobe.exe) examining the first bin 
in a SYSTEM hive. Notice the bin’s signature, hbin, at the top right side of the image. Look 
beneath the bin signature and you’ll see the signature nk. This signature is the signature of a key 
cell (kn). The signature displays backward because of the way x86 computers store data. The cell 
is the SYSTEM hive’s root cell, which the configuration manager has named internally 
CMI-CreateHive{C619BFE8-791A-4B77-922B-F114AB570920}, as specified by the name that 
follows the nk signature. 
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To optimize searches for both values and subkeys, the configuration manager sorts subkeylist 
cells alphabetically. The configuration manager can then perform a binary search when it looks for 
a subkey within a list of subkeys. The configuration manager examines the subkey in the middle 
of the list, and if the name of the subkey the configuration manager is looking for is alphabetically 
before the name of the middle subkey, the configuration manager knows that the subkey is in the 
first half of the subkey list; otherwise, the subkey is in the second half of the subkey list. This 
splitting process continues until the configuration manager locates the subkey or finds no match. 
Value-list cells aren’t sorted, however, so new values are always added to the end of the list. 

Cell Maps 

The configuration manager doesn’t access a hive’s image on disk every time a registry access 
occurs. Instead, the configuration manager maps portions of a hive into memory as it needs to 
access them. It uses the cache manager’s file mapping functions to map 16-KB views into the hive 
files. (See Chapter 10 for more information on the cache manager.) To prevent hive mapping from 
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consuming all the cache manager’s address range, the configuration manager tries to keep no more 
than 256 views of a hive mapped at any given point in time by unmapping least-recently-used 
(LRU) views when it reaches that limit. The configuration manager still uses the paged pool to 
store various data structures (including the LRU list of views).  

Note The configuration manager will store a block in the paged pool instead of mapping it if 
the block exceeds 256 KB in size. 

If hives never grew, the configuration manager could perform all its registry management on 
the in-memory version of a hive as if the hive were a file. Given a cell index, the configuration 
manager could calculate the location in memory of a cell simply by adding the cell index, which is 
a hive file offset, to the base of the in-memory hive image. Early in the system boot, this process is 
exactly what Winload does with the SYSTEM hive: Winload reads the entire SYSTEM hive into 
memory as a read-only hive and adds the cell indexes to the base of the inmemory hive image to 
locate cells. Unfortunately, hives grow as they take on new keys and values, which means the 
system must allocate paged pool memory to store the new bins that contain added keys and values. 
Thus, the paged pool that keeps the registry data in memory isn’t necessarily contiguous. 

EXPERIMENT: Viewing Hive Paged Pool Usage 

There are no administrative-level tools that show you the amount of paged pool that registry 
hives, including user profiles, are consuming on Windows. However, the !reg dumppool kernel 
debugger command shows you not only how many pages of the paged pool each loaded hive 
consumes but also how many of the pages store volatile and nonvolatile data. The command prints 
the total hive memory usage at the end of the output. (The command shows only the last 32 
characters of a hive’s name.)  

1. kd> !reg dumppool   
2. dumping hive at e20d66a8 (a\Microsoft\Windows\UsrClass.dat)   
3. Stable Length = 1000  
4. 1/1 pages present   
5. Volatile Length = 0  
6. dumping hive at e215ee88 (ettings\Administrator\ntuser.dat)   
7. Stable Length = f2000  
8. 242/242 pages present   
9. Volatile Length = 2000  
10.2/2 pages present   

11.dumping hive at e13fa188 (\SystemRoot\System32\Config\SAM)  

12.Stable Length = 5000  

13.5/5 pages present   

14.Volatile Length = 0  

15....  

EXPERIMENT: Viewing Hive Memory Usage 

You can view statistics on hive memory usage, including its stable (on-disk) size and 
nonvolatile size, the number of active views, and the number of views that are locked into memory, 
using the !reg hivelist command (note that the line output wraps):  
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1. -------------------------------------------------------------------- 

2. -----------------------   

3. | HiveAddr |Stable Length|Stable Map|Volatile Length|Volatile Map|MappedV

iews|PinnedViews|U(Cnt)| BaseBlock | FileName   

4. -------------------------------------------------------------------------  

5. -----------------------   

6. | 9b106a30 | 24000 | 9b106aa8 | 0 | 00000000 | 10 |   

7. 0 | 0| 9b19d000 | files\NetworkService\ntuser.dat   

8. | 9b1d3008 | 23000 | 9b1d3080 | 0 | 00000000 | 9 |   

9. 0 | 0| 9b1d2000 | rofiles\LocalService\ntuser.dat   

10. | 9c1a8008 | 374000 | 9c0b3000 | 2000 | 9c1a81bc | 174 |   

11. 0 | 0| 9c080000 | :\Users\Abby\ntuser.dat   

12. | 9cfdba30 | 219000 | 9ce77000 | 1000 | 9cfdbbe4 | 103 |   

13. 0 | 0| 9c0f8000 | \Microsoft\Windows\UsrClass.dat   

14. ...  

In the preceding output, the Abby account’s profile hive (the full path of which, 
\Users\Abby\ntuser.dat, is truncated in the output) has 174 mapped views and is approximately 
3.45 MB in size (0x374000 in decimal). The !reg viewlist command will dump the mapped views 
of the hive you specify. Here’s the output of that command when executed for the UsrClass.dat 
hive that was printed as the last hive of the !reg hivelist command’s output: 

1. lkd> !reg viewlist 9cfdba30  

2. 0 Pinned Views ; PinViewListHead = 9cfdbd5c 9cfdbd5c   

3. 103 Mapped Views ; LRUViewListHead = 91d3e058 91d3bd60  

4. ------------------------------------------------------------------------- 

5. ------------------------   

6. | ViewAddr |FileOffset| Size |ViewAddress| Bcb | LRUViewList |   

7. PinViewList | UseCount |   

8. ------------------------------------------------------------------------- 

9. ------------------------   

10. | 91d3e058 | 1000 | 3000 | 9de81000 | 8611dd11 | 975c6870 9cfdbd54 |   

11. 91d3e060 91d3e060 | 0 |   

12. | 975c6870 | 138000 | 4000 | 9dfb8000 | 8611dd91 | 96756278 91d3e058 |   

13. 975c6878 975c6878 | 0 |  

The output shows the addresses of the two views that the hivelist command reported for the 
hive in the ViewAddress column. Using the debugger’s db command to dump the contents of 
memory at the address of the first view reveals that it maps a base block of the hive, recognizable 
with its hbin signature. 

1. lkd> db 9de81000  

2. 9de81000 68 62 69 6e 00 00 00 00-00 10 00 00 00 00 00 00 hbin............

   

3. 9de81010 00 00 00 00 56 b1 b8 fe-2b 61 c8 01 00 00 00 00 ....V...+a......
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4. 9de81020 78 ff ff ff 6e 6b 2c 00-10 63 0b c6 89 58 c8 01 x...nk,..c...X..

   

5. 9de81030 00 00 00 00 e0 06 00 00-56 00 00 00 00 00 00 00 ........V.......

   

6. 9de81040 a0 af 01 00 ff ff ff ff-00 00 00 00 ff ff ff ff ................

   

7. 9de81050 28 01 00 00 ff ff ff ff-4c 00 00 00 00 00 00 00 (.......L.......

   

8. 9de81060 00 00 00 00 00 00 00 00-00 00 00 00 36 00 00 00 ............6...

   

9. 9de81070 53 2d 31 2d 35 2d 32 31-2d 34 30 34 37 36 30 39 S-1-5-21-4047609

  

To deal with noncontiguous memory addresses referencing hive data in memory, the 
configuration manager adopts a strategy similar to what the Windows memory manager uses to 
map virtual memory addresses to physical memory addresses. The configuration manager employs 
a two-level scheme, which Figure 4-5 illustrates, that takes as input a cell index (that is, a hive file 
offset) and returns as output both the address in memory of the block the cell index resides in and 
the address in memory of the block the cell resides in. Remember that a bin can contain one or 
more blocks and that hives grow in bins, so Windows always represents a bin with a contiguous 
region of memory. Therefore, all blocks within a bin occur within the same cache manager view. 

  

To implement the mapping, the configuration manager divides a cell index logically into 
fields, in the same way that the memory manager divides a virtual address into fields. Windows 
interprets a cell index’s first field as an index into a hive’s cell map directory. The cell map 
directory contains 1024 entries, each of which refers to a cell map table that contains 512 map 
entries. An entry in this cell map table is specified by the second field in the cell index. That entry 
locates the bin and block memory addresses of the cell. Not all bins are necessarily mapped into 
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memory, and if a cell lookup yields an address of 0, the configuration manager maps the bin into 
memory, unmapping another on the mapping LRU list it maintains, if necessary. 

In the final step of the translation process, the configuration manager interprets the last field 
of the cell index as an offset into the identified block to precisely locate a cell in memory. When a 
hive initializes, the configuration manager dynamically creates the mapping tables, designating a 
map entry for each block in the hive, and it adds and deletes tables from the cell directory as the 
changing size of the hive requires. 

The Registry Namespace and Operation  

The configuration manager defines a key object object type to integrate the registry’s 
namespace with the kernel’s general namespace. The configuration manager inserts a key object 
named Registry into the root of the Windows namespace, which serves as the entry point to the 
registry. Regedit shows key names in the form HKEY_LOCAL_MACHINE\SYSTEM 
\CurrentControlSet, but the Windows subsystem translates such names into their object namespace 
form (for example, \Registry\Machine\System\CurrentControlSet). When the Windows object 
manager parses this name, it encounters the key object by the name of Registry first and hands the 
rest of the name to the configuration manager. The configuration manager takes over the name 
parsing, looking through its internal hive tree to find the desired key or value. Before we describe 
the flow of control for a typical registry operation, we need to discuss key objects and key control 
blocks. Whenever an application opens or creates a registry key, the object manager gives a 
handle with which to reference the key to the application. The handle corresponds to a key object 
that the configuration manager allocates with the help of the object manager. By using the object 
manager’s object support, the configuration manager takes advantage of the security and 
reference-counting functionality that the object manager provides. 

For each open registry key, the configuration manager also allocates a key control block. A 
key control block stores the name of the key, includes the cell index of the key node that the 
control block refers to, and contains a flag that notes whether the configuration manager needs to 
delete the key cell that the key control block refers to when the last handle for the key closes. 
Windows places all key control blocks into a hash table to enable quick searches for existing key 
control blocks by name. A key object points to its corresponding key control block, so if two 
applications open the same registry key, each will receive a key object, and both key objects will 
point to a common key control block. When an application opens an existing registry key, the flow 
of control starts with the application specifying the name of the key in a registry API that invokes 
the object manager’s name-parsing routine. The object manager, upon encountering the 
configuration manager’s registry key object in the namespace, hands the path name to the 
configuration manager. The configuration manager performs a lookup on the key control block 
hash table. If the related key control block is found there, there’s no need for any further work; 
otherwise, the lookup provides the configuration manager with the closest key control block to the 
searched key, and the lookup continues by using the in-memory hive data structures to search 
through keys and subkeys to find the specified key. If the configuration manager finds the key cell, 
the configuration manager searches the key control block tree to determine whether the key is 
open (by the same or another application). The search routine is optimized to always start from the 
closest ancestor with a key control block already opened. For example, if an application opens 
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\Registry\Machine\Key1\Subkey2, and \Registry\Machine is already opened, the parse routine 
uses the key control block of \Registry\Machine as a starting point. If the key is open, the configur 
ation manager increments the existing key control block’s reference count. If the key isn’t open, 
the configuration manager allocates a new key control block and inserts it into the tree. Then the 
configuration manager allocates a key object, points the key object at the key control block, and 
returns control to the object manager, which returns a handle to the application. 

When an application creates a new registry key, the configuration manager first finds the key 
cell for the new key’s parent. The configuration manager then searches the list of free cells for the 
hive in which the new key will reside to determine whether cells exist that are large enough to 
hold the new key cell. If there aren’t any free cells large enough, the configuration manager 
allocates a new bin and uses it for the cell, placing any space at the end of the 

bin on the free cell list. The new key cell fills with pertinent information—including the 
key’s name—and the configuration manager adds the key cell to the subkey list of the parent key’s 
subkey-list cell. Finally, the system stores the cell index of the parent cell in the new subkey’s key 
cell. 

The configuration manager uses a key control block’s reference count to determine when to 
delete the key control block. When all the handles that refer to a key in a key control block close, 
the reference count becomes 0, which denotes that the key control block is no longer necessary. If 
an application that calls an API to delete the key sets the delete flag, the configuration manager 
can delete the associated key from the key’s hive because it knows that no application is keeping 
the key open.  

EXPERIMENT: Viewing Key Control blocks 

You can use the kernel debugger to list all the key control blocks allocated on a system with 
the command !reg openkeys. Alternatively, if you want to view the key control block for a 
particular open key, use !reg findkcb: 

1. kd> !reg findkcb \registry\machine\software\microsoft   

2. Found KCB = e1034d40 :: \REGISTRY\MACHINE\SOFTWARE\MICROSOFT   

3. You can then examine a reported key control block with the !reg kcb       

command:   

4. kd> !reg kcb e1034d40  

5. Key : \REGISTRY\MACHINE\SOFTWARE\MICROSOFT   

6. RefCount : 1f   

7. Flags : CompressedName, Stable   

8. ExtFlags :   

9. Parent : 0xe1997368  

10. KeyHive : 0xe1c8a768  

11. KeyCell : 0x64e598 [cell index]   

12. TotalLevels : 4  

13. DelayedCloseIndex: 2048  

14. MaxNameLen : 0x3c   

15. MaxValueNameLen : 0x0  

16. MaxValueDataLen : 0x0  
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17. LastWriteTime : 0x 1c42501:0x7eb6d470  

18. KeyBodyListHead : 0xe1034d70 0xe1034d70  

19. SubKeyCount : 137  

20. ValueCache.Count : 0  

21. KCBLock : 0xe1034d40  

22. KeyLock : 0xe1034d40  

The Flags field indicates that the name is stored in compressed form, and the SubKeyCount field 
shows that the key has 137 subkeys.  

Stable Storage 

To make sure that a nonvolatile registry hive (one with an on-disk file) is always in a 
recoverable state, the configuration manager uses log hives. Each nonvolatile hive has an 
associated log hive, which is a hidden file with the same base name as the hive and a logN 
extension. To ensure forward progress, the configuration manger uses a dual-logging scheme. 
There are potentially two log files: .log1 and .log2. If, for any reason, .log1 was written but a 
failure occurred while writing dirty data to the primary log file, the next time a flush happens, a 
switch to .log2 will occur with the cumulative dirty data. If that fails as well, the cumulative dirty 
data (the data in .log1 and the data that was dirtied in between) is saved in .log2. As a 
consequence, .log1 will be used again next time around, until a successful write operation is done 
to the primary log file. If no failure occurs, only .log1 is used. 

For example, if you look in your %SystemRoot%\System32\Config directory (and you have 
the Show Hidden Files And Folders folder option selected), you’ll see System.log1, Sam.log1, and 
other .log1 and .log2 files. When a hive initializes, the configuration manager allocates a bit array 
in which each bit represents a 512-byte portion, or sector, of the hive. This array is called the dirty 
sector array because an on bit in the array means that the system has modified the corresponding 
sector in the hive in memory and must write the sector back to the hive file. (An off bit means that 
the corresponding sector is up to date with the in-memory hive’s contents.) 

When the creation of a new key or value or the modification of an existing key or value takes 
place, the configuration manager notes the sectors of the hive that change in the hive’s dirty sector 
array. Then the configuration manager schedules a lazy write operation, or a hive sync. The hive 
lazy writer system thread wakes up 5 seconds after the request to synchronize the hive and writes 
dirty hive sectors for all hives from memory to the hive files on disk. Thus, 

the system flushes, at the same time, all the registry modifications that take place between the 
time a hive sync is requested and the time the hive sync occurs. When a hive sync takes place, the 
next hive sync will occur no sooner than 5 seconds later. 

Note The RegFlushKey API’s name implies that the function only flushes modified data for a 
specified key to disk, but it actually triggers a full registry flush, which has a major performance 
impact on the system. For that reason and the fact that the registry automatically makes sure that 
modified data is in stable storage within seconds, application programmers should avoid using it. 

If the lazy writer simply wrote all a hive’s dirty sectors to the hive file and the system crashed 
in mid-operation, the hive file would be in an inconsistent (corrupted) and unrecoverable state. To 
prevent such an occurrence, the lazy writer first dumps the hive’s dirty sector array and all the 
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dirty sectors to the hive’s log file, increasing the log file’s size if necessary. The lazy writer then 
updates a sequence number in the hive’s base block and writes the dirty sectors to the hive. When 
the lazy writer is finished, it updates a second sequence number in the base block. Thus, if the 
system crashes during the write operations to the hive, at the next reboot the configuration 
manager will notice that the two sequence numbers in the hive’s base block don’t match. The 
configuration manager can update the hive with the dirty sectors in the hive’s log file to roll the 
hive forward. The hive is then up to date and consistent.  

The Windows Boot Loader also contains some code related to registry reliability. For 
example, it can parse the System.log file before the kernel is loaded and do repairs to fix 
consistency. Additionally, in certain cases of hive corruption (such as if a base block, bin, or cell 
contains data that fails consistency checks) the configuration manager can reinitialize corrupted 
data structures, possibly deleting subkeys in the process, and continue normal operation. If it has 
to resort to self-healing operation, it pops up a system error dialog box notifying the user. 

Note When you look at the hidden files on %SystemRoot%\System32\Config, you’ll also see 
a file named System.sav. System.sav is the version of the SYSTEM hive that served as the initial 
copy of the System hive and is what Windows Setup copied from the install media.  

Registry Filtering 

The configuration manager in the Windows kernel implements a powerful model of registry 
filtering, which allows for monitoring of registry activity by tools such as Process Monitor. When 
a driver uses the callback mechanism, it registers a callback function with the configuration 
manager. The configuration manager executes the driver’s callback function before and after the 
execution of registry system services so that the driver has full visibility and control over registry 
accesses. Antivirus products that scan registry data for viruses or prevent unauthorized processes 
from modifying the registry are other users of the callback mechanism. 

Registry callbacks are also associated with the concept of altitudes. Altitudes are a way for 
different vendors to register a “height” on the registry filtering stack so that the order in which the 
system calls each callback routine can be deterministic and correct. This avoids a scenario in 
which an antivirus product would be scanning encrypted keys before an encryption product would 
run its own callback to decrypt them. With the Windows registry callback model, both types of 
tools are assigned a base altitude corresponding to the type of filtering they are doing—in this case, 
encryption versus scanning. Secondly, companies that create these types of tools must register 
with Microsoft so that within their own group, they will not collide with similar and/or competing 
products. The most up-to-date version of this list can be downloaded from http://down- 
load.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Alloc-Alt.xls. 

The filtering model also includes the ability to either completely take over the processing of 
the registry operation (bypassing the configuration manager and preventing it from handling the 
request) or redirect the operation to a different operation (such as Wow64’s registry redirection). 
Additionally, it is also possible to modify the output parameters as well as the return value of a 
registry operation. 

Finally, drivers can assign and tag per-key or per-operation driver-defined information for 
their own purposes. A driver can create and assign this context data during a create or open 
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operation, which the configuration manager will remember and return during each subsequent 
operation on the key. 

Registry Optimizations 

The configuration manager makes a few noteworthy performance optimizations. First, 
virtually every registry key has a security descriptor that protects access to the key. Storing a 
unique security-descriptor copy for every key in a hive would be highly inefficient, however, 
because the same security settings often apply to entire subtrees of the registry. When the system 
applies security to a key, the configuration manager checks a pool of the unique security 
descriptors used within the same hive as the key to which new security is being applied, and it 
shares any existing descriptor for the key, ensuring that there is at most one copy of every unique 
security descriptor in a hive. 

The configuration manager also optimizes the way it stores key and value names in a hive. 
Although the registry is fully Unicode-capable and specifies all names using the Unicode 
convention, if a name contains only ASCII characters, the configuration manager stores the name 
in ASCII form in the hive. When the configuration manager reads the name (such as when 
performing name lookups), it converts the name into Unicode form in memory. Storing the name 
in ASCII form can significantly reduce the size of a hive.  

To minimize memory usage, key control blocks don’t store full key registry path names. 
Instead, they reference only a key’s name. For example, a key control block that refers to 
\Registry\System\Control would refer to the name Control rather than to the full path. A further 
memory optimization is that the configuration manager uses key name control blocks to store key 
names, and all key control blocks for keys with the same name share the same key name control 
block. To optimize performance, the configuration manager stores the key control block names in 
a hash table for quick lookups. 

To provide fast access to key control blocks, the configuration manager stores frequently 
accessed key control blocks in the cache table, which is configured as a hash table. When the 
configuration manager needs to look up a key control block, it first checks the cache table. Finally, 
the configuration manager has another cache, the delayed close table, that stores key control 
blocks that applications close so that an application can quickly reopen a key it has recently closed. 
The configuration manager removes the oldest key control blocks from the delayed close table as 
it adds the most recently closed blocks to the table.  

4.2 Services 

Almost every operating system has a mechanism to start processes at system startup time that 
provide services not tied to an interactive user. In Windows, such processes are called services or 
Windows services, because they rely on the Windows API to interact with the system. Services 
are similar to UNIX daemon processes and often implement the server side of client/server 
applications. An example of a Windows service might be a Web server, because it must be 
running regardless of whether anyone is logged on to the computer and it must start running when 
the system starts so that an administrator doesn’t have to remember, or even be present, to start it.  
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Windows services consist of three components: a service application, a service control 
program (SCP), and the service control manager (SCM). First, we’ll describe service applications, 
service accounts, and the operations of the SCM. Then we’ll explain how auto-start services are 
started during the system boot. We’ll also cover the steps the SCM takes when a service fails 
during its startup and the way the SCM shuts down services. 

4.2.1 Service Applications 

Service applications, such as Web servers, consist of at least one executable that runs as a 
Windows service. A user wanting to start, stop, or configure a service uses an SCP. Although 
Windows supplies built-in SCPs that provide general start, stop, pause, and continue functionality, 
some service applications include their own SCP that allows administrators to specify 
configuration settings particular to the service they manage.  

Service applications are simply Windows executables (GUI or console) with additional code 
to receive commands from the SCM as well as to communicate the application’s status back to the 
SCM. Because most services don’t have a user interface, they are built as console programs. 

When you install an application that includes a service, the application’s setup program must 
register the service with the system. To register the service, the setup program calls the Windows 
CreateService function, a services-related function implemented in Advapi32.dll 
(%SystemRoot%\System32\Advapi32.dll). Advapi32, the “Advanced API” DLL, implements all 
the client-side SCM APIs. 

When a setup program registers a service by calling CreateService, a message is sent to the 
SCM on the machine where the service will reside. The SCM then creates a registry key for the 
service under HKLM\SYSTEM\CurrentControlSet\Services. The Services key is the nonvolatile 
representation of the SCM’s database. The individual keys for each service define the path of the 
executable image that contains the service as well as parameters and configuration options. 

After creating a service, an installation or management application can start the service via 
the StartService function. Because some service-based applications also must initialize during the 
boot process to function, it’s not unusual for a setup program to register a service as an auto-start 
service, ask the user to reboot the system to complete an installation, and let the SCM start the 
service as the system boots. 

When a program calls CreateService, it must specify a number of parameters describing the 
service’s characteristics. The characteristics include the service’s type (whether it’s a service that 
runs in its own process rather than a service that shares a process with other services), the location 
of the service’s executable image file, an optional display name, an optional account name and 
password used to start the service in a particular account’s security context, a start type that 
indicates whether the service starts automatically when the system boots or manually under the 
direction of an SCP, an error code that indicates how the system should react if the service detects 
an error when starting, and, if the service starts automatically, optional information that specifies 
when the service starts relative to other services. The SCM stores each characteristic as a value in 
the service’s registry key. Figure 4-6 shows an example of a service registry key. 
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    Table 4-7 lists all the service characteristics, many of which also apply to device drivers. (Not 
every characteristic applies to every type of service or device driver.) If a service needs to store 
configuration information that is private to the service, the convention is to create a subkey named 
Parameters under its service key and then store the configuration information in values under that 
subkey. The service then can retrieve the values by using standard registry functions. 

Note The SCM does not access a service’s Parameters subkey until the service is deleted, at 
which time the SCM deletes the service’s entire key, including subkeys like Parameters.  
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Notice that Type values include three that apply to device drivers: device driver, file system 
driver, and file system recognizer. These are used by Windows device drivers, which also store 
their parameters as registry data in the Services registry key. The SCM is responsible for starting 
drivers with a Start value of SERVICE_AUTO_START or SERVICE_DEMAND_START, so it’s 
natural for the SCM database to include drivers. Services use the other types, 
SERVICE_WIN32_OWN_PROCESS and SERVICE_WIN32_SHARE_PROCESS, which are 
mutually exclusive. 

An executable that hosts more than one service specifies the SERVICE_WIN32_SHARE_ 
PROCESS type. An advantage to having a process run more than one service is that the system 
resources that would otherwise be required to run them in distinct processes are saved. A potential 
disadvantage is that if one of the services of a collection running in the same process causes an 
error that terminates the process, all the services of that process terminate. Also, another limitation 
is that all the services must run under the same account (however, if a service takes advantage of 
service security hardening mechanisms added in Windows Vista and Windows Server 2008, it can 
limit some of its exposure to malicious attacks). 

When the SCM starts a service process, the process immediately invokes the 
StartService-CtrlDispatcher function. StartServiceCtrlDispatcher accepts a list of entry points into 
services, one entry point for each service in the process. Each entry point is identified by the name 
of the service the entry point corresponds to. After making a named pipe communications 
connection to the SCM, StartServiceCtrlDispatcher sits in a loop (or for better performance, 
registers a notification) waiting for commands to come through the pipe from the SCM. The SCM 
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sends a service-start command each time it starts a service the process owns. For each start 
command it receives, the StartServiceCtrlDispatcher function creates a thread, called a service 
thread, to invoke the starting service’s entry point and implement the command loop for the 
service. StartServiceCtrlDispatcher waits indefinitely for commands from the SCM and returns 
control to the process’s main function only when all the process’s services have stopped, allowing 
the service process to clean up resources before exiting.  

A service entry point’s first action is to call the RegisterServiceCtrlHandler function. This 
function receives and stores a pointer to a function, called the control handler, which the service 
implements to handle various commands it receives from the SCM. RegisterServiceCtrlHandler 
doesn’t communicate with the SCM, but it stores the function in local process memory for the 
StartServiceCtrlDispatcher function. The service entry point continues initializing the service, 
which can include allocating memory, creating communications end points, and reading private 
configuration data from the registry. A convention most services follow is to store their 
parameters under a subkey of their service registry key, named Parameters. While the entry point 
is initializing the service, it might periodically send status messages, using the SetServiceStatus 
function, to the SCM indicating how the service’s startup is progressing. After the entry point 
finishes initialization, a service thread usually sits in a loop waiting for requests from client 
applications. For example, a Web server would initialize a TCP listen socket and wait for inbound 
HTTP connection requests. 

A service process’s main thread, which executes in the StartServiceCtrlDispatcher function, 
receives SCM commands directed at services in the process and invokes the target service’s 
control handler function (stored by RegisterServiceCtrlHandler). SCM commands include 
stop,  pause, resume, interrogate, and shutdown or application-defined commands. Figure 4-7 
shows the internal organization of a service process. Pictured are the two threads that make up a 
process hosting one service: the main thread and the service thread. 

 

Service Accounts 

The security context of a service is an important consideration for service developers as well 
as for system administrators because it dictates what resources the process can access. Unless a 
service installation program or administrator specifies otherwise, most services run in the security 
context of the local system account (displayed sometimes as SYSTEM and other times as 
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LocalSystem). Two other built-in accounts are the network service and local service accounts. 
These accounts have fewer capabilities than the local system account from a security standpoint, 
and any built-in Windows service that does not require the power of the local system account runs 
in the appropriate alternate service account. The following subsections describe the special 
characteristics of these accounts. 

The Local System Account 

The local system account is the same account in which core Windows user-mode operating 
system components run, including the Session Manager (%SystemRoot%\System32\Smss.exe), 
the Windows subsystem process (Csrss.exe), the Local Security Authority process 
(%SystemRoot%\System32\Lsass.exe), and the Logon process (%SystemRoot%\System32 
\Winlogon.exe). For more information on these latter two processes, see Chapter 6. From a 
security perspective, the local system account is extremely powerful—more powerful than any 
local or domain account when it comes to security ability on a local system. This account has the 
following characteristics: 

■ It is a member of the local administrators group. Table 4-8 shows the groups to which the 
local system account belongs. (See Chapter 6 for information on how group membership is used in 
object access checks.) 

■ It has the right to enable virtually every privilege (even privileges not normally granted to 
the local administrator account, such as creating security tokens). See Table 4-9 for the list of 
privileges assigned to the local system account. (Chapter 6 describes the use of each privilege.) 

■ Most files and registry keys grant full access to the local system account. (Even if they 
don’t grant full access, a process running under the local system account can exercise the 
take-ownership privilege to gain access.) 

■ Processes running under the local system account run with the default user profile 
(HKU\.DEFAULT). Therefore, they can’t access configuration information stored in the user 
profiles of other accounts. 

■ When a system is a member of a Windows domain, the local system account includes the 
machine security identifier (SID) for the computer on which a service process is running. 
Therefore, a service running in the local system account will be automatically authenticated on 
other machines in the same forest by using its computer account. (A forest is a grouping of 
domains.) 

■ Unless the machine account is specifically granted access to resources (such as network 
shares, named pipes, and so on), a process can access network resources that allow null 
sessions—that is, connections that require no credentials. You can specify the shares and pipes on 
a particular computer that permit null sessions in the NullSessionPipes and NullSessionShares 
registry values under HKLM\SYSTEM\CurrentControlSet\Services\lanmanserver\parameters. 



 283

  

  

The Network Service Account 

The network service account is intended for use by services that want to authenticate to other 
machines on the network using the computer account, as does the local system account, but do not 
have the need for membership in the Administrators group or the use of many of the privileges 
assigned to the local system account. Because the network service account does not belong to the 
Administrators group, services running in the network service account by default have access to 
far fewer registry keys and file system folders and files than the services running in the local 
system account. Further, the assignment of few privileges limits the scope of a compromised 
network service process. For example, a process running in the network service account cannot 
load a device driver or open arbitrary processes. 

Another difference between the network service and local system accounts is that processes 
running in the network service account use the network service account’s profile. The registry 
component of the network service profile loads under HKU\S-1-5-20, and the files and directories 
that make up the component reside in %SystemRoot%\ServiceProfiles\NetworkService. A service 
that runs in the network service account is the DNS client, which is responsible for resolving DNS 
names and for locating domain controllers. 
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The Local Service Account 

The local service account is virtually identical to the network service account with the 
important difference that it can access only network resources that allow anonymous access. Table 
4-9 shows that the network service account has the same privileges as the local service account, 
and Table 4-8 shows that it belongs to the same groups with the exception that it belongs to the 
Network Service group instead of the Local Service group. The profile used by processes running 
in the local service loads into HKU\S-1-5-19 and is stored in %SystemRoot%\ServiceProfiles 
\LocalService. 

Examples of services that run in the local service account include the Remote Registry 
Service, which allows remote access to the local system’s registry, and the LmHosts service, 
which performs NetBIOS name resolution.  

Running Services in Alternate Accounts 

Because of the restrictions just outlined, some services need to run with the security 
credentials of a user account. You can configure a service to run in an alternate account when the 
service is created or by specifying an account and password that the service should run under with 
the Windows Services MMC snap-in. In the Services snap-in, right-click on a service and select 
Properties, click the Log On tab, and select the This Account option, as shown in Figure 4-8. 

Running with Least Privilege 

Prior to Windows Vista and Windows Server 2008, services were subject to an all-or-nothing 
model, meaning that all privileges available to the account the service process was running under 
would be available to a service running in the process that might require only a subset of those 
privileges. To better conform to the principle of least privilege, in which Windows assigns 
services only the privileges they require, in Windows Vista and Windows Server 2008 developers 
can specify the privileges their service requires, and the SCM creates a security token that contains 
only those privileges. 

  

Note The privileges a service specifies must be a subset of those that are available to the 
service account in which it runs 
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Service developers use the ChangeServiceConfig2 API to indicate the list of privileges they 
desire. The API saves that information in the registry under the Parameters key for the service. 
When the service starts, the SCM reads the key and adds those privileges to the token of the 
process in which the service is running. If there is a RequiredPrivileges value and the service is 
stand-alone (running as a dedicated process), the SCM will create a token containing only the 
privileges that the service needs. For services running as part of a multiservice service process (as 
are most services that are part of Windows) and specifying required privileges, the SCM will 
compute the union of those privileges and combine them for the service-hosting process’s token. 
In other words, only the privileges not specified by any of the services that are part of that service 
group will be removed. In the case in which the registry value does not exist, the SCM has no 
choice but to assume that the service is either incompatible with least privileges or requires all 
privileges in order to function. In this case, the full token is created, containing all privileges, and 
no additional security is offered by this model. To strip almost all privileges, services can specify 
only the “Change Notify” privilege. 

EXPERIMENT: Viewing Privileges Required by Services 

You can look at the privileges a service requires with the Service Control utility, Sc.exe, and 
the qprivs option. Additionally, Process Explorer can show you information about the security 
token of any service process on the system, so you can compare the information returned by 
Sc.exe with the privileges part of the token. The following steps show you how to do this for some 
of the best locked-down services on the system.  

1. Use Sc.exe to take a look at the required privileges specified by Dhcp by typing into a 
command prompt: 

1. sc qprivs dhcp  

You should see two privileges being requested: the SeCreateGlobalPrivilege and the 
SeChangeNotifyPrivilege. 

2. Run Process Explorer and take a look at the process list. You should see a couple of 
Svchost.exe processes that are hosting the services on your machine. Process Explorer highlights 
these in pink.  

3. Now locate the service hosting process in which the Dhcp service is running. It should be 
running alongside other services that are part of the LocalServiceNetworkRestricted service group, 
such as the Audiosrv service and Eventlog service. You can do this by hovering the mouse over 
each Svchost process and reading the tooltip, which contains the names of the services running 
inside the service host. 

4. Once you’ve found the process, double-click to open the Properties dialog box and select 
the Security tab. 
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Note that although the service is running as part of the local service account, the list of 
privileges Windows assigned to it is much shorter than the list available to the local service 
account shown in Table 4-9. 

Because for a service-hosting process, the privileges part of the token is the union of the 
privileges requested by all the services running inside it, this must mean that services such as 
Audiosrv and Eventlog have not requested privileges other than the ones shown by Process 
Explorer. You can verify this by running the Sc.exe tool on those other services as well. 

Service Isolation 

Although restricting the privileges that a service has access to helps lessen the ability of a 
compromised service process to compromise other processes, it does nothing to isolate the service 
from resources that the account in which it is running has access to under normal conditions. As 
mentioned earlier, the local system account has complete access to critical system files, registry 
keys, and other securable objects on the system because the access control lists (ACLs) grant 
permissions to that account. 

At times, access to some of these resources is indeed critical to a service’s operation, while 
other objects should be secured from the service. Previously, to avoid running in the local system 
account to obtain access to required resources, a service would be run under a standard user 
account and ACLs would be added on the system objects, which greatly increased the risk of 
malicious code attacking the system. Another solution was to create dedicated service accounts 
and set specific ACLs for each account (associated to a service), but this approach easily became 
an administrative hassle. 

Windows now combines these two approaches into a much more manageable solution: it 
allows services to run in a nonprivileged account but still have access to specific privileged 
resources without lowering the security of those objects. In a manner similar to the second 
pre–Windows Vista solution, the ACLs on an object can now set permissions directly for a service, 
but not by requiring a dedicated account. Instead, the SCM generates a service SID to represent a 
service, and this SID can be used to set permissions on resources such as registry keys and files. 
Service SIDs are implemented in the group SIDs part of the token for any process hosting a 
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service. They are generated by the SCM during system startup for each service that has requested 
one via the ChangeServiceConfig2 API. In the case of service-hosting processes (a process that 
contains more than one service), the process’s token will contain the service SIDs of all services 
that are part of the service group associated with the process, including services that are not started 
because there is no way to add new SIDs after a token has been created. 

The usefulness of having a SID for each service extends beyond the mere ability to add ACL 
entries and permissions for various objects on the system as a way to have fine-grained control 
over their access. Our discussion initially covered the case in which certain objects on the system, 
accessible by a given account, must be protected from a service running within that same account. 
As we’ve described to this point, service SIDs only prevent that problem by requiring that Deny 
entries associated with the service SID be placed on every object that needs to be secured, a 
clearly unmanageable approach. To avoid requiring Deny access control entries (ACEs) as a way 
to prevent services from having access to resources that the user account in which they run does 
have access, there are two types of service SIDs: the restricted service SID 
(SERVICE_SID_TYPE_RESTRICTED) and the unrestricted service SID 
(SERVICE_SID_TYPE_UNRESTRICTED), the latter being the default and the case we’ve 
looked at until now. 

Unrestricted service SIDs are created as enabled-by-default, group owner SIDs, and the 
process token is also given a new ACE providing full permission to the service logon SID, which 
allows the service to continue communicating with the SCM. (A primary use of this would be to 
enable or disable service SIDs inside the process during service startup or shutdown.) A restricted 
service SID, on the other hand, turns the service-hosting process’s token into a write-restricted 
token (see Chapter 6 for more information on tokens), which means that only objects granting 
explicit write access to the service SID will be writable by the service, regardless of the account 
it’s running as. Because of this, all services running inside that process (part of the same service 
group) must have the restricted SID type; otherwise, services with the restricted SID type will fail 
to start. Once the token becomes write-restricted, three more SIDs are added for compatibility 
reasons: 

■ The world SID is added to allow write access to objects that are normally accessible by 
anyone anyway, most importantly certain DLLs in the load path. 

■ The service logon SID is added to allow the service to communicate with the SCM. 

■ The write-restricted SID is added to allow objects to explicitly allow any write-restricted 
service write access to them. For example, Event Tracing for Windows (ETW) uses this SID on its 
objects to allow any write-restricted service to generate events. Figure 4-9 shows an example of a 
service-hosting process containing services that have been marked as having restricted service 
SIDs. For example, the Base Filtering Engine (BFE), which is responsible for applying Windows 
Firewall filtering rules, is part of this service because these rules are stored in registry keys that 
must be protected from malicious write access should a service be compromised (this could allow 
a service exploit to disable the outgoing traffic firewall rules, enabling bidirectional 
communication with an attacker, for example). 
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By blocking write access to objects that would otherwise be writable by the service (through 
inheriting the permissions of the account it is running as), restricted service SIDs solve the other 
side of the problem we initially presented because users do not need to do anything to prevent a 
service running in a privileged account from having write access to critical system files, registry 
keys, or other objects, limiting the attack exposure of any such service that may have been 
compromised.  

Windows also allows for firewall rules that reference service SIDs linked to one of the three 
behaviors described in Table 4-10. 

  

Interactive Services and Session 0 Isolation 

One restriction for services running under the local system, local service, and network service 
accounts that has always been present in Windows is that these services could not (without using a 
special flag on the MessageBox function, discussed in a moment) display dialog boxes or 
windows on the interactive user’s desktop. This limitation wasn’t the direct result of running 
under these accounts but rather a consequence of the way the Windows subsystem assigns service 
processes to window stations. In Windows Vista, this restriction has been further enhanced by the 
use of sessions, in a model called Session 0 Isolation, a result of which is that services can no 
longer directly interact with a user’s desktop. 
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The Windows subsystem associates every Windows process with a window station. A 
window station contains desktops, and desktops contain windows. Only one window station can 
be visible on a console and receive user mouse and keyboard input. In a Terminal Services 
environment, one window station per session is visible, but services all run as part of the console 
session. Windows names the visible window station WinSta0, and all interactive processes access 
WinSta0. 

Unless otherwise directed, the Windows subsystem associates services running in the local 
system account with a nonvisible window station named Service-0x0-3e7$ that all noninteractive 
services share. The number in the name, 3e7, represents the logon session identifier that the Local 
Security Authority process (LSASS) assigns to the logon session the SCM uses for noninteractive 
services running in the local system account. 

Services configured to run under a user account (that is, not the local system account) are run 
in a different nonvisible window station named with the LSASS logon identifier assigned for the 
service’s logon session. Figure 4-10 shows a sample display from the Sysinternals WinObj tool, 
viewing the object manager directory in which Windows places window station objects. Visible 
are the interactive window station (WinSta0) and the noninteractive system service window 
station (Service-0x0-3e7$). 

  

Regardless of whether services are running in a user account, the local system account, or the 
local or network service accounts, services that aren’t running on the visible window station can’t 
receive input from a user or display windows on the console. In fact, if a service were to pop up a 
normal dialog box on the window station, the service would appear hung because no user would 
be able to see the dialog box, which of course would prevent the user from providing keyboard or 
mouse input to dismiss it and allow the service to continue executing.  

Note In the past, it was possible to use the special MB_SERVICE_NOTIFICATION or 
MB_DEFAULT_DESKTOP_ONLY flags with the MessageBox API to display messages on the 
interactive window station even if the service was marked as noninteractive. As of Windows Vista 
and Windows Server 2008, any service using this flag will receive an immediate IDOK return 
value, and the message box will never be displayed. 
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In rare cases, a service can have a valid reason to interact with the user via dialog boxes or 
windows. To configure a service with the right to interact with the user, the 
SERVICE_INTERACTIVE_PROCESS modifier must be present in the service’s registry key’s 
Type parameter. (Note that services configured to run under a user account can’t be marked as 
interactive.) When the SCM starts a service marked as interactive, it launches the service’s process 
in the local system account’s security context but connects the service with WinSta0 instead of the 
noninteractive service window station. 

On versions of Windows prior to Windows Vista, this connection to WinSta0 allowed the 
service to display dialog boxes and windows on the console and allowed those windows to 
respond to user input because the processes used by the console user run in session 0 and therefore 
share the window station with the interactive services. However, in Windows Vista and Windows 
Server 2008, only processes owned by the system and Windows services run in session 0; all other 
logon sessions, including those of console users, run in different sessions. Any window displayed 
by processes in session 0 is therefore not visible to the user.  

This change was made to prevent “shatter attacks,” whereby a less privileged application 
sends window messages to a window visible on the same window station to exploit a bug in a 
more privileged process that owns the window, which permits it to execute code in the more 
privileged process. 

To remain compatible with services that depend on user input, Windows includes a service 
that notifies users when a service has displayed a window. The Interactive Services Detection 
(UI0Detect) service looks for visible windows on the main desktop of the WinSta0 window station 
of session 0 and displays a notification dialog box on the console user’s desktop, allowing the user 
to switch to session 0 and view the service’s UI (this is akin to connecting to a local Terminal 
Services session or switching users). 

Note The Interactive Services Detection mechanism is purely for application compatibility, 
and developers are strongly recommended to move away from interactive services and use a 
secondary, nonprivileged helper application to communicate visually with the user. Local RPC or 
COM can be used between this helper application and the service for configuration purposes after 
UI input has been received. 

The dialog box, an example of which is shown in Figure 4-11, includes the process name, the 
time when the UI message was displayed, and the title of the window being displayed. Once the 
user connects to session 0, a similar dialog box provides a portal back to the user’s session. In the 
figure, the service displaying a window is Microsoft Paint, which was explicitly started by the 
Sysinternals PsExec utility with options that caused PsExec to run Paint in session 0. You can try 
this yourself with the following command:  

1. psexec –s –i 0 –d mspaint.exe  

This tells PsExec to run Microsoft Paint as a system process (–s) running on session 0 (–i 0), 
and to return immediately instead of waiting for the process to finish (–d). 
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If you click Show Me The Message, you can switch to the console for session 0 (and switch 
back again with a similar window on the console). 

4.2.2 The Service Control Manager 

The SCM’s executable file is %SystemRoot%\System32\Services.exe, and like most 
service processes, it runs as a Windows console program. The Wininit process starts the SCM 
early during the system boot. (Refer to Chapter 13 for details on the boot process.) The SCM’s 
startup function, SvcCtrlMain, orchestrates the launching of services that are configured for 
automatic startup. 

SvcCtrlMain first creates a synchronization event named SvcctrlStartEvent_A3752DX that 
it initializes as nonsignaled. Only after the SCM completes steps necessary to prepare it to 
receive commands from SCPs does the SCM set the event to a signaled state. The function that 
an SCP uses to establish a dialog with the SCM is OpenSCManager. OpenSCManager prevents 
an SCP from trying to contact the SCM before the SCM has initialized by waiting for 
SvcctrlStartEvent_A3752DX to become signaled. 

Next, SvcCtrlMain gets down to business and calls ScGenerateServiceDB, the function that 
builds the SCM’s internal service database.  ScGenerateServiceDB reads and stores the 
contents of HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List, a 
REG_MULTI_SZ value that lists the names and order of the defined service groups. A 
service’s registry key contains an optional Group value if that service or device driver needs to 
control its startup ordering with respect to services from other groups. For example, the Windows 
networking stack is built from the bottom up, so networking services must specify Group values 
that place them later in the startup sequence than networking device drivers. The SCM 
internally creates a group list that preserves the ordering of the groups it reads from the registry. 
Groups include (but are not limited to) NDIS, TDI, Primary Disk, Keyboard Port, and Keyboard 
Class. Add-on and third-party applications can even define their own groups and add them to 
the list. Microsoft Transaction Server, for example, adds a group named MS Transactions.  

ScGenerateServiceDB then scans the contents of HKLM\SYSTEM\CurrentControlSet 
\Services, creating an entry in the service database for each key it encounters. A database entry 
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includes all the service-related parameters defined for a service as well as fields that track the 
service’s status. The SCM adds entries for device drivers as well as for services because the 
SCM starts services and drivers marked as auto-start and detects startup failures for drivers 
marked boot-start and system-start. It also provides a means for applications to query the status 
of drivers. The I/O manager loads drivers marked boot-start and system-start before any 
user-mode processes execute, and therefore any drivers having these start types load before the 
SCM starts. 

ScGenerateServiceDB reads a service’s Group value to determine its membership in a 
group and associates this value with the group’s entry in the group list created earlier. The 
function also reads and records in the database the service’s group and service dependencies by 
querying its DependOnGroup and DependOnService registry values. Figure 4-12 shows how 
the SCM organizes the service entry and group order lists. Notice that the service list is 
alphabetically sorted. The reason this list is sorted alphabetically is that the SCM creates the list 
from the Services registry key, and Windows stores registry keys alphabetically. 

  

During service startup, the SCM will call on LSASS (for example, to log on a service in a 
nonlocal system account), so the SCM waits for LSASS to signal the LSA_RPC_SERVER_ 
ACTIVE synchronization event, which it does when it finishes initializing. Wininit also starts the 
302  LSASS process, so the initialization of LSASS is concurrent with that of the SCM, and the 
order in which LSASS and the SCM complete initialization can vary. Then SvcCtrlMain calls 
ScGetBootAndSystemDriverState to scan the service database looking for boot-start and 
system-start device driver entries. 

ScGetBootAndSystemDriverState determines whether or not a driver successfully started 
by looking up its name in the object manager namespace directory named \Driver. When a 
device driver successfully loads, the I/O manager inserts the driver’s object in the namespace 
under this directory, so if its name isn’t present, it hasn’t loaded. Figure 4-13 shows WinObj 
displaying the contents of the Driver directory. SvcCtrlMain notes the names of drivers that 
haven’t started and that are part of the current profile in a list named ScFailedDrivers. Before 
starting the auto-start services, the SCM performs a few more steps. It creates its remote 
procedure call (RPC) named pipe, which is named \Pipe\Ntsvcs, and then RPC launches a 
thread to listen on the pipe for incoming messages from SCPs. The SCM then signals its 
initialization-complete event, SvcctrlStartEvent_A3752DX. Registering a console application 
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shutdown event handler and registering with the Windows subsystem process via 
RegisterServiceProcess prepares the SCM for system shutdown.  

  

Network Drive letters 

In addition to its role as an interface to services, the SCM has another totally un related 
responsibility: it notifies GUI applications in a system whenever the system creates or deletes a 
network drive-letter connection. The SCM waits for the Multiple Provider Router (MPR) to 
signal a named event, \BaseNamedObjects\ScNetDrvMsg, which MPR signals whenever an 
application assigns a drive letter to a remote network share or deletes a remote-share 
drive-letter assignment. (See Chapter 12 for more information on MPR.) When MPR signals the 
event, the SCM calls the GetDriveType Windows function to query the list of connected 
network drive letters. If the list changes across the event signal, the SCM sends a Windows 
broadcast message of type WM_DEVICECHANGE. The SCM uses either DBT_ 
DEVICEREMOVECOMPLETE or DBT_DEVICEARRIVAL as the message’s subtype. This 
message is primarily intended for Windows Explorer so that it can update any open Computer 
windows to show the presence or absence of a  network drive letter. 

4.2.3 Service Startup 

SvcCtrlMain invokes the SCM function ScAutoStartServices to start all services that have a 
Start value designating auto-start (except delayed auto-start services). ScAutoStartServices also 
starts auto-start device drivers. To avoid confusion, you should assume that the term services 
means services and drivers unless indicated otherwise. The algorithm in ScAutoStartServices for 
starting services in the correct order proceeds in phases, whereby a phase corresponds to a group 
and phases proceed in the sequence defined by the group ordering stored in 
the  HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List registry value. The 
List value, shown in Figure 4-14, includes the names of groups in the order that the SCM should 
start them. Thus, assigning a service to a group has no effect other than to fine-tune its startup with 
respect to other services belonging to different groups.  
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When a phase starts, ScAutoStartServices marks all the service entries belonging to the 
phase’s group for startup. Then ScAutoStartServices loops through the marked services seeing 
whether it can start each one. Part of this check includes seeing whether the service is marked as 
delayed auto-start, which causes the SCM to start it at a later stage. (Delayed auto-start services 
must also be ungrouped.) Another part of the check it makes consists of determining whether the 
service has a dependency on another group, as specified by the existence of the DependOnGroup 
value in the service’s registry key. If a dependency exists, the group on which the service is 
dependent must have already initialized, and at least one service of that group must have 
successfully started. If the service depends on a group that starts later than the service’s group in 
the group startup sequence, the SCM notes a “circular dependency” error for the service. If 
ScAutoStartServices is considering a Windows service or an auto-start device driver, it next 
checks to see whether the service depends on one or more other services, and if so, if those 
services have already started. Service dependencies are indicated with the DependOnService 
registry value in a service’s registry key. If a service depends on other services that belong to 
groups that come later in the ServiceGroupOrder\List, the SCM also generates a “circular 
dependency” error and doesn’t start the service. If the service depends on any services from the 
same group that haven’t yet started, the service is skipped. 

When the dependencies of a service have been satisfied, ScAutoStartServices makes a final 
check to see whether the service is part of the current boot configuration before starting the service. 
When the system is booted in safe mode, the SCM ensures that the service is either identified by 
name or by group in the appropriate safe boot registry key. There are two safe boot keys, Minimal 
and Network, under  HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot, and the one that the 
SCM checks depends on what safe mode the user booted. If the user chose Safe Mode or Safe 
Mode With Command Prompt at the special boot menu (which you can access by pressing F8 
when prompted in the boot process), the SCM references the Minimal key; if the user chose Safe 
Mode With Networking, the SCM refers to Network. The existence of a string value named 
Option under the SafeBoot key indicates not only that the system booted in safe mode but also the 
type of safe mode the user selected. For more information about safe boots, see the section “Safe 
Mode” in Chapter 13. 

Once the SCM decides to start a service, it calls ScStartService, which takes different steps 
for services than for device drivers. When ScStartService starts a Windows service, it first 
determines the name of the file that runs the service’s process by reading the ImagePath value 
from the service’s registry key. It then examines the service’s Type value, and if that value is 
SERVICE_WINDOWS_SHARE_PROCESS (0x20), the SCM ensures that the process the service 
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runs in, if already started, is logged on using the same account as specified for the service being 
started (this is to ensure that the service is not configured with the wrong account, such as a 
LocalService account, but with an image path pointing to a running Svchost, such as netsvcs, 
which runs as LocalSystem). A service’s ObjectName registry value stores the user account in 
which the service should run. A service with no ObjectName or an ObjectName of LocalSystem 
runs in the local system account. 

The SCM verifies that the service’s process hasn’t already been started in a different account 
by checking to see whether the service’s ImagePath value has an entry in an internal SCM 
database called the image database. If the image database doesn’t have an entry for the ImagePath 
value, the SCM creates one. When the SCM creates a new entry, it stores the logon account name 
used for the service and the data from the service’s  ImagePath value. The SCM requires services 
to have an ImagePath value. If a service doesn’t have an ImagePath value, the SCM reports an 
error stating that it couldn’t find the service’s path and isn’t able to start the service. If the SCM 
locates an existing image database entry with matching ImagePath data, the SCM ensures that the 
user account information for the service it’s starting is the same as the information stored in the 
database entry—a process can be logged on as only one account, so the SCM reports an error 
when a service specifies a different account name than another service that has already started in 
the same process.  

The SCM calls ScLogonAndStartImage to log on a service if the service’s configuration 
specifies and to start the service’s process. The SCM logs on services that don’t run in the System 
account by calling the LSASS function LogonUserEx. LogonUserEx normally requires a 
password, but the SCM indicates to LSASS that the password is stored as a service’s LSASS 
“secret” under the key HKLM\SECURITY\Policy\Secrets in the registry. (Keep in mind that the 
contents of SECURITY aren’t typically visible because its default security settings permit access 
only from the System account.) When the SCM calls LogonUserEx, it specifies a service logon as 
the logon type, so LSASS looks up the password in the Secrets subkey  that has a name in the 
form _SC_< service name>. 

The SCM directs LSASS to store a logon password as a secret using the LsaStorePrivateData 
function when an SCP configures a service’s logon information. When a logon is successful, 
LogonUserEx returns a handle to an access token to the caller. Windows uses access tokens to 
represent a user’s security context, and the SCM later associates the access token with the process 
that implements the service. 

After a successful logon, the SCM loads the account’s profile information, if it’s not already 
loaded, by calling the UserEnv DLL’s (%SystemRoot%\System32\Userenv.dll) LoadUserProfile 
function. The value HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Profile-List\< 
user profile key>\ProfileImagePath contains the location on disk of a registry hive that 
LoadUserProfile loads into the registry, making the  information in the hive the HKEY_ 
CURRENT_USER key for the service. 

An interactive service must open the WinSta0 window station, but before ScLogonAndStart- 
Image allows an interactive service to access WinSta0 it checks to see whether the value 
HKLM\SYSTEM\CurrentControlSet\Control\Windows\NoInteractiveServices is set. Administrat- 
ors set this value to prevent services marked as interactive from displaying windows on the 



 296

console. This option is desirable in unattended server environments in which no user is present to 
respond to the Session 0 UI Discovery notification from interactive services.  

As its next step, ScLogonAndStartImage proceeds to launch the service’s process, if the 
process hasn’t already been started (for another service, for example). The SCM starts the process 
in a suspended state with the CreateProcessAsUser Windows function. The SCM next creates a 
named pipe through which it communicates with the service process, and it assigns the pipe the 
name \Pipe\Net\NtControlPipeX, where X is a number that  increments each time the SCM 
creates a pipe. The SCM resumes the service process via the ResumeThread function and waits for 
the service to connect to its SCM pipe. If it exists, the registry value HKLM\SYSTEM 
\CurrentControlSet\Control\ServicesPipeTimeout determines the length of time that the SCM 
waits for a service to call StartServiceCtrlDispatcher and connect before it gives up, terminates the 
process, and concludes that the service failed to start. If ServicesPipeTimeout doesn’t exist, the 
SCM uses a default timeout of 30 seconds. The SCM uses the same timeout value for all its 
service communications. 

When a service connects to the SCM through the pipe, the SCM sends the service a start 
command. If the service fails to respond positively to the start command within the timeout period, 
the SCM gives up and moves on to start the next service. When a service doesn’t respond to a start 
request, the SCM doesn’t terminate the process, as it does when a service doesn’t call 
StartServiceCtrlDispatcher within the timeout; instead, it notes an error in the system Event Log 
that indicates the service failed to start in a timely manner.  

If the service the SCM starts with a call to ScStartService has a Type registry value of 
SERVICE_KERNEL_DRIVER or  SERVICE_FILE_SYSTEM_DRIVER, the service is really a 
device driver, and so ScStartService calls ScLoadDeviceDriver to load the driver. 
ScLoadDeviceDriver enables the load driver security privilege for the SCM process and then 
invokes the kernel service NtLoadDriver, passing in the data in the ImagePath value of the 
driver’s registry key. Unlike services, drivers don’t need to specify an ImagePath value, and if the 
value is absent, the SCM builds an image path by appending the driver’s name to the string 
%SystemRoot%\System32\Drivers\. 

ScAutoStartServices continues looping through the services belonging to a group until all the 
services have either started or generated dependency errors. This looping is the SCM’s way of 
automatically ordering services within a group according to their DependOnService dependencies. 
The SCM will start the services that other services depend on in earlier loops, skipping the 
dependent services until subsequent loops. Note that the SCM ignores Tag values for Windows 
services, which you might come across in subkeys under the HKLM\SYSTEM\CurrentControlSet 
\Services key; the I/O manager honors Tag values to order device driver startup within a group for 
boot-start and system-start drivers. Once the SCM completes phases for all the groups listed in the 
ServiceGroupOrder\List value, it performs a phase for services belonging to groups not listed in 
the value and then executes a final phase for services without a group. 

After handling auto-start services, the SCM calls ScInitDelayStart, which queues a delayed 
work item associated with a worker thread responsible for processing all the services that 
ScAutoStartServices skipped because they were marked delayed auto-start. This worker thread 
will execute after the delay. The default delay is 120 seconds, but it can be overridden by the 
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AutoStartDelay value in HKLM\SYSTEM\CurrentControlSet\Control. The  SCM performs the 
same actions as those used during startup of nondelayed auto-start services. 

Delayed auto-Start Services 

Delayed auto-start services were added in Windows Vista and Windows Server 2008 to cope 
with the growing number of services that are being started when a user logs on, bogging down the 
boot-up process and increasing the time before a user is able to get responsiveness from the 
desktop. The design of auto-start services was primarily intended for services required early in the 
boot process because other services depend on them, a good example being the RPC service, on 
which all other services depend. The other use was to allow unattended startup of a service, such 
as the Windows Update service. Because many auto-start services fall in this second category, 
marking them as delayed auto-start allows critical services to start faster and for the user’s desktop 
to be ready sooner when a user logs on immediately after booting. Configuring a service for 
delayed auto-start requires calling the ChangeServiceConfig2 API. You can check the state of the 
flag for a service by using the qc bits option instead. 

Note If a nondelayed auto-start service has a delayed auto-start service as one of its 
dependencies, the delayed auto-start flag will be ignored and the service will be started 
immediately in order to satisfy the dependency. 

When it’s finished starting all auto-start services and drivers, as well as setting up the delayed 
auto-start work item, the SCM signals the event \BaseNamedObjects\SC_AutoStartComplete. 
This event is used by the Windows Setup program to gauge startup progress during installation. 

4.2.4 Startup Errors 

If a driver or a service reports an error in response to the SCM’s startup command, the 
ErrorControl value of the service’s registry key determines how the SCM reacts. If the 
ErrorControl value is SERVICE_ERROR_IGNORE (0) or the ErrorControl value isn’t specified, 
the SCM simply ignores the error and continues processing service startups. If the ErrorControl 
value is SERVICE_ERROR_NORMAL (1), the SCM writes an event to the system Event Log 
that says, “The service failed to start due to the following error:”. The SCM includes the textual 
representation of the Windows error code that the service returned to the SCM as the reason for 
the startup failure in the Event Log record. Figure 4-15 shows the Event Log entry that reports a 
service startup error. 
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If a service with an ErrorControl value of SERVICE_ERROR_SEVERE (2) or 
SERVICE_ERROR_CRITICAL (3) reports a startup error, the SCM logs a record to the Event 
Log and then calls the internal function ScRevertToLastKnownGood. This function switches the 
system’s registry configuration to a version, named last known good, with which the system last 
booted successfully. Then it restarts the system using the  NtShutdownSystem system service, 
which is implemented in the executive. If the system is already booting with the last known good 
configuration, the system just reboots. 

4.2.5 Accepting the Boot and Last Known Good 

Besides starting services, the system charges the SCM with determining when the system’s 
registry configuration, HKLM\SYSTEM\CurrentControlSet, should be saved as the last known 
good control set. The CurrentControlSet key contains the Services key as a subkey, so 
CurrentControlSet includes the registry representation of the SCM database. It also contains the 
Control key, which stores many kernel-mode and user-mode subsystem configuration settings. By 
default, a successful boot consists of a successful startup of auto-start services and a successful 
user logon. A boot fails if the system halts because a device driver crashes the system during the 
boot or if an auto-start service with an ErrorControl value of SERVICE_ERROR_SEVERE or 
SERVICE_ERROR_CRITICAL reports a startup error.  

The SCM obviously knows when it has completed a successful startup of the auto-start 
services, but Winlogon (%SystemRoot%\System32\Winlogon.exe) must notify it when there is a 
successful logon. Winlogon invokes the NotifyBootConfigStatus function when a user logs on, 
and NotifyBootConfigStatus sends a message to the SCM. Following the successful start of the 
auto-start services or the receipt of the message from NotifyBootConfigStatus (whichever comes 
last), the SCM calls the system function NtInitializeRegistry to save the current registry startup 
configuration. 

Third-party software developers can supersede Winlogon’s definition of a successful logon 
with their own definition. For example, a system running Microsoft SQL Server might not 
consider a boot successful until after SQL Server is able to accept and process transactions. 
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Developers impose their definition of a successful boot by writing a boot-verification program and 
installing the program by pointing to its location on disk with the value stored in the registry key 
HKLM\SYSTEM\CurrentControlSet\Control\BootVerificationProgram. In addition, a boot- 
verification program’s installation must disable Winlogon’s call to NotifyBootConfigStatus by 
setting HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\ReportBootOk to 
0. When a boot-verification program is installed, the SCM launches it after finishing auto-start 
services and waits for the program’s call to NotifyBootConfigStatus before saving the last known 
good control set.  

Windows maintains several copies of CurrentControlSet, and CurrentControlSet is really a 
symbolic registry link that points to one of the copies. The control sets have names in the form 
HKLM\SYSTEM\ControlSetnnn, where nnn is a number such as 001 or 002. The HKLM 
\SYSTEM\Select key contains values that identify the role of each control set. For example, if 
CurrentControlSet points to ControlSet001, the Current value under Select has a value of 1. The 
LastKnownGood value under Select contains the number of the last known good control set, 
which is the control set last used to boot successfully. Another value that might be on your system 
under the Select key is Failed, which points to the last control set for which the boot was deemed 
unsuccessful and aborted in favor of an attempt at booting with the last known good control set. 
Figure 4-16 displays a system’s control sets and Select values.  

NtInitializeRegistry takes the contents of the last known good control set and synchronizes it 
with that of the CurrentControlSet key’s tree. If this was the system’s first successful boot, the last 
known good won’t exist and the system will create a new control set for it. If the last known good 
tree exists, the system simply updates it with differences between it and CurrentControlSet. 

Last known good is helpful in situations in which a change to CurrentControlSet, such as the 
modification of a system performance-tuning value under HKLM\SYSTEM\Control or the 
addition of a service or device driver, causes the subsequent boot to fail. Users can press F8 early 
in the boot process to bring up a menu that lets them direct the boot to use the last known good 
control set, rolling the system’s registry configuration back to the way it was the last time the 
system booted successfully. Chapter 13 describes in more detail the use of last known good and 
other recovery mechanisms for troubleshooting system startup problems. 
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4.2.6 Service Failures 

A service can have optional FailureActions and FailureCommand values in its registry key 
that the SCM records during the service’s startup. The SCM registers with the system so that the 
system signals the SCM when a service process exits. When a service process terminates 
unexpectedly, the SCM determines which services ran in the process and takes the recovery steps 
specified by their failure-related registry values. 

Additionally, as of Windows Vista and Windows Server 2008, services are no longer limited 
to requesting failure actions during crashes or unexpected service termination, since other 
problems, such as a memory leak, could also result in service failure.  

If a service enters the SERVICE_STOPPED state and the error code returned to the SCM is 
not ERROR_SUCCESS, the SCM will check whether the service has the FailureActionsOn- 
NonCrashFailures flag set and perform the same recovery as if the service had crashed. To use this 
functionality, the service must be configured via the ChangeServiceConfig2 API or the system 
administrator can use the Sc.exe utility with the Failureflag parameter to set FailureActionsOn- 
NonCrashFailures to 1. The default value being 0, the SCM will continue to honor the same 
behavior as on earlier versions of Windows for all other services. Actions that a service can 
configure for the SCM include restarting the service, running a program, and rebooting the 
computer. Furthermore, a service can specify the failure actions that take place the first time the 
service process fails, the second time, and subsequent times, and it can indicate a delay period that 
the SCM waits before restarting the service if the service asks to be restarted. The service failure 
action of the IIS Admin Service results in the SCM running the IISReset application, which 
performs cleanup work and then restarts the service. You can easily manage the recovery actions 
for a service with the Recovery tab of the service’s Properties dialog box in the Services MMC 
snap-in, as shown in Figure 4-17. 

  

4.2.7 Service Shutdown 
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When Winlogon calls the Windows ExitWindowsEx function, ExitWindowsEx sends a 
message to Csrss, the Windows subsystem process, to invoke Csrss’s shutdown routine. Csrss 
loops through the active processes and notifies them that the system is shutting down. For every 
system process except the SCM, Csrss waits up to the number of seconds specified by 
HKU\.DEFAULT\Control Panel\Desktop\WaitToKillAppTimeout (which defaults to 20 seconds) 
for the process to exit before moving on to the next process. When Csrss encounters the SCM 
process, it also notifies it that the system is shutting down but employs a timeout specific to the 
SCM. Csrss recognizes the SCM using the process ID Csrss saved when the SCM registered with 
Csrss using the RegisterServicesProcess function during system initialization.  

The SCM’s timeout differs from that of other processes because Csrss knows that the SCM 
communicates with services that need to perform cleanup when they shut down, and so an 
administrator might need to tune only the SCM’s timeout. The SCM’s timeout value resides in the 
HKLM\SYSTEM\CurrentControlSet\Control\WaitToKillServiceTimeout registry value, and it 
defaults to 20 seconds. 

The SCM’s shutdown handler is responsible for sending shutdown notifications to all the 
services that requested shutdown notification when they initialized with the SCM. The SCM 
function ScShutdownAllServices loops through the SCM services database searching for services 
desiring shutdown notification and sends each one a shutdown command. For each service to 
which it sends a shutdown command, the SCM records the value of the service’s wait hint, a value 
that a service also specifies when it registers with the SCM. The SCM keeps track of the largest 
wait hint it receives. After sending the shutdown messages, the SCM waits either until one of the 
services it notified of shutdown exits or until the time specified by the largest wait hint passes. 

If the wait hint expires without a service exiting, the SCM determines whether one or more of 
the services it was waiting on to exit have sent a message to the SCM telling the SCM that the 
service is progressing in its shutdown process. If at least one service made progress, the SCM 
waits again for the duration of the wait hint. The SCM continues executing this wait loop until 
either all the services have exited or none of the services upon which it’s waiting has notified it of 
progress within the wait hint timeout period. 

While the SCM is busy telling services to shut down and waiting for them to exit, Csrss waits 
for the SCM to exit. On versions of Windows prior to Windows Vista, if Csrss’s wait ended 
without the SCM having exited (the WaitToKillServiceTimeout time expired), Csrss would kill 
the SCM and continue the shutdown process. Thus, services that failed to shut down in a timely 
manner were killed. This logic let the system shut down in the face of services that would never 
complete a shutdown as a result of flawed design, but it meant that services that required more 
than 20 seconds would not complete their shutdown operations. 

Additionally, because the shutdown order is not deterministic, services that might have 
depended on other services to shut down first (called shutdown dependencies) had no way to 
report this to the SCM and may have never had the chance to clean up either. To address these 
needs, Windows now implements preshutdown notifications and shutdown ordering to combat the 
problems caused by these two scenarios. Preshutdown notifications are sent, using the same 
mechanism as shutdown notifications, to services that have requested preshutdown notification via 
the SetServiceStatus API, and the SCM will wait for them to be acknowledged. 
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The idea behind these notifications is to flag services that may take a long time to clean up 
(such as database server services) and give them more time to complete their work. The SCM will 
send a progress query request and wait 3 minutes for a service to respond to this notification. If the 
service does not respond within this time, it will be killed during the shutdown procedure; 
otherwise, it can keep running as long as it needs as long as it continues to respond to the SCM. 

Services that participate in the preshutdown can also specify a shutdown order with respect to 
other preshutdown services. Services that depend on other services to shut down first (for example, 
the Group Policy service needs to wait for Windows Update to finish) can specify their shutdown 
dependencies in the HKLM\SYSTEM\CurrentControlSet\Control\PreshutdownOrder registry 
value. 

4.2.8 Shared Service Processes 

Running every service in its own process instead of having services share a process whenever 
possible wastes system resources. However, sharing processes means that if any of the services in 
the process has a bug that causes the process to exit, all the services in that process terminate. 

Of the Windows built-in services, some run in their own process and some share a process 
with other services. For example, the LSASS process contains security-related services—such as 
the Security Accounts Manager (SamSs) service, the Net Logon (Netlogon) service, and the 
Crypto Next Generation (CNG) Key Isolation (KeyIso) service. 

There is also a “generic” process named Service Host (SvcHost—%SystemRoot%\System32 
\Svchost.exe) to contain multiple services. Multiple instances of SvcHost can be running in 
different processes. Services that run in SvcHost processes include Telephony (TapiSrv), Remote 
Procedure Call (RpcSs), and Remote Access Connection Manager (RasMan). Windows 
implements services that run in SvcHost as DLLs and includes an ImagePath definition of the 
form “%SystemRoot%\System32\svchost.exe –k netsvcs” in the service’s registry key. The 
service’s registry key must also have a registry value named ServiceDll under a Parameters 
subkey that points to the service’s DLL file. 

All services that share a common SvcHost process specify the same parameter (“–k netsvcs” 
in the example in the preceding paragraph) so that they have a single entry in the SCM’s image 
database. When the SCM encounters the first service that has a SvcHost ImagePath with a 
particular parameter during service startup, it creates a new image database entry and launches a 
SvcHost process with the parameter. The new SvcHost process takes the parameter and looks for a 
value having the same name as the parameter under HKLM\SOFTWARE\Microsoft\Windows 
NT\CurrentVersion\Svchost. SvcHost reads the contents of the value, interpreting it as a list of 
service names, and notifies the SCM that it’s hosting those services when SvcHost registers with 
the SCM. 

When the SCM encounters a SvcHost service (by checking the service type value) during 
service startup with an ImagePath matching an entry it already has in the image database, it 
doesn’t launch a second process but instead just sends a start command for the service to the 
SvcHost it already started for that ImagePath value. The existing SvcHost process reads the 
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ServiceDll parameter in the service’s registry key and loads the DLL into its process to start the 
service. 

Table 4-11 lists all the default service groupings on Windows Vista and Windows Server 
2008 and some of the services that are registered for each of them.  

  

EXPERIMENT: Viewing Services Running inside Processes 

The Process Explorer utility shows detailed information about the services running within 
processes. Run Process Explorer and view the Services tab in the Process Properties dialog box for 
the following processes: Services.exe, Lsass.exe, and Svchost.exe. Several instances of SvcHost 
will be running on your system, and you can see the account in which each is running by adding 
the Username column to the Process Explorer display or by looking at the Username field on the 
Image tab of a process’s Process Properties dialog box. The following screen shows the list of 
services running within a SvcHost executing in the local service account: 
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The information displayed includes the service’s name, display name, and description, if it 
has one, which Process Explorer shows beneath the service list when you select a service. 
Additionally, the path of the DLL containing the service is shown. This information is useful for 
mapping thread start addresses (shown on the Threads tab) to their respective services, which may 
help in cases of service-related problems such as troubleshooting high CPU usage. 

You can also use the tlist.exe tool from the Debugging Tools for Windows or Tasklist, which 
ships with Windows, to view the list of services running within processes from a command 
prompt. The syntax to see services with Tlist is:  

1. tlist /s  

The syntax for tasklist is: 

1. tasklist /svc  

Note that these utilities do not show service display names or descriptions, only service 
names. 

4.2.9 Service Tags 

One of the disadvantages of using service-hosting processes is that accounting for CPU time 
and usage, as well as for the usage of resources, by a specific service is much harder because each 
service is sharing the memory address space, handle table, and per-process CPU accounting 
numbers with the other services that are part of the same service group. Although there is always a 
thread inside the service-hosting process that belongs to a certain service, this association may not 
always be easy to make. For example, the service may be using worker threads to perform its 
operation, or perhaps the start address and stack of the thread do not reveal the service’s DLL 
name, making it hard to figure out what kind of work a thread may exactly be doing and to which 
service it may belong.  
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Windows Vista and Windows Server 2008 introduce a service attribute called the service tag, 
which the SCM generates by calling ScGenerateServiceTag when a service is created or when the 
service database is generated during system boot. The attribute is simply an index identifying the 
service. The service tag is stored in the SubProcessTag field of the thread environment block 
(TEB) of each thread (see Chapter 5 for more information on the TEB) and is propagated across 
all threads that a main service thread creates (except threads created indirectly by thread pool 
APIs). 

Although the service tag is kept internal to the SCM, several Windows utilities, like 
Netstat.exe (a utility that you can use for displaying which programs have opened which ports on 
the network), use undocumented APIs to query service tags and map them to service names. 
Because the TCP/IP stack saves the service tag of the threads that create TCP/IP end points, when 
you run Netstat with the –b parameter, Netstat can report the service name for end points created 
by services. Another tool you can use to look at service tags is ScTagQuery from Winsider 
Seminars & Solutions Inc. (www.winsiderss.com/tools/sctagquery.html). It can query the SCM for 
the mappings of every service tag and display them either systemwide or per-process. It can also 
show you to which services all the threads inside a service-hosting process belong (this is 
conditional on those threads having a proper service tag associated with them). This way, if you 
have a runaway service consuming lots of CPU time, you can identify the culprit service in case 
the thread start address or stack does not have an obvious service DLL associated with it. 

4.2.10 Service Control Programs 

Service control programs are standard Windows applications that use SCM service 
management functions, including CreateService, OpenService, StartService, ControlService, 
QueryServiceStatus, and DeleteService. To use the SCM functions, an SCP must first open a 
communications channel to the SCM by calling the OpenSCManager function. At the time of the 
open call, the SCP must specify what types of actions it wants to perform. For example, if an SCP 
simply wants to enumerate and display the services present in the SCM’s database, it requests 
enumerate-service access in its call to OpenSCManager. During its initialization, the SCM creates 
an internal object that represents the SCM database and uses the Windows security functions to 
protect the object with a security descriptor that specifies what accounts can open the object with 
what access permissions. For example, the security descriptor indicates that the Authenticated 
Users group can open the SCM object with enumerate-service access. However, only 
administrators can open the object with the access required to create or delete a service.  

As it does for the SCM database, the SCM implements security for services themselves. 
When an SCP creates a service by using the CreateService function, it specifies a security 
descriptor that the SCM associates internally with the service’s entry in the service database. The 
SCM stores the security descriptor in the service’s registry key as the Security value, and it reads 
that value when it scans the registry’s Services key during initialization so that the security 
settings persist across reboots. In the same way that an SCP must specify what types of access it 
wants to the SCM database in its call to OpenSCManager, an SCP must tell the SCM what access 
it wants to a service in a call to OpenService. Accesses that an SCP can request include the ability 
to query a service’s status and to configure, stop, and start a service.  
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The SCP you’re probably most familiar with is the Services MMC snap-in that’s included in 
Windows, which resides in %SystemRoot%\System32\Filemgmt.dll. Windows also includes 
Sc.exe (Service Controller tool), a command-line service control program that we’ve mentioned 
multiple times. 

SCPs sometimes layer service policy on top of what the SCM implements. A good example 
is the timeout that the Services MMC snap-in implements when a service is started manually. The 
snap-in presents a progress bar that represents the progress of a service’s startup. Services 
indirectly interact with SCPs by setting their configuration status to reflect their progress as they 
respond to SCM commands such as the start command. SCPs query the status with the 
QueryServiceStatus function. They can tell when a service actively updates the status versus when 
a service appears to be hung, and the SCM can take appropriate actions in notifying a user about 
what the service is doing. 

4.3 Windows Management instrumentation 

Windows Management Instrumentation (WMI) is an implementation of Web-Based 
Enterprise Management (WBEM), a standard that the Distributed Management Task Force 
(DMTF—an industry consortium) defines. The WBEM standard encompasses the design of an 
extensible enterprise data-collection and data-management facility that has the flexibility and 
extensibility required to manage local and remote systems that comprise arbitrary components. 

WMI Architecture 

WMI consists of four main components, as shown in Figure 4-18: management applications, 
WMI infrastructure, providers, and managed objects. Management applications are Windows 
applications that access and display or process data that the applications obtain about managed 
objects. A simple example of a management application is a performance tool replacement that 
relies on WMI rather than the Performance API to obtain performance information. A more 
complex example is an enterprise-management tool that lets administrators perform automated 
inventories of the software and hardware configuration of every computer in their enterprise. 
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Developers typically must target management applications to collect data from and manage 
specific objects. An object might represent one component, such as a network adapter device, or a 
collection of components, such as a computer (the computer object might contain the network 
adapter object). Providers need to define and export the representation of the objects that 
management applications are interested in. For example, the vendor of a network adapter might 
want to add adapter-specific properties to the network adapter WMI support that Windows 
includes, querying and setting the adapter’s state and behavior as the management applications 
direct. In some cases (for example, for device drivers), Microsoft supplies a provider that has its 
own API to help developers leverage the provider’s implementation for their own managed 
objects with minimal coding effort. 

The WMI infrastructure, the heart of which is the Common Information Model (CIM) Object 
Manager (CIMOM), is the glue that binds management applications and providers. (CIM is 
described later in this chapter.) The infrastructure also serves as the object-class store and, in 
many cases, as the storage manager for persistent object properties. WMI implements the store, or 
repository, as an on-disk database named the CIMOM Object Repository. As part of its 
infrastructure, WMI supports several APIs through which management applications access object 
data and providers supply data and class definitions. 

Windows programs use the WMI COM API, the primary management API, to directly 
interact with WMI. Other APIs layer on top of the COM API and include an Open Database 
Connectivity (ODBC) adapter for the Microsoft Access database application. A database 
developer uses the WMI ODBC adapter to embed references to object data in the developer’s 
database. Then the developer can easily generate reports with database queries that contain 
WMI-based data. WMI ActiveX controls support another layered API. Web developers use the 
ActiveX controls to construct Web-based interfaces to WMI data. Another management API is the 
WMI scripting API, for use in script-based applications and Microsoft Visual Basic programs. 
WMI scripting support exists for all Microsoft programming language technologies. 
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As they are for management applications, WMI COM interfaces constitute the primary API 
for providers. However, unlike management applications, which are COM clients, providers are 
COM or Distributed COM (DCOM) servers (that is, the providers implement COM objects that 
WMI interacts with). Possible embodiments of a WMI provider include DLLs that load into 
WMI’s manager process or stand-alone Windows applications or Windows services. Microsoft 
includes a number of built-in providers that present data from well-known sources, such as the 
Performance API, the registry, the Event Manager, Active Directory, SNMP, and Windows Driver 
Model (WDM) device drivers. The WMI SDK lets developers develop third-party WMI providers. 

4.3.1 Providers 

At the core of WBEM is the DMTF-designed CIM specification. The CIM specifies how 
management systems represent, from a systems management perspective, anything from a 
computer to an application or device on a computer. Provider developers use the CIM to represent 
the components that make up the parts of an application for which the developers want to enable 
management. Developers use the Managed Object Format (MOF) language to implement a CIM 
representation. 

In addition to defining classes that represent objects, a provider must interface WMI to the 
objects. WMI classifies providers according to the interface features the providers supply. Table 
4-12 lists WMI provider classifications. Note that a provider can implement one or more features; 
therefore, a provider can be, for example, both a class and an event provider. To clarify the feature 
definitions in Table 4-12, let’s look at a provider that implements several of those features. The 
Event Log provider supports several objects, including an Event Log Computer, an Event Log 
Record, and an Event Log File. The Event Log is an Instance provider because it can define 
multiple instances for several of its classes. One class for which the Event Log provider defines 
multiple instances is the Event Log File class (Win32_ NTEventlogFile); the Event Log provider 
defines an instance of this class for each of the system’s event logs (that is, System Event Log, 
Application Event Log, and Security Event Log).  

  

The Event Log provider defines the instance data and lets management applications 
enumerate the records. To let management applications use WMI to back up and restore the Event 
Log files, the Event Log provider implements backup and restore methods for Event Log File 
objects. Doing so makes the Event Log provider a Method provider. Finally, a management 
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application can register to receive notification whenever a new record writes to one of the Event 
Logs. Thus, the Event Log provider serves as an Event provider when it uses WMI event 
notification to tell WMI that Event Log records have arrived. 

4.3.2 The Common Information Model and the Managed Object 

Format Language 

The CIM follows in the steps of object-oriented languages such as C++ and Java, in which a 
modeler designs representations as classes. Working with classes lets developers use the powerful 
modeling techniques of inheritance and composition. Subclasses can inherit the attributes of a 
parent class, and they can add their own characteristics and override the characteristics they inherit 
from the parent class. A class that inherits properties from another class derives from that class. 
Classes also compose: a developer can build a class that includes other classes. 

The DMTF provides multiple classes as part of the WBEM standard. These classes are 
CIM’s basic language and represent objects that apply to all areas of management. The classes are 
part of the CIM core model. An example of a core class is CIM_ManagedSystemElement. This 
class contains a few basic properties that identify physical components such as hardware devices 
and logical components such as processes and files. The properties include a caption, description, 
installation date, and status. Thus, the CIM_LogicalElement and CIM_PhysicalElement classes 
inherit the attributes of the CIM_ManagedSystemElement class. These two classes are also part of 
the CIM core model. The WBEM standard calls these classes abstract classes because they exist 
solely as classes that other classes inherit (that is, no object instances of an abstract class exist). 
You can therefore think of abstract classes as templates that define properties for use in other 
classes. 

A second category of classes represents objects that are specific to management areas but 
independent of a particular implementation. These classes constitute the common model and are 
considered an extension of the core model. An example of a common-model class is the 
CIM_FileSystem class, which inherits the attributes of CIM_LogicalElement. Because virtually 
every operating system—including Windows, Linux, and other varieties of UNIX—rely on 
filesystem- based structured storage, the CIM_FileSystem class is an appropriate constituent of the 
common model. 

The final class category, the extended model, comprises technology-specific additions to the 
common model. Windows defines a large set of these classes to represent objects specific to the 
Windows environment. Because all operating systems store data in files, the CIM common model 
includes the CIM_LogicalFile class. The CIM_DataFile class inherits the CIM_LogicalFile class, 
and Windows adds the Win32_PageFile and Win32_ShortcutFile file classes for those Windows 
file types. 

The Event Log provider makes extensive use of inheritance. Figure 4-19 shows a view of the 
WMI CIM Studio, a class browser that ships with the WMI Administrative Tools that you can 
obtain from the Microsoft download center at the Microsoft Web site. You can see where the 
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Event Log provider relies on inheritance in the provider’s Win32_NTEventlogFile class, which 
derives from CIM_DataFile. Event Log files are data files that have additional Event 

Log–specific attributes such as a log file name (LogfileName) and a count of the number of 
records that the file contains (NumberOfRecords). The tree that the class browser shows reveals 
that Win32_NTEventlogFile is based on several levels of inheritance, in which CIM_DataFile 
derives from CIM_LogicalFile, which derives from CIM_LogicalElement, and 
CIM_LogicalElement derives from CIM_ManagedSystemElement. 

  

As stated earlier, WMI provider developers write their classes in the MOF language. The 
following output shows the definition of the Event Log provider’s Win32_NTEventlogFile, which 
is selected in Figure 4-19. Notice the correlation between the properties that the right panel in 
Figure 4-19 lists and those properties’ definitions in the MOF file below. CIM Studio uses yellow 
arrows to tag those properties that a class inherits. Thus, you don’t see those properties specified 
in Win32_NTEventlogFile’s definition.  

1. dynamic: ToInstance, provider("MS_NT_EVENTLOG_PROVIDER"),             

    Locale(1033), UUID("{8502C57B-5FBB-11D2-AAC1-006008C78BC7}")]   

2. class Win32_NTEventlogFile : CIM_DataFile   

3. {   

4. [read] string LogfileName;   

5. Chapter 4 Management Mechanisms 323  

6. [read, write] uint32 MaxFileSize;   

7. [read] uint32 NumberOfRecords;   
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8. [read, volatile, ValueMap{"0", "1..365", "4294967295"}] string       

     OverWritePolicy;   

9. [read, write, Units("Days"), Range("0-365 | 4294967295")] uint32     

     OverwriteOutDated;   

10. [read] string Sources[];   

11. [implemented, Privileges{"SeSecurityPrivilege",   

12. "SeBackupPrivilege"}] uint32 ClearEventlog([in]  

string ArchiveFileName);   

13. [implemented, Privileges{"SeSecurityPrivilege",   

14. "SeBackupPrivilege"}] uint32 BackupEventlog([in] string               

     ArchiveFileName);   

15. };  

One term worth reviewing is dynamic, which is a descriptive designator for the 
Win32_NTEventlogFile class that the MOF file in the preceding output shows. Dynamic means 
that the WMI infrastructure asks the WMI provider for the values of properties associated with an 
object of that class whenever a management application queries the object’s properties. A static 
class is one in the WMI repository; the WMI infrastructure refers to the repository to obtain the 
values instead of asking a provider for the values. Because updating the repository is a relatively 
expensive operation, dynamic providers are more efficient for objects that have properties that 
change frequently. 

EXPERIMENT: Viewing the MOF Definitions of WMi Classes 

You can view the MOF definition for any WMI class by using the WbemTest tool that comes 
with Windows. In this experiment, we’ll look at the MOF definition for the 
Win32_NTEventLogFile class: 

1. Run Wbemtest from the Start menu’s Run dialog box. 

2. Click the Connect button, change the Namespace to root\cimv2, and connect. 

3. Select Enum Classes, select the Recursive option button, and then click OK. 

4. Find Win32_NTEventLogFile in the list of classes, and then double-click it to see its class 
properties. 

5. Click the Show MOF button to open a window that displays the MOF text. 

After constructing classes in MOF, WMI developers can supply the class definitions to WMI 
in several ways. WDM provider developers compile a MOF file into a binary MOF (BMF) file—a 
more compact binary representation than a MOF file—and give the BMF files to the WDM 
infrastructure. Another way is for the provider to compile the MOF and use WMI COM APIs to 
give the definitions to the WMI infrastructure. Finally, a provider can use the MOF Compiler 
(Mofcomp.exe) tool to give the WMI infrastructure a classes-compiled representation directly. 

4.3.3 Class Association 
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Many object types are related to one another in some way. For example, a computer object 
has a processor, software, an operating system, active processes, and so on. WMI lets providers 
construct an association class to represent a logical connection between two different classes. 
Association classes associate one class with another, so the classes have only two properties: a 
class name and the Ref modifier. The following output shows an  association in which the Event 
Log provider’s MOF file associates the Win32_NTLogEvent class with the 
Win32_ComputerSystem class. Given an object, a management application can query associated 
objects. In this way, a provider defines a hierarchy of objects. 

1. [dynamic: ToInstance, provider("MS_NT_EVENTLOG_PROVIDER"): ToInstance,    

EnumPrivileges  

2. {"SecurityPrivilege"}: ToSubClass, Locale(1033): ToInstance, UUID("{8502C

57F-5FBB-11D2-AAC1-006008C78BC7}"):                                          

ToInstance, Association: DisableOverride ToInstance      ToSubClass]   

3. class Win32_NTLogEventComputer   

4. {   

5. [key, read: ToSubClass] Win32_ComputerSystem ref Computer;   

6. [key, read: ToSubClass] Win32_NTLogEvent ref Record;   

7. };   

Figure 4-20 shows the WMI Object Browser (another tool that the WMI Administrative 
Tools includes) displaying the contents of the CIMV2 namespace. Windows system components 
typically place their objects within the CIMV2 namespace. The Object Browser first locates the 
Win32_ComputerSystem object instance ALEX-LAPTOP, which is the object that represents the 
computer. Then the Object Browser obtains the objects associated with Win32_ComputerSystem 
and displays them beneath ALEX-LAPTOP. The Object Browser user interface displays 
association objects with a double-arrow folder icon. The associated class type’s objects display 
beneath the folder. 

You can see in the Object Browser that the Event Log provider’s association class 
Win32_NTLogEventComputer is beneath ALEX-LAPTOP and that numerous instances of the 
Win32_NTLogEvent class exist. Refer to the preceding output to verify that the MOF file defines 
the Win32_NTLogEventComputer class to associate the Win32_ComputerSystem class with the 
Win32_NTLogEvent class. Selecting an instance of Win32_NTLogEvent in the Object Browser 
reveals that class’s properties under the Properties tab in the right-hand pane. Microsoft intended 
the Object Browser to help WMI developers examine their objects, but a management application 
would perform the same operations and display properties or collected information more 
intelligibly. 



 313

  

EXPERIMENT: Using WMi Scripts to Manage Systems 

A powerful aspect of WMI is its support for scripting languages. Microsoft has generated 
hundreds of scripts that perform common administrative tasks for managing user accounts, files, 
the registry, processes, and hardware devices. The Microsoft TechNet Scripting Center Web site 
serves as the central location for Microsoft scripts. Using a script from the scripting center is as 
easy as copying its text from your Internet browser, storing it in a file with a .vbs extension, and 
running it with the command cscript script.vbs, where “script” is the name you gave the script. 
Cscript is the command-line interface to Windows Script Host (WSH).  

Here’s a sample TechNet script that registers to receive events when Win32_Process object 
instances are created, which occurs whenever a process starts, and prints a line with the name of 
the process that the object represents: 

1. strComputer = "."  

2. Set objWMIService = GetObject("winmgmts:" _   

3. & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")   

4. Set colMonitoredProcesses = objWMIService. _   

5. ExecNotificationQuery("select * from __instancecreationevent " _   

6. & " within 1 where TargetInstance isa 'Win32_Process'")   

7. i = 0  

8. Do While i = 0  

9. Set objLatestProcess = colMonitoredProcesses.NextEvent   

10. Wscript.Echo objLatestProcess.TargetInstance.Name   

11. Loop   

The line that invokes ExecNotificationQuery does so with a parameter that includes a 
“select” statement, which highlights WMI’s support for a read-only subset of the ANSI standard 
Structured Query Language (SQL), known as WQL, to provide a flexible way for WMI 
consumers to specify the information that they want to extract from WMI providers. Running the 
sample script with Cscript and then starting Notepad results in the following output: 

1. C:\>cscript monproc.vbs   
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2. Microsoft (R) Windows Script Host Version 5.7  

3. Copyright (C) Microsoft Corporation. All rights reserved.   

4. NOTEPAD.EXE  

4.3.4 WMI Implementation 

The WMI service runs in a shared Svchost process that executes in the local system account. 
It loads providers into the Wmiprvse.exe provider-hosting process, which launches as a child of 
the RPC service process. WMI executes Wmiprvse in the local system, local service, or network 
service accounts, depending on the value of the HostingModel property of the WMI 
Win32Provider object instance that represents the provider implementation. A Wmiprvse process 
exits after the provider is removed from the cache, one minute following the last provider request 
it receives. 

EXPERIMENT: Viewing Wmiprvse Creation 

You can see Wmiprvse being created by running Process Explorer and executing Wmic. A 
Wmiprvse process will appear beneath the Svchost process that hosts the RPC service. If Process 
Explorer job highlighting is enabled, it will appear with the job highlight color because, to prevent 
a runaway provider from consuming all virtual memory resources on a system, Wmiprvse 
executes in a job object that limits the number of child processes it can create and the amount of 
virtual memory each process and all the processes of the job can allocate. (See Chapter 5 for more 
information on job objects.) 

  

Most WMI components reside by default in %SystemRoot%\System32 and 
%SystemRoot%\System32\Wbem, including Windows MOF files, built-in provider DLLs, and 
management application WMI DLLs. Look in the %SystemRoot%\System32\Wbem directory, 
and you’ll find Ntevt.mof, the Event Log provider MOF file. You’ll also find Ntevt.dll, the Event 
Log provider’s DLL, which the WMI service uses. 

Directories beneath %SystemRoot%\System32\Wbem store the repository, log files, and 
third-party MOF files. WMI implements the repository—named the CIMOM repository—using a 
proprietary version of the Microsoft JET database engine. The database file, by default, resides in 
%SystemRoot%\System32\Wbem\Repository\. 
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WMI honors numerous registry settings that the service’s HKLM\SOFTWARE\Microsoft 
\WBEM\CIMOM registry key stores, such as thresholds and maximum values for certain 
parameters. 

Device drivers use special interfaces to provide data to and accept commands—called the 
WMI System Control commands—from WMI. These interfaces are part of the WDM, which is 
explained in Chapter 7. Because the interfaces are cross-platform, they fall under the \root\WMI 
namespace. 

WMIC 

Windows also includes Wmic.exe, a utility that allows you to interact with WMI from a 
WMI-aware command-line shell. All WMI objects and their properties, including their methods, 
are accessible through the shell, which makes WMIC an advanced systems management console. 

4.3.5 WMI Security 

WMI implements security at the namespace level. If a management application successfully 
connects to a namespace, the application can view and access the properties of all the objects in 
that namespace. An administrator can use the WMI Control application to control which users can 
access a namespace. To start the WMI Control application, from the Start menu, select Control 
Panel. From there, select System And Maintenance, Administrative Tools, Computer Management. 
Next, open the Services And Applications branch. Right-click WMI Control, and select Properties 
to launch the WMI Control Properties dialog box, which Figure 4-21 shows. To configure security 
for namespaces, click the Security tab, select the namespace, and click Security. The other tabs in 
the WMI Control Properties dialog box let you modify the performance and backup settings that 
the registry stores. 
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4.4 Windows Diagnostic infrastructure 

The Windows Diagnostic Infrastructure (WDI) helps to detect, diagnose, and resolve 
common problem scenarios with minimal user intervention. Windows components implement 
triggers that cause WDI to launch scenario-specific troubleshooting modules to detect the 
occurrence of a problem scenario. A trigger can indicate that the system is approaching or has 
reached a problematic state. Once a troubleshooting module has identified a root cause, it can 
invoke a problem resolver to address it. A resolution may be as simple as changing a registry 
setting or interacting with the user to perform recovery steps or configuration changes. Ultimately, 
WDI’s main role is to provide a unified framework for Windows components to perform the tasks 
involved in automated problem detection, diagnosis, and resolution. 

4.4.1 WDI Instrumentation 

Windows or application components must add instrumentation to notify WDI when a 
problem scenario is occurring. Components can wait for the results of diagnosis synchronously or 
can continue operating and let diagnosis proceed asynchronously. WDI implements two different 
types of instrumentation APIs to support these models. 

■ Event-based diagnosis, which can be used for minimally invasive diagnostics 
instrumentation, can be added to a component without requiring any changes to its implementation. 
WDI supports two kinds of event-based diagnosis: simple scenarios and start-stop scenarios. In a 
simple scenario, a single point in code is responsible for the failure and an event is raised to 
trigger diagnostics. In a start-stop scenario, an entire code path is deemed risky and is 
instrumented for diagnosis. One event is raised at the beginning of the scenario to a real-time 
Event Tracing for Windows (ETW) session named the DiagLog. At the same time, a kernel 
facility called the Scenario Event Mapper (SEM) enables a collection of additional ETW traces to 
the WDI context loggers. A second event is raised to signal the end of the diagnostic scenario, at 
which time the SEM disables the verbose tracing. This “just-in-time tracing” mechanism keeps the 
performance overhead of detailed tracing low while maintaining enough contextual information 
for WDI to find the root cause without a reproduction of the problem, if a failure should occur. 

■ On-demand diagnosis, which allows applications to request diagnosis on their own, interact 
with the diagnostic, receive notifications when the diagnostic has completed, and modify its 
behavior based on the results of the diagnosis. On-demand instrumentation is particularly useful 
when diagnosis needs to be performed in a privileged security context. WDI facilitates the transfer 
of context across trust and process boundaries and also supports impersonation of the caller when 
necessary.  

4.4.2 Diagnostic Policy Service 

The Diagnostic Policy Service (DPS, %SystemRoot%\System32\Dps.dll) implements most 
of the WDI scenario back end. DPS is a multithreaded service (running in a Svchost) that accepts 
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on-demand scenario requests and also monitors and watches for diagnostic events delivered via 
DiagLog. (See Figure 4-22, which shows the relationship of DPS to the other key WDI 
components.) In response to these requests, DPS launches the appropriate  troubleshooting 
module, which encodes domain-specific knowledge, such as how to find the root cause of a 
network problem. In addition, DPS makes all the contextual information related to the scenario 
available to the modules in the form of captured traces. Troubleshooting modules perform 
automated analysis of the data and can request DPS to launch a secondary module called a 
resolver, which is responsible for fixing the problem, silently if possible. 

  

DPS controls and enforces Group Policy settings for diagnostic scenarios. You can use the 
Group Policy Editor (%SystemRoot%\System32\Gpedit.msc) to configure the settings for the 
diagnostics and automatic recovery options. You can access these settings from Computer 
Configuration, Administrative Templates, System, Troubleshooting And Diagnostics, shown in 
Figure 4-23. 

  

4.4.3 Diagnostic Functionality 

Windows implements several built-in diagnostic scenarios and utilities. Some examples 
include: 
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■ Disk diagnostics, which include the presence of Self-Monitoring Analysis and Reporting 
Technology (SMART) code inside the storage class driver (%SystemRoot%\System32\Driver 
\Classspnp.sys) to monitor disk health. WDI notifies and guides the user through data backup after 
an impending disk failure is detected. In addition, Windows monitors application crashes caused 
by disk corruptions in critical system files. The diagnostic utilizes the Windows File Protection 
mechanism to automatically restore such damaged system files from a backup cache when 
possible. For more information on Windows storage management, see Chapter 8. 

■ Network diagnostics and troubleshooting extends WDI to handle different classes of 
networking related problems, such as file sharing, Internet access, wireless networks, third-party 
firewalls, and general network connectivity. For more information on networking, see Chapter 12. 

■ Resource exhaustion prevention, which includes Windows memory leak diagnosis and 
Windows resource exhaustion detection and resolution. These diagnostics can detect when the 
commit limit is approaching its maximum and alert the user of the situation, including the top 
memory and resource consumers. The user can then choose to terminate these applications to 
attempt to free some resources. For more information on the commit limit and virtual memory, see 
Chapter 9. 

■ Windows memory diagnostic tool, which can be manually executed by the user from the 
Boot Manager on startup or automatically recommended by Windows Error Reporting (WER) 
after a system crash that was analyzed as potentially the result of faulty RAM. For more 
information on the boot process, see Chapter 13.  

■ Windows startup repair tool, which attempts to automatically fix certain classes of errors 
commonly responsible for users being unable to boot the system, such as incorrect BCD settings, 
damaged disk structures such as the MBR or boot sector, and faulty drivers. When system boot is 
unsuccessful, the Boot Manager automatically launches the startup repair tool, if it is installed, 
which also includes manual recovery options and access to a command prompt. For more 
information on the startup repair tool, see Chapter 13. 

■ Windows performance diagnostics, which include Windows boot performance diagnostics, 
Windows shutdown performance diagnostics, Windows standby/resume performance diagnostics, 
and Windows system responsiveness performance diagnostics. Based on certain timing thresholds 
and internal behavioral expectations of these mechanisms, Windows can detect problems caused 
by slow performance and log them to the Event Log, which in turn is used by WDI to provide 
resolutions and walkthroughs for the user to attempt to fix the problem. 

■ Program Compatibility Assistant (PCA), which enables legacy applications to execute on 
Windows Vista despite compatibility problems. PCA detects application installation failures 
caused by a mismatch during version checks and run-time failures caused by deprecated binaries 
and User Account Control (UAC) settings. PCA attempts to recover from these failures by 
applying the appropriate compatibility setting for the application, which takes effect during the 
next run. In addition, PCA maintains a database of programs with known compatibility issues and 
informs the users about potential problems at program startup.  
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4.5 Conclusion 

So far, we’ve examined the overall structure of Windows, the core system mechanisms on 
which the structure is built, and core management mechanisms. With this foundation laid, we’re 
ready to explore the individual executive components in more detail, starting with processes and 
threads. 
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5. Processes, Threads, and Jobs 

In this chapter, we’ll explain the data structures and algorithms that deal with processes, 
threads, and jobs in the Windows operating system. The first section focuses on the internal 
structures that make up a process. The second section outlines the steps involved in creating a 
process (and its initial thread). The internals of threads and thread scheduling are then described. 
The chapter concludes with a description of the job object.  

Where relevant performance counters or kernel variables exist, they are mentioned. Although 
this book isn’t a Windows programming book, the pertinent process, thread, and job Windows 
functions are listed so that you can pursue additional information on their use.  

Because processes and threads touch so many components in Windows, a number of terms 
and data structures (such as working sets, objects and handles, system memory heaps, and so on) 
are referred to in this chapter but are explained in detail elsewhere in the book. To fully 
understand this chapter, you need to be familiar with the terms and concepts explained in Chapters 
1 and 2, such as the difference between a process and a thread, the Windows virtual address space 
layout, and the difference between user mode and kernel mode. 

5.1 Process Internals 

This section describes the key Windows process data structures. Also listed are key kernel 
variables, performance counters, and functions and tools that relate to processes. 

5.1.1 Data Structures 

Each Windows process is represented by an executive process (EPROCESS) block. Besides 
containing many attributes relating to a process, an EPROCESS block contains and points to a 
number of other related data structures. For example, each process has one or more threads 
represented by executive thread (ETHREAD) blocks. (Thread data structures are explained in the 
section “Thread Internals” later in this chapter.) The EPROCESS block and its related data 
structures exist in system address space, with the exception of the process environment block 
(PEB), which exists in the process address space (because it contains information that needs to be 
accessed by user-mode code). 

In addition to the EPROCESS block and the PEB, the Windows subsystem process (Csrss) 
maintains a parallel structure for each process that is executing a Windows program. Finally, the 
kernel-mode part of the Windows subsystem (Win32k.sys) will also maintain a per-process data 
structure that is created the first time a thread calls a Windows USER or GDI function that is 
implemented in kernel mode. 

Figure 5-1 is a simplified diagram of the process and thread data structures. Each data 
structure shown in the figure is described in detail in this chapter. 
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First let’s focus on the process block. (We’ll get to the thread block in the section “Thread 
Internals” later in the chapter.) Figure 5-2 shows the key fields in an EPROCESS block. 

  

EXPERIMENT: Displaying the Format of an ePrOCeSS Block 

For a list of the fields that make up an EPROCESS block and their offsets in hexadecimal, 
type dt _eprocess in the kernel debugger. (See Chapter 1 for more information on the kernel 
debugger and how to perform kernel debugging on the local system.) The output (truncated for the 
sake of space) on a 32-bit system looks like this: 

1. lkd> dt _eprocess   

2. nt!_EPROCESS   

3. +0x000 Pcb : _KPROCESS   

4. +0x080 ProcessLock : _EX_PUSH_LOCK   



 322

5. +0x088 CreateTime : _LARGE_INTEGER   

6. +0x090 ExitTime : _LARGE_INTEGER   

7. +0x098 RundownProtect : _EX_RUNDOWN_REF   

8. +0x09c UniqueProcessId : Ptr32 Void   

9. +0x0a0 ActiveProcessLinks : _LIST_ENTRY   

10. +0x0a8 QuotaUsage : [3] Uint4B   

11. +0x0b4 QuotaPeak : [3] Uint4B   

12. +0x0c0 CommitCharge : Uint4B   

13. +0x0c4 PeakVirtualSize : Uint4B   

14. +0x0c8 VirtualSize : Uint4B   

15. +0x0cc SessionProcessLinks : _LIST_ENTRY   

16. +0x0d4 DebugPort : Ptr32 Void   

17. +0x0d8 ExceptionPortData : Ptr32 Void   

18. +0x0d8 ExceptionPortValue : Uint4B   

19. +0x0d8 ExceptionPortState : Pos 0, 3 Bits   

20. +0x0dc ObjectTable : Ptr32 _HANDLE_TABLE   

21. +0x0e0 Token : _EX_FAST_REF   

22. +0x0e4 WorkingSetPage : Uint4B   

23. +0x0e8 AddressCreationLock : _EX_PUSH_LOCK   

24. +0x0ec RotateInProgress : Ptr32 _ETHREAD   

25. +0x0f0 ForkInProgress : Ptr32 _ETHREAD   

26. +0x0f4 HardwareTrigger : Uint4B   

27. +0x0f8 PhysicalVadRoot : Ptr32 _MM_AVL_TABLE   

28. +0x0fc CloneRoot : Ptr32 Void   

29. +0x100 NumberOfPrivatePages : Uint4B   

30. +0x104 NumberOfLockedPages : Uint4B   

31. +0x108 Win32Process : Ptr32 Void   

32. +0x10c Job : Ptr32 _EJOB   

33. +0x110 SectionObject : Ptr32 Void   

34. +0x114 SectionBaseAddress : Ptr32 Void   

35. +0x118 QuotaBlock : Ptr32 _EPROCESS_QUOTA_BLOCK   

Note that the first field (Pcb) is actually a substructure, the kernel process block 
(KPROCESS), which is where scheduling-related information is stored. To display the format of 
the kernel process block, type dt _kprocess: 

1. lkd> dt _kprocess   

2. nt!_KPROCESS   

3. +0x000 Header : _DISPATCHER_HEADER   

4. +0x010 ProfileListHead : _LIST_ENTRY   

5. +0x018 DirectoryTableBase : Uint4B   

6. +0x01c Unused0 : Uint4B   

7. +0x020 LdtDescriptor : _KGDTENTRY   

8. +0x028 Int21Descriptor : _KIDTENTRY   

9. +0x030 IopmOffset : Uint2B   
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10. +0x032 Iopl : UChar   

11. +0x033 Unused : UChar   

12. +0x034 ActiveProcessors : Uint4B   

13. +0x038 KernelTime : Uint4B   

14. +0x03c UserTime : Uint4B   

15. +0x040 ReadyListHead : _LIST_ENTRY   

16. +0x048 SwapListEntry : _SINGLE_LIST_ENTRY   

17. +0x04c VdmTrapcHandler : Ptr32 Void   

18. +0x050 ThreadListHead : _LIST_ENTRY   

19. +0x058 ProcessLock : Uint4B   

20. +0x05c Affinity : Uint4B   

21. +0x060 AutoAlignment : Pos 0, 1 Bit   

22. +0x060 DisableBoost : Pos 1, 1 Bit   

23. +0x060 DisableQuantum : Pos 2, 1 Bit   

24. +0x060 ReservedFlags : Pos 3, 29 Bits   

25. +0x060 ProcessFlags : Int4B   

26. +0x064 BasePriority : Char   

27. +0x065 QuantumReset : Char   

28. +0x066 State : UChar   

29. +0x067 ThreadSeed : UChar   

30. +0x068 PowerState : UChar   

31. +0x069 IdealNode : UChar   
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33. +0x06a Visited : UChar   

34. +0x06b Flags : _KEXECUTE_OPTIONS   

35. +0x06b ExecuteOptions : UChar   

36. +0x06c StackCount : Uint4B   

37. +0x070 ProcessListEntry : _LIST_ENTRY   

38. +0x078 CycleTime : Uint8B   

An alternative way to see the KPROCESS (and other substructures in the EPROCESS) is to 
use the recursion (–r) switch of the dt command. For example, typing dt _eprocess –r1 will recurse 
and display all substructures one level deep.  

The dt command shows the format of a process block, not its contents. To show an instance 
of an actual process, you can specify the address of an EPROCESS structure as an argument to the 
dt command. You can get the address of all the EPROCESS blocks in the system by using 
the !process 0 0 command. An annotated example of the output from this command is included 
later in this chapter. 

Table 5-1 explains some of the fields in the preceding experiment in more detail and includes 
references to other places in the book where you can find more information about them. As we’ve 
said before and will no doubt say again, processes and threads are such integral parts of Windows 
that it’s impossible to talk about them without referring to many other parts of the system. To keep 
the length of this chapter manageable, however, we’ve covered those related subjects (such as 
memory management, security, objects, and handles) elsewhere.  
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The kernel process (KPROCESS) block, which is part of the EPROCESS block, and the 
process environment block (PEB), which is pointed to by the EPROCESS block, contain 
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additional details about the process object. The KPROCESS block (which is sometimes called the 
PCB or process control block) is illustrated in Figure 5-3. It contains the basic information that the 
Windows kernel needs to schedule the threads inside a process. (Page directories are covered in 
Chapter 9, and kernel thread blocks are described in more detail later in this chapter.)  

The PEB, which lives in the user process address space, contains information needed by the 
image loader, the heap manager, and other Windows system DLLs that need to access it from user 
mode. (The EPROCESS and KPROCESS blocks are accessible only from kernel mode.) The 
basic structure of the PEB is illustrated in Figure 5-4 and is explained in more detail later in this 
chapter. 

  

  

EXPERIMENT: examining the PeB 

You can dump the PEB structure with the !peb command in the kernel debugger. To get the 
address of the PEB, use the !process command as follows: 

1. lkd> !process   

2. PROCESS 8575f030 SessionId: 1 Cid: 08d0 Peb: 7ffd9000 ParentCid: 0360  

3. DirBase: 1a81b000 ObjectTable: e12bd418 HandleCount: 66.   

4. Image: windbg.exe  
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Then specify that address to the !peb command as follows: 

1. lkd> !peb 7ffd9000  

2. PEB at 7ffd9000  

3. InheritedAddressSpace: No   

4. ReadImageFileExecOptions: No   

5. BeingDebugged: No   

6. ImageBaseAddress: 002a0000  

7. Ldr 77895d00  

8. Ldr.Initialized: Yes   

9. Ldr.InInitializationOrderModuleList: 00151c38 . 00191558  

10. Ldr.InLoadOrderModuleList: 00151bb8 . 00191548  

11. Ldr.InMemoryOrderModuleList: 00151bc0 . 00191550  

12. Base TimeStamp Module   

13. 2a0000 4678a41e Jun 19 23:50:54 2007 C:\Program Files\Debugging  

Tools for   

14. Windows\windbg.exe   

15. 777d0000 4549bdc9 Nov 02 05:43:37 2006 C:\Windows\system32\Ntdll.dll

   

16. 764c0000 4549bd80 Nov 02 05:42:24 2006 C:\Windows\system32 

\kernel32.dll   

17. SubSystemData: 00000000  

18. ProcessHeap: 00150000  

19. ProcessParameters: 001512e0  

20. WindowTitle: 'C:\Users\Alex Ionescu\Desktop\WinDbg.lnk'  

21. ImageFile: 'C:\Program Files\Debugging Tools for Windows\windbg.exe'

  

22. CommandLine: '"C:\Program Files\Debugging Tools for Windows 

\windbg.exe" '  

23. DllPath: 'C:\Program Files\Debugging Tools for Windows;C:\Windows\   

24. system32;C:\Windows\system;C:\Windows;.;C:\Windows\system32; 

C:\Windows;   

25. C:\Windows\System32\Wbem;C:\Program Files\Common Files\Roxio Shared\

   

26. DLLShared\;C:\Program Files\Common Files\Roxio Shared\DLLShared\; 

C:\Program   

27. Files\Common Files\Roxio Shared\9.0\DLLShared\;c:\sysint; 

C:\Program Files\   

28. QuickTime\QTSystem\'   

29. Environment: 001850a8  

30. ALLUSERSPROFILE=C:\ProgramData   

31. APPDATA=C:\Users\Alex Ionescu\AppData\Roaming   

32. .   

33. .   

34. .  
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5.1.2 Kernel Variables 

A few key kernel global variables that relate to processes are listed in Table 5-2. These 
variables are referred to later in the chapter, when the steps in creating a process are described. 

  

5.1.3 Performance Counters 

Windows maintains a number of counters with which you can track the processes running on 
your system; you can retrieve these counters programmatically or view them with the Performance 
tool. Table 5-3 lists the performance counters relevant to processes. 
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5.1.4 Relevant Functions 

 

For reference purposes, some of the Windows functions that apply to processes are described 
in Table 5-4. For further information, consult the Windows API documentation in the MSDN 
Library. 
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EXPERIMENT: using the Kernel Debugger !process Command 

The kernel debugger !process command displays a subset of the information in an 
EPROCESS block. This output is arranged in two parts for each process. First you see the 
information about the process, as shown here (when you don’t specify a process address or 
ID, !process lists information for the active process on the current CPU): 

1. lkd> !process   

2. PROCESS 85857160 SessionId: 1 Cid: 0bcc Peb: 7ffd9000 ParentCid: 090c   

3. DirBase: b45b0820 ObjectTable: b94ffda0 HandleCount: 99.   

4. Image: windbg.exe   

5. VadRoot 85a1c8e8 Vads 97 Clone 0 Private 5919. Modified 153. Locked 1.   

6. DeviceMap 9d32ee50  

7. Token ebaa1938  

8. ElapsedTime 00:48:44.125  

9. UserTime 00:00:00.000  

10. KernelTime 00:00:00.000  

11. QuotaPoolUsage[PagedPool] 166784  

12. QuotaPoolUsage[NonPagedPool] 4776  

13. Working Set Sizes (now,min,max) (8938, 50, 345) (35752KB, 200KB, 1380KB) 

  

14. PeakWorkingSetSize 8938  

15. VirtualSize 106 Mb   

16. PeakVirtualSize 108 Mb   

17. PageFaultCount 37066  

18. MemoryPriority BACKGROUND   

19. BasePriority 8  

20. CommitCharge 6242  



 330

After the basic process output comes a list of the threads in the process. That output is 
explained in the “Experiment: Using the Kernel Debugger !thread Command” section later in the 
chapter. Other commands that display process information include !handle, which dumps the 
process handle table (which is described in more detail in the section “Object Handles and the 
Process Handle Table” in Chapter 3). Process and thread security structures are described in 
Chapter 6. 

5.2 Protected Processes 

In the Windows security model, any process running with a token containing the debug 
privilege (such as an administrator’s account) can request any access right that it desires to any 
other process running on the machine—for example, it can read and write arbitrary process 
memory, inject code, suspend and resume threads, and query information on other processes. 
Tools like Process Explorer and Task Manager need and request these access rights to provide 
their functionality to users. 

This logical behavior (which helps ensure that administrators will always have full control of 
the running code on the system) clashes with the system behavior for digital rights management 
requirements imposed by the media industry on computer operating systems that need to support 
playback of advanced, high-quality digital content such as BluRay and HD-DVD media. To 
support reliable and protected playback of such content, Windows uses protected processes. These 
processes exist alongside normal Windows processes, but they add significant constraints to the 
access rights that other processes on the system (even when running with administrative privileges) 
can request. 

Protected processes can be created by any application; however, the operating system will 
only allow a process to be protected if the image file has been digitally signed with a special 
Windows Media Certificate. The Protected Media Path (PMP) in Windows Vista makes use of 
protected processes to provide protection for high-value media, and developers of applications 
such as DVD players can make use of protected processes by using the Media Foundation API. 

The Audio Device Graph process (Audiodg.exe) is a protected process, since protected music 
content may be decoded through it. Similarly, the Windows Error Reporting (WER; see Chapter 3 
for more information) client process (Werfault.exe) can also run protected because it needs to 
have access to protected processes in case one of them crashes. Finally, the System process itself 
is protected because some of the decryption information is generated by the Ksecdd.sys driver and 
stored in its user-mode memory. The System process is also protected to protect the integrity of all 
kernel handles (since the System process’s handle table contains all the kernel handles on the 
system). 

At the kernel level, support for protected processes is twofold: first, the bulk of process 
creation occurs in kernel mode to avoid injection attacks. (The flow for both protected and 
standard process creation is described in detail in the next section.) Second, protected processes 
have a special bit set in their EPROCESS structure that modifies the behavior of securityrelated 
routines in the process manager to deny certain access rights that would normally be granted to 
administrators. Table 5-5 indicates access rights that are limited or denied.  
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Certain access rights are also disabled for threads running inside protected processes; we will 
look at those access rights later in this chapter in the section “Thread Internals.” 

Because Process Explorer uses standard user-mode Windows APIs to query information on 
process internals, it is unable to perform certain operations on such processes. On the other hand, a 
tool like WinDbg in kernel debugging mode, which uses kernel-mode infrastructure to obtain this 
information, will be able to display complete information. See the experiment in the thread 
internals section on how Process Explorer behaves when confronted with a protected process such 
as Audiodg.exe. 

Note As mentioned in Chapter 1, to perform local kernel debugging you must boot in 
debugging mode (enabled by using “bcdedit /debug on” or by using the Msconfig advanced boot 
options). This protects against debugger-based attacks on protected processes and the Protected 
Media Path (PMP). When booted in debugging mode, high-definition content playback will not 
work; for example, attempting to play MPEG2 media such as a DVD will result in an access 
violation inside the media player (this is by design). 

Limiting these access rights reliably allows the kernel to sandbox a protected process from 
user-mode access. On the other hand, because a protected process is indicated by a flag in the 
EPROCESS block, an administrator can still load a kernel-mode driver that disables this bit. 
However, this would be a violation of the PMP model and considered malicious, and such a driver 
would likely eventually be blocked from loading on a 64-bit system because the kernel-mode 
code-signing policy prohibits the digital signing of malicious code. Even on 32-bit systems, the 
driver has to be recognized by PMP policy or else the playback will be halted. This policy is 
implemented by Microsoft and not by any kernel detection. This block would require manual 
action from Microsoft to identify the signature as malicious and update the kernel. 
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5.3 Flow of CreateProcess 

So far in this chapter, you’ve seen the structures that are part of a process and the API 
functions with which you (and the operating system) can manipulate processes. You’ve also found 
out how you can use tools to view how processes interact with your system. But how did those 
processes come into being, and how do they exit once they’ve fulfilled their purpose? In the 
following sections, you’ll discover how a Windows process comes to life.  

A Windows subsystem process is created when an application calls one of the process 
creation functions, such as CreateProcess, CreateProcessAsUser, CreateProcessWithTokenW, or 
CreateProcessWithLogonW. Creating a Windows process consists of several stages carried out in 
three parts of the operating system: the Windows client-side library Kernel32.dll (in the case of 
the CreateProcessAsUser, CreateProcessWithTokenW, and CreateProcessWithLogonW routines, 
part of the work is first done in Advapi32.dll), the Windows executive, and the Windows 
subsystem process  (Csrss).  

Because of the multiple environment subsystem architecture of Windows, creating an 
executive process object (which other subsystems can use) is separated from the work involved in 
creating a Windows subsystem process. So, although the following description of the flow of the 
Windows CreateProcess function is complicated, keep in mind that part of the work is specific to 
the semantics added by the Windows subsystem as opposed to the core work needed to create an 
executive process object. 

The following list summarizes the main stages of creating a process with the Windows 
CreateProcess function. The operations performed in each stage are described in detail in the 
subsequent sections. Some of these operations may be performed by CreateProcess itself (or other 
helper routines in user mode), while others will be performed by NtCreateUserProcess or one of 
its helper routines in kernel mode. In our detailed analysis to follow, we will differentiate between 
the two at each step required. 

Note Many steps of CreateProcess are related to the setup of the process virtual address space 
and therefore refer to many memory management terms and structures that are defined in Chapter 
9. 

1. Validate parameters; convert Windows subsystem flags and options to their native 
counterparts; parse, validate, and convert the attribute list to its native counterpart. 

2. Open the image file (.exe) to be executed inside the process. 

3. Create the Windows executive process object. 

4. Create the initial thread (stack, context, and Windows executive thread object). 

5. Perform post-creation, Windows-subsystem-specific process initialization. 

6. Start execution of the initial thread (unless the CREATE_ SUSPENDED flag was 
specified). 
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7. In the context of the new process and thread, complete the initialization of the address 
space (such as load required DLLs) and begin execution of the program. 

Figure 5-5 shows an overview of the stages Windows follows to create a process. 

  

5.3.1 Stage 1: Converting and Validating Parameters and Flags 

Before opening the executable image to run, CreateProcess performs the following steps:  

■ In CreateProcess, the priority class for the new process is specified as independent bits in 
the CreationFlags parameter. Thus, you can specify more than one priority class for a single 
CreateProcess call. Windows resolves the question of which priority class to assign to the process 
by choosing the lowest-priority class set. 

■ If no priority class is specified for the new process, the priority class defaults to Normal 
unless the priority class of the process that created it is Idle or Below Normal, in which case the 
priority class of the new process will have the same priority as the creating class. 

■ If a Real-time priority class is specified for the new process and the process’s caller doesn’t 
have the Increase Scheduling Priority privilege, the High priority class is used instead. In other 
words, CreateProcess doesn’t fail just because the caller has insufficient privileges to create the 
process in the Real-time priority class; the new process just won’t have as high a priority as 
Real-time. 
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■ All windows are associated with desktops, the graphical representation of a workspace. If 
no desktop is specified in CreateProcess, the process is associated with the caller’s current 
desktop. 

■ If the process is part of a job object, but the creation flags requested a separate virtual OS 
machine (VDM), the flag is ignored. 

■ If the caller is sending a handle to a monitor as an output handle instead of a console andle, 
standard handle flags are ignored. 

■ If the creation flags specify that the process will be debugged, Kernel32 initiates a 
connection o the native debugging code in Ntdll.dll by calling DbgUiConnectToDbg and ets a 
handle to the debug object from the thread environment block (TEB) once the unction returns. 

■ Kernel32.dll sets the default hard error mode if the creation flags specified one. 

■ The user-specified attribute list is converted from Windows subsystem format to native 
ormat, and internal attributes are added to it. 

Note The attribute list passed on a CreateProcess call permits passing back to the caller 
information eyond a simple status code, such as the TEB address of the initial thread or 
information n the image section. This is necessary for protected processes since the parent cannot 
query his information after the child is created. 

Once these steps are completed, CreateProcess will perform the initial call to 
NtCreateUserProcess o attempt creation of the process. Because Kernel32.dll has no idea at this 
point hether the application image name is a real Windows application, or if it might be a POSIX, 
6-bit, or DOS application, the call may fail, at which point CreateProcess will look at the rror 
reason and attempt to correct the situation. 

5.3.2 Stage 2: Opening the Image to Be Executed 

As illustrated in Figure 5-6, the first stage in NtCreateUserProcess is to find the appropriate 
Windows image that will run the executable file specified by the caller and to create a section 
object to later map it into the address space of the new process. If the call failed for any reason, it 
will return to CreateProcess with a failure state (see Table 5-6) that will cause CreateProcess to 
attempt execution again. 

If the executable file specified is a Windows .exe, NtCreateUserProcess will try to open the 
file and create a section object for it. The object isn’t mapped into memory yet, but it is opened. 
Just because a section object has been successfully created doesn’t mean that the file is a valid 
Windows image, however; it could be a DLL or a POSIX executable. If the file is a POSIX 
executable, the image to be run changes to Posix.exe, and CreateProcess restarts from the 
beginning of Stage 1. If the file is a DLL, CreateProcess fails. 

Now that NtCreateUserProcess has found a valid Windows executable image, as part of the 
process creation code described in Stage 3 it looks in the registry under HKLM\SOFTWARE 
\Microsoft\Windows NT\CurrentVersion\Image File Execution Options to see whether a subkey 
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with the file name and extension of the executable image (but without the directory and path 
information—for example, Image.exe) exists there. If it does, PspAllocateProcess looks for a 
value named Debugger for that key. If this value is present, the image to be run becomes the string 
in that value and CreateProcess restarts at Stage 1. 

Tip You can take advantage of this process creation behavior and debug the startup code of 
Windows services processes before they start rather than attach the debugger after starting a 
service, which doesn’t allow you to debug the startup code. 

On the other hand, if the image is not a Windows .exe (for example, if it’s an MS-DOS, 
Win16, or a POSIX application), CreateProcess goes through a series of steps to find a Windows 
support image to run it. This process is necessary because non-Windows applications aren’t run 
directly—Windows instead uses one of a few special support images that in turn are responsible 
for actually running the non-Windows program. For example, if you attempt to run a POSIX 
application, CreateProcess identifies it as such and changes the image to be run to the Windows 
executable file Posix.exe. If you attempt to run an MS-DOS or a Win16 executable, the image to 
be run becomes the Windows executable Ntvdm.exe. In short, you can’t directly create a process 
that is not a Windows process. If Windows can’t find a way to resolve the activated image as a 
Windows process (as shown in Table 5-6), CreateProcess fails. 
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Specifically, the decision tree that CreateProcess goes through to run an image is as follows: 

■ If the image is an MS-DOS application with an .exe, a .com, or a .pif extension, a message 
is sent to the Windows subsystem to check whether an MS-DOS support process (Ntvdm.exe, 
specified in the registry value HKLM\SYSTEM\CurrentControlSet\Control\WOW\cmdline) has 
already been created for this session. If a support process has been created, it is used to run the 
MS-DOS application. (The Windows subsystem sends the message to the VDM [Virtual DOS 
Machine] process to run the new image.) Then CreateProcess returns. If a support process hasn’t 
been created, the image to be run changes to Ntvdm.exe and CreateProcess restarts at Stage 1. 

■ If the file to run has a .bat or a .cmd extension, the image to be run becomes Cmd.exe, the 
Windows command prompt, and CreateProcess restarts at Stage 1. (The name of the batch file is 
passed as the first parameter to Cmd.exe.) 

■ If the image is a Win16 (Windows 3.1) executable, CreateProcess must decide whether a 
new VDM process must be created to run it or whether it should use the default sessionwide 
shared VDM process (which might not yet have been created). The CreateProcess flags 
CREATE_SEPARATE_WOW_VDM and CREATE_SHARED_WOW_VDM control this 
decision. If these flags aren’t specified, the registry value HKLM\SYSTEM\CurrentControlSet 
\Control\WOW\DefaultSeparateVDM dictates the default behavior. 

If the application is to be run in a separate VDM, the image to be run changes to the value of 
HKLM\SYSTEM\CurrentControlSet\Control\WOW\wowcmdline and CreateProcess restarts at 
Stage 1. Otherwise, the Windows subsystem sends a message to see whether the shared VDM 
process exists and can be used. (If the VDM process is running on a different desktop or isn’t 
running under the same security as the caller, it can’t be used and a new VDM process must be 
created.) If a shared VDM process can be used, the Windows subsystem sends a message to it to 
run the new image and CreateProcess returns. If the VDM process hasn’t yet been created (or if it 



 337

exists but can’t be used), the image to be run changes to the VDM support image and 
CreateProcess restarts at Stage 1. 

5.3.3 Stage 3: Creating the Windows Executive Process Object 

(PspAllocate- Process) 

At this point, NtCreateUserProcess has opened a valid Windows executable file and created a 
section object to map it into the new process address space. Next it creates a Windows executive 
process object to run the image by calling the internal system function PspAllocateProcess. 
Creating the executive process object (which is done by the creating thread) involves the 
following substages: 

■ Setting up the EPROCESS block 

■ Creating the initial process address space 

■ Initializing the kernel process block (KPROCESS) 

■ Setting up the PEB 

■ Concluding the setup of the process address space (which includes initializing the working 
set list and virtual address space descriptors and mapping the image into address space) 

Note The only time there won’t be a parent process is during system initialization. After that 
point, a parent process is always required to provide a security context for the new process.  

Stage 3A: Setting Up the EPROCESS Block 

This substage involves the following steps: 

1. Allocate and initialize the Windows EPROCESS block. 

2. Inherit the Windows device namespace (including the definition of drive letters, COM 
ports, and so on). 

3. Inherit the process affinity mask and page priority from the parent process. If there is no 
parent process, the default page priority (5) is used, and an affinity mask of all processors 
(KeActiveProcessors) is used. 

4. Set the new process’s quota block to the address of its parent process’s quota block, and 
increment the reference count for the parent’s quota block. If the process was created through 
CreateProcessAsUser, this step won’t occur. 

5. The process minimum and maximum working set size are set to the values of 
PspMinimumWorkingSet and PspMaximumWorkingSet, respectively. These values can be 
overridden if performance options were specified in the PerfOptions key part of Image File 
Execution Options, in which case the maximum working set is taken from there.  

6. Store the parent process’s process ID in the InheritedFromUniqueProcessId field in the 
new process object. 
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7. Attach the process to the session of the parent process. 

8. Initialize the KPROCESS part of the process object. (See Stage 3C.) 

9. Create the process’s primary access token (a duplicate of its parent’s primary token). 

New processes inherit the security profile of their parents. If the CreateProcessAsUser 
function is being used to specify a different access token for the new process, the token is then 
changed appropriately. 

10. The process handle table is initialized. If the inherit handles flag is set for the parent 
process, any inheritable handles are copied from the parent’s object handle table into the new 
process. (For more information about object handle tables, see Chapter 3.) A process attribute can 
also be used to specify only a subset of handles, which is useful when you are using 
CreateProcessAsUser to restrict which objects should be inherited by the child process. 

11. If performance options were specified through the PerfOptions key, these are now applied. 
The PerfOptions key includes overrides for the working set limit, I/O priority, page priority, and 
CPU priority class of the process. 

12. The process priority class and quantum are computed and set. 

13. Set the new process’s exit status to STATUS_PENDING. 

Stage 3B: Creating the Initial Process Address Space 

The initial process address space consists of the following pages: 

■ Page directory (and it’s possible there’ll be more than one for systems with page tables 
more than two levels, such as x86 systems in PAE mode or 64-bit systems) 

■ Hyperspace page 

■ Working set list 

To create these three pages, the following steps are taken: 

1. Page table entries are created in the appropriate page tables to map the initial pages. 

2. The number of pages is deducted from the kernel variable MmTotalCommittedPages and 
added to MmProcessCommit. 

3. The systemwide default process minimum working set size (PsMinimumWorkingSet) is 
deducted from MmResidentAvailablePages. 

4. The page table pages for the nonpaged portion of system space and the system cache are 
mapped into the process. 

Stage 3C: Creating the Kernel Process Block 

The next stage of PspAllocateProcess is the initialization of the KPROCESS block. This 
work is performed by KeInitializeProcess, which contains: 

■ A pointer to a list of kernel threads. (The kernel has no knowledge of handles, so it 
bypasses the object table.) 
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■ A pointer to the process’s page table directory (which is used to keep track of the process’s 
virtual address space). 

■ The total time the process’s threads have executed. 

■ The number of clock cycles the process’s threads have consumed. 

■ The process’s default base-scheduling priority (which starts as Normal, or 8, unless the 
parent process was set to Idle or Below Normal, in which case the setting is inherited). 

■ The default processor affinity for the threads in the process. 

■ The process swapping state (resident, out-swapped, or in transition). 

■ The NUMA ideal node (initially set to 0). 

■ The thread seed, based on the ideal processor that the kernel has chosen for this process 
(which is based on the previously created process’s ideal processor, effectively randomizing this 
in a round-robin manner). Creating a new process will update the seed in KeNodeBlock (the initial 
NUMA node block) so that the next new process will get a different ideal processor seed. 

■ The initial value (or reset value) of the process default quantum (which is described in 
more detail in the “Thread Scheduling” section later in the chapter), which is hardcoded to 6 until 
it is initialized later (by PspComputeQuantumAndPriority). 

Note The default initial quantum differs between Windows client and server systems. For 
more information on thread quantums, turn to their discussion in the section “Thread Scheduling.” 

Stage 3D: Concluding the Setup of the Process Address Space 

Setting up the address space for a new process is somewhat complicated, so let’s look at 
what’s involved one step at a time. To get the most out of this section, you should have some 
familiarity with the internals of the Windows memory manager, which are described in Chapter 9. 

■ The virtual memory manager sets the value of the process’s last trim time to the current 
time. The working set manager (which runs in the context of the balance set manager system 
thread) uses this value to determine when to initiate working set trimming. 

■ The memory manager initializes the process’s working set list—page faults can now be 
taken. 

■ The section (created when the image file was opened) is now mapped into the new 
process’s address space, and the process section base address is set to the base address of the 
image. 

■ Ntdll.dll is mapped into the process. 

Note POSIX processes clone the address space of their parents, so they don’t have to go 
through these steps to create a new address space. In the case of POSIX applications, the new 
process’s section base address is set to that of its parent process and the parent’s PEB is cloned for 
the new process. 

Stage 3E: Setting Up the PEB 
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NtCreateUserProcess calls MmCreatePeb, which first maps the systemwide national 
language support (NLS) tables into the process’s address space. It next calls MiCreatePebOrTeb to 
allocate a page for the PEB and then initializes a number of fields, which are described in Table 
5-7. 

 

  

However, if the image fi le specifi es explicit Windows version or affi nity values, this 
information replaces the initial values shown in Table 5-7. The mapping from image information 
fi elds to PEB fi elds is described in Table 5-8. 

  

If the image header characteristics IMAGE_FILE_UP_SYSTEM_ONLY fl ag is set 
(indicating that the image can run only on a uniprocessor system), a single CPU is chosen for all 
the threads in this new process to run on. The selection process is performed by simply cycling 
through the available processors—each time this type of image is run, the next processor is used. 
In this way, these types of images are spread evenly across the processors.  
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If the image specifi es an explicit processor affi nity mask (for example, a fi eld in the confi 
guration header), this value is copied to the PEB and later set as the default process affi nity 
mask .  

Stage 3F: Completing the Setup of the Executive Process Object (PspInsertProcess) 

Before the handle to the new process can be returned, a few final setup steps must be 
completed, which are performed by PspInsertProcess and its helper functions: 

1. If systemwide auditing of processes is enabled (either as a result of local policy settings or 
group policy settings from a domain controller), the process’s creation is written to the Security 
event log. 

2. If the parent process was contained in a job, the job is recovered from the job level set of 
the parent and then bound to the session of the newly created process. Finally, the new process is 
added to the job. 

3. PspInsertProcess inserts the new process block at the end of the Windows list of active 
processes (PsActiveProcessHead). 

4. The process debug port of the parent process is copied to the new child process, unless the 
NoDebugInherit flag is set (which can be requested when creating the process). If a debug port 
was specified, it is attached to the new process at this time. 

5. Finally, PspInsertProcess notifies any registered callback routines, creates a handle for the 
new process by calling ObOpenObjectByPointer, and then returns this handle to the caller. 

5.3.4 Stage 4: Creating the Initial Thread and Its Stack and 

Context 

At this point, the Windows executive process object is completely set up. It still has no thread, 
however, so it can’t do anything yet. It’s now time to start that work. Normally, the 
PspCreateThread routine is responsible for all aspects of thread creation and is called by 
NtCreateThread when a new thread is being created. However, because the initial thread is created 
internally by the kernel without user-mode input, the two helper routines that PspCreateThread 
relies on are used instead: PspAllocateThread and PspInsertThread.  

PspAllocateThread handles the actual creation and initialization of the executive thread 
object itself, while PspInsertThread handles the creation of the thread handle and security 
attributes and the call to KeStartThread to turn the executive object into a schedulable thread on 
the system. However, the thread won’t do anything yet—it is created in a suspended state and isn’t 
resumed until the process is completely initialized (as described in Stage 5). 

Note The thread parameter (which can’t be specified in CreateProcess but can be specified in 
CreateThread) is the address of the PEB. This parameter will be used by the initialization code 
that runs in the context of this new thread (as described in Stage 6). 

PspAllocateThread performs the following steps: 
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1. An executive thread block (ETHREAD) is created and initialized. 

2. Before the thread can execute, it needs a stack and a context in which to run, so these are 
set up. The stack size for the initial thread is taken from the image—there’s no way to specify 
another size. 

3. The thread environment block (TEB) is allocated for the new thread. 

4. The user-mode thread start address is stored in the ETHREAD. This is the systemsupplied 
thread startup function in Ntdll.dll (RtlUserThreadStart). The user’s specified Windows start 
address is stored in the ETHREAD block in a different location so that debugging tools such as 
Process Explorer can query the information.  

5. KeInitThread is called to set up the KTHREAD block. The thread’s initial and current base 
priorities are set to the process’s base priority, and its affinity and quantum are set to that of the 
process. This function also sets the initial thread ideal processor. (See the section “Ideal and Last 
Processor” for a description of how this is chosen.) KeInitThread next allocates a kernel stack for 
the thread and initializes the machinedependent hardware context for the thread, including the 
context, trap, and exception frames. The thread’s context is set up so that the thread will start in 
kernel mode in KiThreadStartup. Finally, KeInitThread sets the thread’s state to Initialized and 
returns to PspAllocateThread. 

Once that work is finished, NtCreateUserProcess will call PspInsertThread to perform the 
following steps: 

1. A thread ID is generated for the new thread. 

2. The thread count in the process object is incremented, and the thread is added into the 
process thread list. 

3. The thread is put into a suspended state. 

4. The object is inserted and any registered thread callbacks are called. 

5. The handle is created with ObOpenObjectByName. 

6. The thread is readied for execution by calling KeStartThread. 

5.3.5 Stage 5: Performing Windows Subsystem–Specific 

Post-Initialization 

Once NtCreateUserProcess returns with a success code, all the necessary executive process 
and thread objects have been created. Kernel32.dll will now perform various operations related to 
Windows subsystem–specific operations to finish initializing the process.  

First of all, various checks are made for whether Windows should allow the executable to run. 
These checks includes validating the image version in the header and checking whether Windows 
application certification has blocked the process (through a group policy). On specialized editions 



 343

of Windows Server 2008, such as Windows Web Server 2008 and Windows HPC Server 2008, 
additional checks are made to see if the application imports any disallowed APIs. 

If software restriction policies dictate, a restricted token is created for the new process. 
Afterward, the application compatibility database is queried to see if an entry exists in either the 
registry or system application database for the process. Compatibility shims will not be applied at 
this point—the information will be stored in the PEB once the initial thread starts executing (Stage 
6). 

At this point, Kernel32.dll sends a message to the Windows subsystem so that it can set up 
SxS information (see the end of this section for more information on side-by-side assemblies) such 
as manifest files, DLL redirection paths, and out-of-process execution for the new process. It also 
initializes the Windows subsystem structures for the process and initial thread.  

The message includes the following information: 

■ Process and thread handles 

■ Entries in the creation flags 

■ ID of the process’s creator 

■ Flag indicating whether the process belongs to a Windows application (so that Csrss can 
determine whether or not to show the startup cursor) 

■ UI language Information 

■ DLL redirection and .local flags 

■ Manifest file information 

The Windows subsystem performs the following steps when it receives this message: 

1. CsrCreateProcess duplicates a handle for the process and thread. In this step, the usage 
count of the process and the thread is incremented from 1 (which was set at creation time) to 2. 

2. If a process priority class isn’t specified, CsrCreateProcess sets it according to the 
algorithm described earlier in this section. 

3. The Csrss process block is allocated. 

4. The new process’s exception port is set to be the general function port for the Windows 
subsystem so that the Windows subsystem will receive a message when a second chance 
exception occurs in the process. (For further information on exception handling, see Chapter 3.) 

5. The Csrss thread block is allocated and initialized. 

6. CsrCreateThread inserts the thread in the list of threads for the process. 

7. The count of processes in this session is incremented. 

8. The process shutdown level is set to 0x280 (the default process shutdown level—see 
SetProcessShutdownParameters in the MSDN  Library documentation for more information). 

9. The new process block is inserted into the list of Windows subsystem-wide processes. 
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10. The per-process data structure used by the kernel-mode part of the Windows subsystem 
(W32PROCESS structure) is allocated and initialized. 

11. The application start cursor is displayed. This cursor is the familiar rolling doughnut 
shape—the way that Windows says to the user, “I’m starting something, but you can use the 
cursor in the meantime.” If the process doesn’t make a GUI call after 2 seconds, the cursor reverts 
to the standard pointer. If the process does make a GUI call in the allotted time, CsrCreateProcess 
waits 5 seconds for the application to show a window. After that time, CsrCreateProcess will reset 
the cursor again. 

After Csrss has performed these steps, CreateProcess checks whether the process was run 
elevated (which means it was executed through ShellExecute and elevated by the AppInfo service 
after the consent dialog box was shown to the user). This includes checking whether the process 
was a setup program. If it was, the process’s token is opened, and the virtualization flag is turned 
on so that the application is virtualized. (See the information on UAC and virtualization in Chapter 
6.) If the application contained elevation shims or had a requested elevation level in its manifest, 
the process is destroyed and an elevation request is sent to the AppInfo service. (See Chapter 6 for 
more information on elevation.) 

Note that most of these checks are not performed for protected processes; because these 
processes must have been designed for Windows Vista or later, there’s no reason why they should 
require elevation, virtualization, or application compatibility checks and processing. Additionally, 
allowing mechanisms such as the shim engine to use its usual hooking and memory patching 
techniques on a protected process would result in a security hole if someone could figure how to 
insert arbitrary shims that modify the behavior of the protected process. 

5.3.6 Stage 6: Starting Execution of the Initial Thread 

At this point, the process environment has been determined, resources for its threads to use 
have been allocated, the process has a thread, and the Windows subsystem knows about the new 
process. Unless the caller specified the CREATE_ SUSPENDED flag, the initial thread is now 
resumed so that it can start running and perform the remainder of the process initialization work 
that occurs in the context of the new process (Stage 7). 

5.3.7 Stage 7: Performing Process Initialization in the Context of 

the New Process 

The new thread begins life running the kernel-mode thread startup routine KiThreadStartup. 
KiThreadStartup lowers the thread’s IRQL level from DPC/dispatch level to APC level and then 
calls the system initial thread routine, PspUserThreadStartup. The user-specified thread start 
address is passed as a parameter to this routine. 

First, this function sets the Locale ID and the ideal processor in the TEB, based on the 
information present in kernel-mode data structures, and then it checks if thread creation actually 
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failed. Next it calls DbgkCreateThread, which checks if image notifications were sent for the new 
process. If they weren’t, and notifications are enabled, an image notification is sent first for the 
process and then for the image load of Ntdll.dll. Note that this is done in this stage rather than 
when the images were first mapped, because the process ID (which is required for the callouts) is 
not yet allocated at that time. 

Once those checks are completed, another check is performed to see whether the process is a 
debuggee. If it is, then PspUserThreadStartup checks if the debugger notifications have already 
been sent for this process. If not, then a create process message is sent through the debug object (if 
one is present) so that the process startup debug event (CREATE_PROCESS_DEBUG_INFO) 
can be sent to the appropriate debugger process. This is followed by a similar thread startup debug 
event and by another debug event for the image load of Ntdll.dll. DbgkCreateThread then waits 
for the Windows subsystem to get the reply from the debugger (via the ContinueDebugEvent 
function). 

Now that the debugger has been notified, PspUserThreadStartup looks at the result of the 
initial check on the thread’s life. If it was killed on startup, the thread is terminated. This check is 
done after the debugger and image notifications to be sure that the kernel-mode and user-mode 
debuggers don’t miss information on the thread, even if the thread never got a chance to run. 

Otherwise, the routine checks whether application prefetching is enabled on the system and, 
if so, calls the prefetcher (and Superfetch) to process the prefetch instruction file (if it exists) and 
prefetch pages referenced during the first 10 seconds the last time the process ran. (For details on 
the prefetcher and Superfetch, see Chapter 9.)  

PspUserThreadStartup then checks if the systemwide cookie in the SharedUserData structure 
has been set up yet. If it hasn’t, it generates it based on a hash of system information such as the 
number of interrupts processed, DPC deliveries, and page faults. This systemwide cookie is used 
in the internal decoding and encoding of pointers, such as in the heap manager (for more 
information on heap manager security, see Chapter 9), to protect against certain classes of 
exploitation. 

Finally, PspUserThreadStartup sets up the initial thunk context to run the image loader 
initialization routine (LdrInitializeThunk in Ntdll.dll), as well as the systemwide thread startup 
stub (RtlUserThreadStart in Ntdll.dll). These steps are done by editing the context of the thread in 
place and then issuing an exit from system service operation, which will load the specially crafted 
user context. The LdrInitializeThunk routine initializes the loader, heap manager, NLS tables, 
thread-local storage (TLS) and fiber-local storage (FLS) array, and critical section structures. It 
then loads any required DLLs and calls the DLL entry points with the DLL_PROCESS_ATTACH 
function code. (See the sidebar “Side-by-Side Assemblies” for a description of a mechanism 
Windows uses to address DLL versioning problems.) Once the function returns, NtContinue will 
restore the new user context and return back to user mode—thread execution now truly starts. 
RtlUserThreadStart will use the address of the actual image entry point and the start parameter and 
call the application. These two parameters have also already been pushed onto the stack by the 
kernel. This complicated series of events has two purposes.  
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First of all, it allows the image loader inside Ntdll.dll to set up the process internally and 
behind the scenes so that other user-mode code can run properly (otherwise, it would have no heap, 
no thread local storage, and so on). 

Second, having all threads begin in a common routine allows them to be wrapped in 
exception handling, so that when they crash, Ntdll.dll is aware of that and can call the unhandled 
exception filter inside Kernel32.dll. It is also able to coordinate thread exit on return from the 
thread’s start routine and to perform various cleanup work. Application developers can also call 
SetUnhandledExceptionFilter to add their own unhandled exception handling code. 

Side-by-Side assemblies  

In order to isolate DLLs distributed with applications from DLLs that ship with the operating 
system, Windows allows applications to use private copies of these core DLLs. To use a private 
copy of a DLL instead of the one in the system directory, an application’s installation must 
include a file named Application.exe.local (where Application is the name of the application’s 
executable), which directs the loader to first look for DLLs in that directory. Note that any DLLs 
that are loaded from the list of KnownDLLs (DLLs that are permanently mapped into memory) or 
that are loaded by those DLLs cannot be redirected using this mechanism. 

To further address application and DLL compatibility while allowing sharing, Windows 
implements the concept of shared assemblies. An assembly consists of a group of resources, 
including DLLs, and an XML manifest file that describes the assembly and its contents. An 
application references an assembly through the existence of its own XML manifest. The manifest 
can be a file in the application’s installation directory that has the same name as the application 
with “.manifest” appended (for example, application. exe.manifest), or it can be linked into the 
application as a resource. The manifest describes the application and its dependence on 
assemblies.  

There are two types of assemblies: private and shared. The difference between the two is that 
shared assemblies are digitally signed so that corruption or modification of their contents can be 
detected. In addition, shared assemblies are stored under the \Windows\Winsxs directory, whereas 
private assemblies are stored in an application’s installation directory. Thus, shared assemblies 
also have an associated catalog file (.cat) that contains its digital signature information. Shared 
assemblies can be “side-by-side” assemblies because multiple versions of a DLL can reside on a 
system simultaneously, with applications dependent on a particular version of a DLL always using 
that particular version. 

An assembly’s manifest file typically has a name that includes the name of the assembly, 
version information, some text that represents a unique signature, and the extension “.manifest”. 
The manifests are stored in \Windows\Winsxs\Manifests, and the rest of the assembly’s resources 
are stored in  subdirectories of \Windows\Winsxs that have the same name as the corresponding 
manifest files, with the exception of the trailing .manifest extension. 

An example of a shared assembly is version 6 of the Windows common controls DLL, 
comctl32.dll. Its manifest file is named \Windows\Winsxs\Manifests\x86_Microsoft.Windows. 
Common-Controls_6595b64144ccf1df_6.0.0.0_x-ww_1382d70a.manifest. It has an associated 
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catalog file (which is the same name with the .cat extension) and a subdirectory of Winsxs that 
includes comctl32.dll. 

Version 6 of Comctl32.dll added integration with Windows themes, and because applications 
not written with theme support in mind might not appear correctly with the new DLL, it’s 
available only to applications that explicitly reference the shared assembly containing it—the 
version of Comctl32.dll installed in \Windows\System32 is an instance of version 5.x, which is 
not theme aware. When an application loads, the loader looks for the application’s manifest, and if 
one exists, loads the DLLs from the assemblies specified. DLLs not included in assemblies 
referenced in the manifest are loaded in the traditional way. Legacy applications, therefore, link 
against the version in \Windows\System32, whereas theme-aware applications can specify the new 
version in their manifest. 

A final advantage that shared assemblies have is that a publisher can issue a publisher 
configuration, which can redirect all applications that use a particular assembly to use an updated 
version. Publishers would do this if they were preserving backward compatibility while addressing 
bugs. Ultimately, however, because of the flexibility inherent in the assembly model, an 
application could decide to override the new setting and continue to use an older version. 

EXPERIMENT: Tracing Process Startup 

Now that we’ve looked in detail at how a process starts up and the different operations 
required to begin executing an application, we’re going to use Process Monitor to take a look at 
some of the file I/O and registry keys that are accessed during this process. Although this 
experiment will not provide a complete picture of all the internal steps we’ve described, you’ll be 
able to see several parts of the system in action, notably Prefetch and Superfetch, image file 
execution options and other compatibility checks, and the image loader’s DLL mapping. 

We’re going to be looking at a very simple executable—Notepad.exe—and we will be 
launching it from a Command Prompt window (Cmd.exe). It’s important that we look both at the 
operations inside Cmd.exe and those inside Notepad.exe. Recall that a lot of the user-mode work 
is performed by CreateProcess, which is called by the parent process before the kernel has created 
a new process object. 

To set things up correctly, add two filters to Process Monitor: one for Cmd.exe, and one for 
Notepad.exe—these are the only two processes we want to include. It will be helpful to be sure 
that you don’t have any currently running instances of these two processes so that you know 
you’re looking at the right events. The filter window should look like this:  
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Next, make sure that event logging is currently disabled (clear File, Capture Events), and 
then start up the command prompt. Enable event logging (using the File menu again, or simply 
press CTRL+E or click the magnifying glass icon on the toolbar) and then enter Notepad.exe and 
press Enter. On a typical Windows Vista system, you should see anywhere between 500 and 1500 
events appear. Go ahead and hide the Sequence and Time Of Day columns so that we can focus 
our attention on the columns of interest. Your window should look similar to the one shown next. 

  

Just as described in Stage 1 of the CreateProcess flow, one of the first things to notice is that 
just before the process is started and the first thread is created, Cmd.exe does a registry read at 
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options. 
Because there were no image execution options associated with Notepad.exe, the process was 
created as is. 

As with this and any other event in Process Monitor’s log, you have the ability to see whether 
each part of the process creation flow was performed in user mode or kernel mode, and by which 
routines, by looking at the stack of the event. To do this, doubleclick on the RegOpenKey event 
mentioned and switch to the Stack tab. The following screen shows the standard stack on a 32-bit 
Windows Vista machine. 
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This stack shows that we have already reached the part of process creation performed in 
kernel mode (through NtCreateUserProcess) and that the helper routine PspAllocateProcess is 
responsible for this check. 

Going down the list of events after the thread and process have been created, you will notice 
three groups of events. The first is a simple check for application compatibility flags, which will 
let the user-mode process creation code know if checks inside the application compatibility 
database are required through the shim engine.  

This check is followed by multiple reads to Side-By-Side, Manifest, and MUI/Language keys, 
which are part of the assembly framework mentioned earlier. Finally, you may see file I/O to one 
or more .sdb files, which are the application compatibility databases on the system. This I/O is 
where additional checks are done to see if the shim engine needs to be invoked for this application. 
Since Notepad is a well behaved Microsoft program, it doesn’t require any shims. 

The following screen shows the next series of events, which happen inside the Notepad 
process itself. These are actions initiated by the user-mode thread startup wrapper in kernel mode, 
which performs the actions described earlier. The first two are the Notepad.exe and Ntdll.dll 
image load debug notification messages, which can only be generated now that code is running 
inside Notepad’s process context and not the context for the command prompt. 
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Next, the prefetcher kicks in, looking for a prefetch database file that has already been 
generated for Notepad. (For more information on the prefetcher, see Chapter 9). On a system 
where Notepad has already been run at least once, this database will exist, and the prefetcher will 
begin executing the commands specified inside it. If this is the case, scrolling down you will see 
multiple DLLs being read and queried. Unlike typical DLL loading, which is done by the 
user-mode image loader by looking at the import tables or when an application manually loads a 
DLL, these events are being generated by the prefetcher, which is already aware of the libraries 
that Notepad will require. Typical image loading of the DLLs required happens next, and you will 
see events similar to the ones shown here. 

  

These events are now being generated from code running inside user mode, which was called 
once the kernel-mode wrapper function finished its work. Therefore, these are the first events 
coming from LdrpInitializeProcess, which we mentioned is the internal system wrapper function 
for any new process, before the start address wrapper is called. You can confirm this on your own 
by looking at the stack of these events; for example, the kernel32.dll image load event, which is 
shown in the next screen. 

  

Further events are generated by this routine and its associated helper functions until you 
finally reach events generated by the WinMain function inside Notepad, which is where code 
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under the developer’s control is now being executed. Describing in detail all the events and 
user-mode components that come into play during process execution would fill up this entire 
chapter, so exploration of any further events is left as an exercise for the reader. 

5.4 Thread Internals 

Now that we’ve dissected processes, let’s turn our attention to the structure of a thread. 
Unless explicitly stated otherwise, you can assume that anything in this section applies to both 
user-mode threads and kernel-mode system threads (which are described in Chapter 2).  

5.4.1 Data Structures 

At the operating-system level, a Windows thread is represented by an executive thread 
(ETHREAD) block, which is illustrated in Figure 5-7. The ETHREAD block and the structures it 
points to exist in the system address space, with the exception of the thread environment block 
(TEB), which exists in the process address space (again, because user-mode components need to 
have access to it). 

In addition, the Windows subsystem process (Csrss) also maintains a parallel structure for 
each thread created in a Windows subsystem application. Also, for threads that have called a 
Windows subsystem USER or GDI function, the kernel-mode portion of the Windows subsystem 
(Win32k.sys) maintains a per-thread data structure (called the W32THREAD structure) that the 
ETHREAD block points to. 

  

Most of the fields illustrated in Figure 5-7 are self-explanatory. The first field is the kernel 
thread (KTHREAD) block. Following that are the thread identification information, the process 
identification information (including a pointer to the owning process so that its environment 
information can be accessed), security information in the form of a pointer to the access token and 
impersonation information, and finally, fields relating to ALPC messages and pending I/O 
requests. As you can see in Table 5-9, some of these key fields are covered in more detail 
elsewhere in this book. For more details on the internal structure of an ETHREAD block, you can 
use the kernel debugger dt command to display the format of the structure.  
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Let’s take a closer look at two of the key thread data structures referred to in the preceding 
text: the KTHREAD block and the TEB. The KTHREAD block (also called the TCB, or thread 
control block) contains the information that the Windows kernel needs to access to perform thread 
scheduling and synchronization on behalf of running threads. Its layout is illustrated in Figure 5-8. 

  

The key fields of the KTHREAD block are described briefly in Table 5-10. 
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EXPERIMENT: Displaying eTHreaD and KTHreaD Structures 

The ETHREAD and KTHREAD structures can be displayed with the dt command in the 

kernel debugger. The following output shows the format of an ETHREAD on a 32-bit system: 

1. lkd> dt nt!_ethread   

2. nt!_ETHREAD   

3. +0x000 Tcb : _KTHREAD   

4. +0x1e0 CreateTime : _LARGE_INTEGER   

5. +0x1e8 ExitTime : _LARGE_INTEGER   

6. +0x1e8 KeyedWaitChain : _LIST_ENTRY   

7. +0x1f0 ExitStatus : Int4B   

8. +0x1f0 OfsChain : Ptr32 Void   

9. +0x1f4 PostBlockList : _LIST_ENTRY   

10. +0x1f4 ForwardLinkShadow : Ptr32 Void   

11. +0x1f8 StartAddress : Ptr32 Void   

12. +0x1fc TerminationPort : Ptr32 _TERMINATION_PORT   

13. +0x1fc ReaperLink : Ptr32 _ETHREAD   

14. +0x1fc KeyedWaitValue : Ptr32 Void   

15. +0x1fc Win32StartParameter : Ptr32 Void   

16. +0x200 ActiveTimerListLock : Uint4B   

17. +0x204 ActiveTimerListHead : _LIST_ENTRY   

18. +0x20c Cid : _CLIENT_ID   

19. +0x214 KeyedWaitSemaphore : _KSEMAPHORE   
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20. +0x214 AlpcWaitSemaphore : _KSEMAPHORE   

21. +0x228 ClientSecurity : _PS_CLIENT_SECURITY_CONTEXT   

22. +0x22c IrpList : _LIST_ENTRY   

23. +0x234 TopLevelIrp : Uint4B   

24. +0x238 DeviceToVerify : Ptr32 _DEVICE_OBJECT   

25. +0x23c RateControlApc : Ptr32 _PSP_RATE_APC   

26. +0x240 Win32StartAddress : Ptr32 Void   

27. +0x244 SparePtr0 : Ptr32 Void   

28. +0x248 ThreadListEntry : _LIST_ENTRY   

29. +0x250 RundownProtect : _EX_RUNDOWN_REF   

30. +0x254 ThreadLock : _EX_PUSH_LOCK   

31. +0x258 ReadClusterSize : Uint4B   

32. +0x25c MmLockOrdering : Int4B   

33. +0x260 CrossThreadFlags : Uint4B   

34. +0x260 Terminated : Pos 0, 1 Bit   

35. +0x260 ThreadInserted : Pos 1, 1 Bit   

36. +0x260 HideFromDebugger : Pos 2, 1 Bit   

37. +0x260 ActiveImpersonationInfo : Pos 3, 1 Bit   

38. +0x260 SystemThread : Pos 4, 1 Bit   

39. +0x260 HardErrorsAreDisabled : Pos 5, 1 Bit   

40. +0x260 BreakOnTermination : Pos 6, 1 Bit   

41. +0x260 SkipCreationMsg : Pos 7, 1 Bit   

42. +0x260 SkipTerminationMsg : Pos 8, 1 Bit   

43. +0x260 CopyTokenOnOpen : Pos 9, 1 Bit   

44. +0x260 ThreadIoPriority : Pos 10, 3 Bits   

45. +0x260 ThreadPagePriority : Pos 13, 3 Bits   

46. +0x260 RundownFail : Pos 16, 1 Bit   

47. +0x264 SameThreadPassiveFlags : Uint4B   

48. +0x264 ActiveExWorker : Pos 0, 1 Bit   

49. +0x264 ExWorkerCanWaitUser : Pos 1, 1 Bit   

50. +0x264 MemoryMaker : Pos 2, 1 Bit   

51. +0x264 ClonedThread : Pos 3, 1 Bit   

52. +0x264 KeyedEventInUse : Pos 4, 1 Bit   

53. +0x264 RateApcState : Pos 5, 2 Bits   

54. +0x264 SelfTerminate : Pos 7, 1 Bit   

55. +0x268 SameThreadApcFlags : Uint4B   

56. +0x268 Spare : Pos 0, 1 Bit   

57. +0x268 StartAddressInvalid : Pos 1, 1 Bit   

58. +0x268 EtwPageFaultCalloutActive : Pos 2, 1 Bit   

59. +0x268 OwnsProcessWorkingSetExclusive : Pos 3, 1 Bit   

60. +0x268 OwnsProcessWorkingSetShared : Pos 4, 1 Bit   

61. +0x268 OwnsSystemWorkingSetExclusive : Pos 5, 1 Bit   

62. +0x268 OwnsSystemWorkingSetShared : Pos 6, 1 Bit   

63. +0x268 OwnsSessionWorkingSetExclusive : Pos 7, 1 Bit   
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64. +0x269 OwnsSessionWorkingSetShared : Pos 0, 1 Bit   

65. +0x269 OwnsProcessAddressSpaceExclusive : Pos 1, 1 Bit   

66. +0x269 OwnsProcessAddressSpaceShared : Pos 2, 1 Bit   

67. +0x269 SuppressSymbolLoad : Pos 3, 1 Bit   

68. +0x269 Prefetching : Pos 4, 1 Bit   

69. +0x269 OwnsDynamicMemoryShared : Pos 5, 1 Bit   

70. +0x269 OwnsChangeControlAreaExclusive : Pos 6, 1 Bit   

71. +0x269 OwnsChangeControlAreaShared : Pos 7, 1 Bit   

72. +0x26a PriorityRegionActive : Pos 0, 4 Bits   

73. +0x26c CacheManagerActive : UChar   

74. +0x26d DisablePageFaultClustering : UChar   

75. +0x26e ActiveFaultCount : UChar   

76. +0x270 AlpcMessageId : Uint4B   

77. +0x274 AlpcMessage : Ptr32 Void   

78. +0x274 AlpcReceiveAttributeSet : Uint4B   

79. +0x278 AlpcWaitListEntry : _LIST_ENTRY   

80. +0x280 CacheManagerCount : Uint4B  

The KTHREAD can be displayed with a similar command: 

1. lkd> dt nt!_kthread   

2. nt!_KTHREAD   

3. +0x000 Header : _DISPATCHER_HEADER   

4. +0x010 CycleTime : Uint8B   

5. +0x018 HighCycleTime : Uint4B   

6. +0x020 QuantumTarget : Uint8B   

7. +0x028 InitialStack : Ptr32 Void   

8. +0x02c StackLimit : Ptr32 Void   

9. +0x030 KernelStack : Ptr32 Void   

10. +0x034 ThreadLock : Uint4B   

11. +0x038 ApcState : _KAPC_STATE   

12. +0x038 ApcStateFill : [23] UChar   

13. +0x04f Priority : Char   

14. +0x050 NextProcessor : Uint2B   

15. +0x052 DeferredProcessor : Uint2B   

16. +0x054 ApcQueueLock : Uint4B   

17. +0x058 ContextSwitches : Uint4B   

18. +0x05c State : UChar   

19. +0x05d NpxState : UChar   

20. +0x05e WaitIrql : UChar   

21. +0x05f WaitMode : Char   

22. +0x060 WaitStatus : Int4B   

EXPERIMENT: using the Kernel Debugger !thread Command 
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The kernel debugger !thread command dumps a subset of the information in the thread data 
structures. Some key elements of the information the kernel debugger displays can’t be displayed 
by any utility: internal structure addresses; priority details; stack information; the pending I/O 
request list; and, for threads in a wait state, the list of objects the thread is waiting for. 

To display thread information, use either the !process command (which displays all the 
thread blocks after displaying the process block) or the !thread command to dump a specific 
thread. The output of the thread information, along with some annotations of key fields, is shown 
here: 

  

EXPERIMENT: Viewing Thread Information 

The following output is the detailed display of a process produced by using the Tlist utility in 
the Debugging Tools for Windows. Notice that the thread list shows the “Win32StartAddr.” This 
is the address passed to the CreateThread function by the application. All the other utilities, except 
Process Explorer, that show the thread start address show the actual start address (a function in 
Ntdll.dll), not the application-specified start address. 

1. C:\> tlist winword   

2. 2400 WINWORD.EXE WinInt5E_Chapter06.doc [Compatibility Mode] - Microsoft 

Word   

3. CWD: C:\Users\Alex Ionescu\Documents\   

4. CmdLine: "C:\Program Files\Microsoft Office\Office12\WINWORD.EXE" /n /dde

   

5. VirtualSize: 310656 KB PeakVirtualSize: 343552 KB   

6. WorkingSetSize: 91548 KB PeakWorkingSetSize:100788 KB   

7. NumberOfThreads: 6  

8. 2456 Win32StartAddr:0x2f7f10cc LastErr:0x00000000 State:Waiting   

9. 1452 Win32StartAddr:0x6882f519 LastErr:0x00000000 State:Waiting   

10. 2464 Win32StartAddr:0x6b603850 LastErr:0x00000000 State:Waiting   
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11. 3036 Win32StartAddr:0x690dc17f LastErr:0x00000002 State:Waiting   

12. 3932 Win32StartAddr:0x775cac65 LastErr:0x00000102 State:Waiting   

13. 3140 Win32StartAddr:0x687d6ffd LastErr:0x000003f0 State:Waiting   

14. 12.0.4518.1014 shp 0x2F7F0000 C:\Program Files\Microsoft Office\Office12\

   

15. WINWORD.EXE   

16. 6.0.6000.16386 shp 0x777D0000 C:\Windows\system32\Ntdll.dll   

17. 6.0.6000.16386 shp 0x764C0000 C:\Windows\system32\kernel32.dll   

18. § list of DLLs loaded in process   

The TEB, illustrated in Figure 5-9, is the only data structure explained in this section that 
exists in the process address space (as opposed to the system space). 

The TEB stores context information for the image loader and various Windows DLLs. 
Because these components run in user mode, they need a data structure writable from user mode. 
That’s why this structure exists in the process address space instead of in the system space, where 
it would be writable only from kernel mode. You can find the address of the TEB with the kernel 
debugger !thread command. 

  

EXPERIMENT: examining the TeB 

You can dump the TEB structure with the !teb command in the kernel debugger. The output 
looks like this: 

1. kd> !teb   

2. TEB at 7ffde000  

3. ExceptionList: 019e8e44  

4. StackBase: 019f0000  

5. StackLimit: 019db000  

6. SubSystemTib: 00000000  

7. FiberData: 00001e00  

8. ArbitraryUserPointer: 00000000  

9. Self: 7ffde000  

10. EnvironmentPointer: 00000000  
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11. ClientId: 00000bcc . 00000864  

12. RpcHandle: 00000000  

13. Tls Storage: 7ffde02c   

14. PEB Address: 7ffd9000  

15. LastErrorValue: 0  

16. LastStatusValue: c0000139  

17. Count Owned Locks: 0  

18. HardErrorMode: 0  

5.4.2 Kernel Variables 

As with processes, a number of Windows kernel variables control how threads run. Table 
5-11 shows the kernel-mode kernel variables that relate to threads. 

  

5.4.3 Performance Counters 

Most of the key information in the thread data structures is exported as performance counters, 
which are listed in Table 5-12. You can extract much information about the internals of a thread 
just by using the Reliability and Performance Monitor in Windows. 

  



 359

  

5.4.4 Relevant Functions 

Table 5-13 shows the Windows functions for creating and manipulating threads. This table 
doesn’t include functions that have to do with thread scheduling and priorities—those are included 
in the section “Thread Scheduling” later in this chapter. 

  

5.4.5 Birth of a Thread 

A thread’s life cycle starts when a program creates a new thread. The request filters down to 
the Windows executive, where the process manager allocates space for a thread object and calls 
the kernel to initialize the kernel thread block. The steps in the following list are taken inside the 
Windows CreateThread function in Kernel32.dll to create a Windows thread.  

1. CreateThread converts the Windows API parameters to native flags and builds a native 
structure describing object parameters (OBJECT_ATTRIBUTES). See Chapter 3 for more 
information. 

2. CreateThread builds an attribute list with two entries: client ID and TEB address. This 
allows CreateThread to receive those values once the thread has been created. (For more 
information on attribute lists, see the section “Flow of CreateProcess” earlier in this chapter.) 

3. NtCreateThreadEx is called to create the user-mode context and probe and capture the 
attribute list. It then calls PspCreateThread to create a suspended executive thread object. For a 
description of the steps performed by this function, see the descriptions of Stage 3 and Stage 5 in 
the section “Flow of CreateProcess.” 
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4. CreateThread allocates an activation stack for the thread used by side-by-side assembly 
support. It then queries the activation stack to see if it requires activation, and does so if needed. 
The activation stack pointer is saved in the new thread’s TEB. 

5. CreateThread notifies the Windows subsystem about the new thread, and the subsystem 
does some setup work for the new thread. 

6. The thread handle and the thread ID (generated during step 3) are returned to the caller. 

7. Unless the caller created the thread with the CREATE_SUSPENDED flag set, the thread is 
now resumed so that it can be scheduled for execution. When the thread starts running, it executes 
the steps described in the earlier section “Stage 7: Performing Process Initialization in the Context 
of the New Process” before calling the actual user’s specified start address.  
 
 

5.5 Examining Thread activity 

Examining thread activity is especially important if you are trying to determine why a 
process that is hosting multiple services is running (such as Svchost.exe, Dllhost.exe, or Lsass.exe) 
or why a process is hung. 

There are several tools that expose various elements of the state of Windows threads: 
WinDbg (in user-process attach and kernel debugging mode), the Reliability and Performance 
Monitor, and Process Explorer. (The tools that show thread-scheduling information are listed in 
the section “Thread Scheduling.”) 

To view the threads in a process with Process Explorer, select a process and open the process 
properties (double-click on the process or click on the Process, Properties menu item). Then click 
on the Threads tab. This tab shows a list of the threads in the process and three columns of 
information. For each thread it shows the percentage of CPU consumed (based on the refresh 
interval configured), the number of context switches to the thread, and the thread start address. 
You can sort by any of these three columns. 

New threads that are created are highlighted in green, and threads that exit are highlighted in 
red. (The highlight duration can be configured with the Options, Configure Highlighting menu 
item.) This might be helpful to discover unnecessary thread creation occurring in a process. (In 
general, threads should be created at process startup, not every time a request is processed inside a 
process.) 

As you select each thread in the list, Process Explorer displays the thread ID, start time, state, 
CPU time counters, number of context switches, and the base and current priority. There is a Kill 
button, which will terminate an individual thread, but this should be used with extreme care. 

The best way to measure actual CPU activity with Process Explorer is to add the clock cycle 
delta column, which uses the clock cycle counter designed for thread run-time accounting (as 
described later in this chapter). Because many threads run for such a short amount of time that 
they are seldom (if ever) the currently running thread when the clock interval timer interrupt 
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occurs, they are not charged for much of their CPU time. The total number of clock cycles 
represents the actual number of processor cycles that each thread in the process accrued. It is 
independent of the clock interval timer’s resolution because the count is maintained internally by 
the processor at each cycle and updated by Windows at each interrupt entry (a final accumulation 
is done before a context switch). 

The thread start address is displayed in the form “module!function”, where module is the 
name of the .exe or .dll. The function name relies on access to symbol files for the module. (See 
“Experiment: Viewing Process Details with Process Explorer” in Chapter 1.) If you are unsure 
what the module is, click the Module button. This opens an Explorer file properties window for 
the module containing the thread’s start address (for example, the .exe or .dll).  

Note For threads created by the Windows CreateThread function, Process Explorer displays 
the function passed to CreateThread, not the actual thread start function. That is because all 
Windows threads start at a common thread startup wrapper function (RtlUserThreadStart in 
Ntdll.dll). If Process Explorer showed the actual start address, most threads in processes would 
appear to have started at the same address, which would not be helpful in trying to understand 
what code the thread was executing. However, if Process Explorer can’t query the user-defined 
startup address (such as in the case of a protected process), it will show the wrapper function, so 
you will see all threads starting at RtlUserThreadStart. 

However, the thread start address displayed might not be enough information to pinpoint 
what the thread is doing and which component within the process is responsible for the CPU 
consumed by the thread. This is especially true if the thread start address is a generic startup 
function (for example, if the function name does not indicate what the thread is actually doing). In 
this case, examining the thread stack might answer the question. To view the stack for a thread, 
double-click on the thread of interest (or select it and click the Stack button). Process Explorer 
displays the thread’s stack (both user and kernel, if the thread was in kernel mode). 

Note While the user-mode debuggers (WinDbg, Ntsd, and Cdb) permit you to attach to a 
process and display the user stack for a thread, Process Explorer shows both the user and kernel 
stack in one easy click of a button. You can also examine user and kernel thread stacks using 
WinDbg in local kernel debugging mode. 

Viewing the thread stack can also help you determine why a process is hung. As an example, 
on one system, Microsoft Office PowerPoint was hanging for one minute on startup. To determine 
why it was hung, after starting PowerPoint, Process Explorer was used to examine the thread stack 
of the one thread in the process. The result is shown in Figure 5-10. 
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This thread stack shows that PowerPoint (line 10) called a function in Mso.dll (the central 
Microsoft Office DLL), which called the OpenPrinterW function in Winspool.drv (a DLL used to 
connect to printers). Winspool.drv then dispatched to a function OpenPrinterRPC, which then 
called a function in the RPC runtime DLL, indicating it was sending the request to a remote 
printer. So, without having to understand the internals of PowerPoint, the module and  function 
names displayed on the thread stack indicate that the thread was waiting to connect to a network 
printer. On this particular system, there was a network printer that was not responding, which 
explained the delay starting PowerPoint. (Microsoft Office applications connect to all configured 
printers at process startup.) The connection to that printer was deleted from the user’s system, and 
the problem went away. 

Finally, when looking at 32-bit applications running on 64-bit systems as a Wow64 process 
(see Chapter 3 for more information on Wow64), Process Explorer shows both the 32-bit and 
64-bit stack for threads. Because at the time of the system call proper, the thread has been 
switched to a 64-bit stack and context, simply looking at the thread’s 64-bit stack would reveal 
only half the story—the 64-bit part of the thread, with Wow64’s thunking code. So, when 
examining Wow64 processes, be sure to take into account both the 32-bit and 64-bit stacks. An 
example of a Wow64 thread inside Microsoft Office Word 2007 is shown in Figure 5-11. The 
stack frames highlighted in the box are the 32-bit stack frames from the 32-bit stack. 

  

Limitations on Protected Process Threads 

As we discussed in the process internals section, protected processes have several limitations 
in terms of which access rights will be granted, even to the users with the highest privileges on the 
system. These limitations also apply to threads inside such a process. This ensures that the actual 
code running inside the protected process cannot be hijacked or otherwise affected through 
standard Windows functions, which require the access rights in Table 5-14.  
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EXPERIMENT: Viewing Protected Process Thread Information 

In the previous section, we took a look at how Process Explorer can be helpful in examining 
thread activity to determine the cause of potential system or application issues. This time, we’ll 
use Process Explorer to look at a protected process and see how the different access rights being 
denied affect its ability and usefulness on such a process.  

Find the Audiodg.exe service inside the process list. This is a process responsible for much of 
the core work behind the user-mode audio stack in Windows Vista, and it requires protection to 
ensure that high-definition decrypted audio content does not leak out to untrusted sources. Bring 
up the process properties view and take a look at the Image tab. Notice how the numbers for WS 
Private, WS Shareable, and WS Shared are 0, although the total Working Set is still displayed. 
This is an example of the THREAD_QUERY_INFORMATION versus 
THREAD_QUERY_LIMITED_INFORMATION rights. 

More importantly, take a look at the Threads tab. As you can see here, Process Explorer is 
unable to show the Win32 thread start address and instead displays the standard thread start 
wrapper inside Ntdll.dll. If you try clicking on the Stack button, you’ll get an error, because 
Process Explorer needs to read the virtual memory inside the protected process, which it can’t do. 
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Finally, note that although the Base and Dynamic priorities are shown, the I/O and Memory 
priorities are not, another example of the limited versus full query information access right. As 
you try to kill a thread inside Audiodg.exe, notice yet another access denied error: recall the lack 
of THREAD_TERMINATE access shown earlier in Table 5-14. 

5.6 Worker Factories (Thread Pools) 

Worker factories refer to the internal mechanism used to implement user-mode thread pools. 
Prior to Windows Vista, the thread pool routines were completely implemented in user mode 
inside the Ntdll.dll library, and the Windows API provided various routines to call into the 
relevant routines, which provided waitable timers, wait callbacks, and automatic thread creation 
and deletion depending on the amount of work being done. 

Note Information on the new thread pool API is available on MSDN at 
http://msdn2.microsoft.com/enus/library/ms686760.aspx. It includes information on the APIs 
introduced and the APIs retired, as well as important differences in certain details of the way the 
two APIs are implemented. 

In Windows Vista, the thread pool implementation in user mode was completely 
re-architected, and part of the management functionality has been moved to kernel mode in order 
to improve efficiency and performance and minimize complexity. The original thread pool 
implementation required the user-mode code inside Ntdll.dll to remain aware of how many threads 
were currently active as worker threads, and to enlarge this number in periods of high demand. 

Because querying the information necessary to make this decision, as well as the work to 
create the threads, took place in user mode, several system calls were required that could have 
been avoided if these operations were performed in kernel mode. Moving this code into kernel 
mode means fewer transitions between user and kernel mode, and it allows Ntdll.dll to manage the 
thread pool itself and not the system mechanisms behind it. It also provides other benefits, such as 
the ability to remotely create a thread pool in a process other than the calling process (although 
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possible in user mode, it would be very complex given the necessity of using APIs to access the 
remote process’s address space). 

The functionality in Windows Vista is introduced by a new object manager type called 
TpWorkerFactory, as well as four new native system calls for managing the factory and its 
workers—NtCreateWorkerFactory, NtWorkerFactoryWorkerReady, NtReleaseWorkerFac tory 
Worker, NtShutdownWorkerFactory—two new query/set native calls (NtQueryInfor ma tion 
WorkerFactory and NtSetInformationWorkerFactory), and a new wait call, NtWaitFor 
WorkViaWorkerFactory. 

Just like other native system calls, these calls provide user mode with a handle to the 
TpWorker Factory object, which contains information such as the name and object attributes, the 
desired access mask, and a security descriptor. Unlike other system calls wrapped by the Windows 
API, however, thread pool management is handled by Ntdll.dll’s native code, which means that 
developers work with an opaque descriptor (a TP_WORK pointer) owned by Ntdll.dll, in which 
the actual handle is stored.  

As its name suggests, the worker factory implementation is responsible for allocating worker 
threads (and calling the given user-mode worker thread entry point), maintaining a minimum and 
maximum thread count (allowing for either permanent worker pools or totally dynamic pools), as 
well as other ccounting information. This enables operations such as shutting down the thread 
pool to be performed with a single call to the kernel, because the kernel has been the only 
component responsible for thread creation and termination.  

Because the kernel dynamically creates new threads as requested, this also increases the 
scalability of applications using the new thread pool implementation. Developers have always 
been able to take advantage of as many threads as possible (based on the number of processors on 
the system) through the old implementation, but through support for dynamic processors in 
Windows Vista (see the section on this topic later in this chapter), it’s now possible for 
applications using thread pools to automatically take advantage of new processors added at run 
time. 

It’s important to note that the new worker factory support is merely a wrapper to manage 
mundane tasks that would otherwise have to be performed in user mode (at a loss of performance). 
Many of the improvements in the new thread pool code are the result of changes in the Ntdll.dll 
side of this architecture. Also, it is not the worker factory code that provides the scalability, wait 
internals, and efficiency of work processing. Instead, it is a much older component of Windows 
that we have already discussed—I/O completion ports, or more correctly, kernel queues 
(KQUEUE; see Chapter 7 for more information). 

In fact, when creating a worker factory, an I/O completion port must have already been 
created by user mode, and the handle needs to be passed on. It is through this I/O completion port 
that the user-mode implementation will queue work and also wait for work—but by calling the 
worker factory system calls instead of the I/O completion port APIs. Internally, however, the 
“release” worker factory call (which queues work) is a wrapper around IoSetIoCompletion, which 
increases pending work, while the “wait” call is a wrapper around IoRemoveIoCompletion. Both 
these routines call into the kernel queue implementation.  
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Therefore, the job of the worker factory code is to manage either a persistent, static, or 
dynamic thread pool; wrap the I/O completion port model into interfaces that try to prevent stalled 
worker queues by automatically creating dynamic threads; and to simplify global cleanup and 
termination operations during a factory shutdown request (as well as to easily block new requests 
against the factory in such a scenario). 

Unfortunately, the data structures used by the worker factory implementation are not in the 
public symbols, but it is still possible to look at some worker pools, as we’ll show in the next 
experiment. 

EXPERIMENT: looking at Thread Pools 

Because of the more efficient and simpler thread pool implementation in Windows Vista, 
many core system components and applications were updated to make use of it. One of the ways 
to identify which processes are using a worker factory is to look at the handle list in Process 
Explorer. Follow these steps to look at some details behind them: 

1. Run Process Explorer and select Show Unnamed Handles And Mappings from the View 
menu. Unfortunately, worker factories aren’t named by Ntdll.dll, so you need to take this step in 
order to see the handles. 

2. Select Lsm.exe from the list of processes, and look at the handle table. Make sure that the 
lower pane is shown (View, Show Lower Pane) and is displaying handle table mode (View, 
Lower Pane View, Handles). 

3. Right-click on the lower pane columns, and then click on Select Columns. Make sure that 
the Type column is selected to be shown. 

4. Now scroll down the handles, looking at the Type column, until you find a handle of type 
TpWorkerFactory. You should see something like this: 

  

Notice how the TpWorkerFactory handle is immediately preceded by an IoCompletion 
handle. As was described previously, this occurs because before creating a worker factory, a 
handle to an I/O completion port on which work will be sent must be created. 

5. Now double-click Lsm.exe in the list of processes, and go to the Threads tab. You should 
see something similar to the image here: 
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On this system (with two processors), the worker factory has created six worker threads at the 
request of Lsm.exe (processes can define a minimum and maximum number of threads) and based 
on its usage and the count of processors on the machine. These threads are identified as 
TppWorkerThread, which is Ntdll.dll’s worker entry point when calling the worker factory system 
calls. 

6. Ntdll.dll is responsible for its own internal accounting inside the worker thread wrapper 
(TppWorkerThread) before calling the worker callback that the application has registered. By 
looking at the Wait reason in the State information for each thread, you can get a rough idea of 
what each worker thread may be doing. Double-click on one of the threads inside an LPC wait to 
look at its stack. Here’s an example: 

  

This specific worker thread is being used by Lsm.exe for LPC communication. Because the 
local session manager needs to communicate with other components such as Smss and Csrss 
through LPC, it makes sense that it would want a number of its threads to be busy replying and 
waiting for LPC messages (the more threads doing this, the less stalling on the LPC pipeline). 

If you look at other worker threads, you’ll see some are waiting for objects such as events. A 
process can have multiple thread pools, and each thread pool can have a variety of threads doing 
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completely unrelated tasks. It’s up to the developer to assign work and to call the thread pool APIs 
to register this work through Ntdll.dll. 

5.7 Thread Scheduling 

This section describes the Windows scheduling policies and algorithms. The first subsection 
provides a condensed description of how scheduling works on Windows and a definition of key 
terms. Then Windows priority levels are described from both the Windows API and the Windows 
kernel points of view. After a review of the relevant Windows functions and Windows utilities and 
tools that relate to scheduling, the detailed data structures and algorithms that make up the 
Windows scheduling system are presented, with uniprocessor systems examined first and then 
multiprocessor systems. 

5.7.1 Overview of Windows Scheduling 

Windows implements a priority-driven, preemptive scheduling system—the highest-priority 
runnable (ready) thread always runs, with the caveat that the thread chosen to run might be limited 
by the processors on which the thread is allowed to run, a phenomenon called processor affinity. 
By default, threads can run on any available processor, but you can alter processor affinity by 
using one of the Windows scheduling functions listed in Table 5-15 (shown later in the chapter) or 
by setting an affinity mask in the image header.  

EXPERIMENT: Viewing ready Threads 

You can view the list of ready threads with the kernel debugger !ready command. This 
command displays the thread or list of threads that are ready to run at each priority level. In the 
following example, generated on a 32-bit machine with a dual-core processor, five threads are 
ready to run at priority 8 on the first processor, and three threads at priority 10, two threads at 
priority 9, and six threads at priority 8 are ready to run on the second processor. Determining 
which of these threads get to run on their respective processor is a complex result at the end of 
several algorithms that the scheduler uses. We will cover this topic later in this section. 

1. kd> !ready   

2. Processor 0: Ready Threads at priority 8  

3. THREAD 857d9030 Cid 0ec8.0e30 Teb: 7ffdd000 Win32Thread: 00000000 READY   

4. THREAD 855c8300 Cid 0ec8.0eb0 Teb: 7ff9c000 Win32Thread: 00000000 READY   

5. THREAD 8576c030 Cid 0ec8.0c9c Teb: 7ffa8000 Win32Thread: 00000000 READY   

6. THREAD 85a8a7f0 Cid 0ec8.0d3c Teb: 7ff97000 Win32Thread: 00000000 READY   

7. THREAD 87d34488 Cid 0c48.04a0 Teb: 7ffde000 Win32Thread: 00000000 READY   

8. Processor 1: Ready Threads at priority 10  

9. THREAD 857c0030 Cid 04c8.0378 Teb: 7ffdf000 Win32Thread: fef7f8c0 READY   

10. THREAD 856cc8e8 Cid 0e84.0a70 Teb: 7ffdb000 Win32Thread: f98fb4c0 READY   

11. THREAD 85c41c68 Cid 0e84.00ac Teb: 7ffde000 Win32Thread: ff460668 READY   

12. Processor 1: Ready Threads at priority 9  

13. THREAD 87fc86f0 Cid 0ec8.04c0 Teb: 7ffd3000 Win32Thread: 00000000 READY   
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14. THREAD 88696700 Cid 0ec8.0ce8 Teb: 7ffa0000 Win32Thread: 00000000 READY   

15. Processor 1: Ready Threads at priority 8  

16. THREAD 856e5520 Cid 0ec8.0228 Teb: 7ff98000 Win32Thread: 00000000 READY   

17. THREAD 85609d78 Cid 0ec8.09b0 Teb: 7ffd9000 Win32Thread: 00000000 READY   

18. THREAD 85fdeb78 Cid 0ec8.0218 Teb: 7ff72000 Win32Thread: 00000000 READY   

19. THREAD 86086278 Cid 0ec8.0cc8 Teb: 7ff8d000 Win32Thread: 00000000 READY   

20. THREAD 8816f7f0 Cid 0ec8.0b60 Teb: 7ffd5000 Win32Thread: 00000000 READY   

21. THREAD 87710d78 Cid 0004.01b4 Teb: 00000000 Win32Thread: 00000000 READY   

When a thread is selected to run, it runs for an amount of time called a quantum. A quantum is the 
length of time a thread is allowed to run before another thread at the same priority level (or higher, 
which can occur on a multiprocessor system) is given a turn to run. Quantum values can vary from 
system to system and process to process for any of three reasons: system configuration settings 
(long or short quantums), foreground/background status of the process, or use of the job object to 
alter the quantum. (Quantums are described in more detail in the “Quantum” section later in the 
chapter.) A thread might not get to complete its quantum, however. Because Windows implements 
a preemptive scheduler, if another thread with a higher priority becomes ready to run, the 
currently running thread might be preempted before finishing its time slice. In fact, a thread can be 
selected to run next and be preempted before even beginning its quantum!  

The Windows scheduling code is implemented in the kernel. There’s no single “scheduler” 
module or routine, however—the code is spread throughout the kernel in which schedulingrelated 
events occur. The routines that perform these duties are collectively called the kernel’s dispatcher. 
The following events might require thread dispatching: 

■ A thread becomes ready to execute—for example, a thread has been newly created or has 
just been released from the wait state. 

■ A thread leaves the running state because its time quantum ends, it terminates, it yields 
execution, or it enters a wait state. 

■ A thread’s priority changes, either because of a system service call or because Windows 
itself changes the priority value. 

■ A thread’s processor affinity changes so that it will no longer run on the processor on 
which it was running. 

At each of these junctions, Windows must determine which thread should run next. When 
Windows selects a new thread to run, it performs a context switch to it. A context switch is the 
procedure of saving the volatile machine state associated with a running thread, loading another 
thread’s volatile state, and starting the new thread’s execution.  

As already noted, Windows schedules at the thread granularity. This approach makes sense 
when you consider that processes don’t run but only provide resources and a context in which 
their threads run. Because scheduling decisions are made strictly on a thread basis, no 
consideration is given to what process the thread belongs to. For example, if process A has 10 
runnable threads, process B has 2 runnable threads, and all 12 threads are at the same  priority, 
each thread would theoretically receive one-twelfth of the CPU time—Windows wouldn’t give 50 
percent of the CPU to process A and 50 percent to process B. 
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5.7.2 Priority Levels 

To understand the thread-scheduling algorithms, you must first understand the priority levels 
that Windows uses. As illustrated in Figure 5-12, internally Windows uses 32 priority levels, 
ranging from 0 through 31. These values divide up as follows: 

■ Sixteen real-time levels (16 through 31) 

■ Fifteen variable levels (1 through 15) 

■ One system level (0), reserved for the zero page thread 

  

Thread priority levels are assigned from two different perspectives: those of the Windows 
API and those of the Windows kernel. The Windows API first organizes processes by the priority 
class to which they are assigned at creation (Real-time, High, Above Normal, Normal, Below 
Normal, and Idle) and then by the relative priority of the individual threads within those processes 
(Time-critical, Highest, Above-normal, Normal, Below-normal, Lowest, and Idle). 

In the Windows API, each thread has a base priority that is a function of its process priority 
class and its relative thread priority. The mapping from Windows priority to internal Windows 
numeric priority is shown in Figure 5-13. 
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Whereas a process has only a single base priority value, each thread has two priority values: 
current and base. Scheduling decisions are made based on the current priority. As explained in the 
following section on priority boosting, the system under certain circumstances increases the 
priority of threads in the dynamic range (1 through 15) for brief periods. Windows never adjusts 
the priority of threads in the real-time range (16 through 31), so they always have the same base 
and current priority.  

A thread’s initial base priority is inherited from the process base priority. A process, by 
default, inherits its base priority from the process that created it. This behavior can be overridden 
on the CreateProcess function or by using the command-line start command. A process priority 
can also be changed after being created by using the SetPriorityClass function or various tools that 
expose that function, such as Task Manager and Process Explorer (by rightclicking on the process 
and choosing a new priority class). For example, you can lower the priority of a CPU-intensive 
process so that it does not interfere with normal system activities. Changing the priority of a 
process changes the thread priorities up or down, but their relative settings remain the same. It 
usually doesn’t make sense, however, to change individual thread priorities within a process, 
because unless you wrote the program or have the source code, you don’t really know what the 
individual threads are doing, and changing their relative importance might cause the program not 
to behave in the intended fashion.  

Normally, the process base priority (and therefore the starting thread base priority) will 
default to the value at the middle of each process priority range (24, 13, 10, 8, 6, or 4). However, 
some Windows system processes (such as the Session Manager, service controller, and local 
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security authentication server) have a base process priority slightly higher than the default for the 
Normal class (8). This higher default value ensures that the threads in these processes will all start 
at a higher priority than the default value of 8. These system processes use an internal system call 
(NtSetInformationProcess) to set their process base priority to a numeric value other than the 
normal default starting base priority. 

5.7.3 Windows Scheduling APIs 

The Windows API functions that relate to thread scheduling are listed in Table 5-15. (For 
more information, see the Windows API reference documentation.) 

  

 

5.7.4 Relevant Tools 

You can change (and view) the base process priority with Task Manager and Process Explorer. 
You can kill individual threads in a process with Process Explorer (which should be done, of 
course, with extreme care). 
 
You can view individual thread priorities with the Reliability and Performance Monitor, Process 
Explorer, or WinDbg. While it might be useful to increase or lower the priority of a process, it 
typically does not make sense to adjust individual thread priorities within a process because only a 
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person who thoroughly understands the program (in other words, typically only the developer 
himself) would understand the relative importance of the threads within the process. 
 
The only way to specify a starting priority class for a process is with the start command in the 
Windows command prompt. If you want to have a program start every time with a specific 
priority, you can define a shortcut to use the start command by beginning the command with cmd 
/c. This runs the command prompt, executes the command on the command line, and terminates 
the command prompt. For example, to run Notepad in the low-process priority, the shortcut would 
be cmd /c start /low Notepad.exe.  
 
EXPERIMENT: examining and Specifying Process and Thread Priorities 
 
Try the following experiment: 
 
1. From an elevated command prompt, type start /realtime notepad. Notepad should open. 
 
2. Run Process Explorer and select Notepad.exe from the list of processes. Doubleclick on 
Notepad.exe to show the process properties window, and then click on the Threads tab, as shown 
here. Notice that the dynamic priority of the thread in Notepad is 24. This matches the real-time 
value shown in this image: 
 
3. Task Manager can show you similar information. Press Ctrl+Shift+Esc to start Task Manager, 
and go to the Processes tab. Right-click on the Notepad.exe process, and select the Set Priority 
option. You can see that Notepad’s process priority class is Realtime, as shown in the following 
dialog box. 
 
Windows System resource Manager 
 
Windows Server 2008 Enterprise Edition and Windows Server 2008 Datacenter Edition include an 
optionally installable component called Windows System Resource Manager (WSRM). It permits 
the administrator to configure policies that specify CPU utilization, affinity settings, and memory 
limits (both physical and virtual) for processes. In addition, WSRM can generate resource 
utilization reports that can be used for accounting and verification of service-level agreements 
with users. 
 
Policies can be applied for specific applications (by matching the name of the image with or 
without specific command-line arguments), users, or groups. The policies can be scheduled to take 
effect at certain periods or can be enabled all the time.  
 
After you have set a resource-allocation policy to manage specific processes, the WSRM service 
monitors CPU consumption of managed processes and adjusts process base priorities when those 
processes do not meet their target CPU allocations.  
 
The physical memory limitation uses the function SetProcessWorkingSetSizeEx to set a 
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hard-working set maximum. The virtual memory limit is implemented by the service checking the 
private virtual memory consumed by the processes. (See Chapter 9 for an explanation of these 
memory limits.) If this limit is exceeded, WSRM can be configured to either kill the processes or 
write an entry to the Event Log. This behavior could be used to detect a process with a memory 
leak before it consumes all the available committed virtual memory on the system. Note that 
WSRM memory limits do not apply to Address Windowing Extensions (AWE) memory, large 
page memory, or kernel memory (nonpaged or paged pool). 

5.7.5 Real-Time Priorities 

You can raise or lower thread priorities within the dynamic range in any application; however, 
you must have the increase scheduling priority privilege to enter the real-time range. Be aware that 
many important Windows kernel-mode system threads run in the real-time priority range, so if 
threads spend excessive time running in this range, they might block critical system functions 
(such as in the memory manager, cache manager, or other device drivers).  

Note As illustrated in the following figure showing the x86 interrupt request levels (IRQLs), 
although Windows has a set of priorities called realtime, 

they are not real-time in the common definition of the term. This is because Windows doesn’t 
provide true real-time operating system facilities, such as guaranteed interrupt latency or a way for 
threads to obtain a guaranteed execution time. For more information, see the sidebar “Windows 
and Real-Time Processing” in Chapter 3 as well as the MSDN Library article “Real-Time Systems 
and Microsoft Windows NT.” 

Interrupt levels vs. Priority levels 

As illustrated in the following figure of the interrupt request levels (IRQLs) for a 32-bit 
system, threads normally run at IRQL 0 or 1. (For a description of how Windows uses interrupt 
levels, see Chapter 3.) User-mode code always runs at IRQL 0. Because of this, no user-mode 
thread, regardless of its priority, blocks hardware interrupts (although high-priority real-time 
threads can block the execution of important system threads). Only kernel-mode APCs execute at 
IRQL 1 because they interrupt the execution of a thread. (For more information on APCs, see 
Chapter 3.) Threads running in kernel mode can raise IRQL to higher levels, though—for example, 
while executing a system call that involves thread dispatching. 
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5.7.6 Thread States 

Before you can comprehend the thread-scheduling algorithms, you need to understand the 
various execution states that a thread can be in. Figure 5-14 illustrates the state transitions for 
threads. (The numeric values shown represent the value of the thread state performance counter.) 
More details on what happens at each transition are included later in this section. 

The thread states are as follows: 

■ Ready A thread in the ready state is waiting to execute. When looking for a thread to 
execute, the dispatcher considers only the pool of threads in the ready state. 

■ Deferred ready This state is used for threads that have been selected to run on a specific 
processor but have not yet been scheduled. This state exists so that the kernel can minimize the 
amount of time the systemwide lock on the scheduling database is held. 

■ Standby A thread in the standby state has been selected to run next on a particular 
processor. When the correct conditions exist, the dispatcher performs a context switch to this 
thread. Only one thread can be in the standby state for each processor on the system. Note that a 
thread can be preempted out of the standby state before it ever executes (if, for example, a higher 
priority thread becomes runnable before the standby thread begins execution). 

■ Running Once the dispatcher performs a context switch to a thread, the thread enters the 
running state and executes. The thread’s execution continues until its quantum ends (and another 
thread at the same priority is ready to run), it is preempted by a higher priority thread, it terminates, 
it yields execution, or it voluntarily enters the wait state. 

■ Waiting A thread can enter the wait state in several ways: a thread can voluntarily wait for 
an object to synchronize its execution, the operating system can wait on the thread’s behalf (such 
as to resolve a paging I/O), or an environment subsystem can direct the thread to suspend itself. 
When the thread’s wait ends, depending on the priority, the thread either begins running 
immediately or is moved back to the ready state. 

■ Gate Waiting When a thread does a wait on a gate dispatcher object (see Chapter 3 for 
more information on gates), it enters the gate waiting state instead of the waiting state. This 
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difference is important when breaking a thread’s wait as the result of an APC. Because gates don’t 
use the dispatcher lock, but a per-object lock, the kernel needs to perform some unique locking 
operations when breaking the wait of a thread waiting on a gate and a way to differentiate this 
from a normal wait. 

■ Transition A thread enters the transition state if it is ready for execution but its kernel stack 
is paged out of memory. Once its kernel stack is brought back into memory, the thread enters the 
ready state. 

■ Terminated When a thread finishes executing, it enters the terminated state. Once the 
thread is terminated, the executive thread block (the data structure in nonpaged pool that describes 
the thread) might or might not be deallocated. (The object manager sets policy regarding when to 
delete the object.) 

■ Initialized This state is used internally while a thread is being created. 

  

EXPERIMENT: Thread-Scheduling State Changes 

You can watch thread-scheduling state changes with the Performance tool in Windows. This 
utility can be useful when you’re debugging a multithreaded application and you’re unsure about 
the state of the threads running in the process. To watch threadscheduling state changes by using 
the Performance tool, follow these steps: 

1. Run Notepad (Notepad.exe). 

2. Start the Performance tool by selecting Programs from the Start menu and then selecting 
Reliability and Performance Monitor from the Administrative Tools menu. Click on the 
Performance Monitor entry under Monitoring Tools. 

3. Select chart view if you’re in some other view. 

4. Right-click on the graph, and choose Properties. 
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5. Click the Graph tab, and change the chart vertical scale maximum to 7. (As you’ll see from 
the explanation text for the performance counter, thread states are numbered from 0 through 7.) 
Click OK. 

6. Click the Add button on the toolbar to bring up the Add Counters dialog box. 

7. Select the Thread performance object, and then select the Thread State counter. Select the 
Show Description check box to see the definition of the values: 

  

8. In the Instances box, select and click Search. Scroll down until you see the Notepad 
process (notepad/0); select it, and click the Add button. 

9. Scroll back up in the Instances box to the Mmc process (the Microsoft Management 
Console process running the System Monitor), select all the threads (mmc/0, mmc/1, and so on), 
and add them to the chart by clicking the Add button. Before you click Add, you should see 
something like the following dialog box. 

  

10. Now close the Add Counters dialog box by clicking OK 

11. You should see the state of the Notepad thread (the very top line in the following figure) 
as a 5, which, as shown in the explanation text you saw under step 7, represents the waiting state 
(because the thread is waiting for GUI input): 
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12. Notice that one thread in the Mmc process (running the Performance tool snapin) is in the 
running state (number 2). This is the thread that’s querying the thread states, so it’s always 
displayed in the running state. 

13. You’ll never see Notepad in the running state (unless you’re on a multiprocessor system) 
because Mmc is always in the running state when it gathers the state of the threads you’re 
monitoring. 

5.7.7 Dispatcher Database 

To make thread-scheduling decisions, the kernel maintains a set of data structures known 
collectively as the dispatcher database, illustrated in Figure 5-15. The dispatcher database keeps 
track of which threads are waiting to execute and which processors are executing which threads. 

To improve scalability, including thread-dispatching concurrency, Windows multiprocessor 
systems have per-processor dispatcher ready queues, as illustrated in Figure 5-15. In this way each 
CPU can check its own ready queues for the next thread to run without having to lock the 
systemwide ready queues. (Versions of Windows before Windows Server 2003 used a global 
database). 

The per-processor ready queues, as well as the per-processor ready summary, are part of the 
processor control block (PRCB) structure. (To see the fields in the PRCB, type dt nt!_prcb in the 
kernel debugger.) The names of each component that we will talk about (in italics) are field 
members of the PRCB structure. 

The dispatcher ready queues (DispatcherReadyListHead) contain the threads that are in the 
ready state, waiting to be scheduled for execution. There is one queue for each of the 32 priority 
levels. To speed up the selection of which thread to run or preempt, Windows maintains a 32-bit 
bit mask called the ready summary (ReadySummary). Each bit set indicates one or more threads in 
the ready queue for that priority level. (Bit 0 represents priority 0, and so on.) 

Instead of scanning each ready list to see whether it is empty or not (which would make 
scheduling decisions dependent on the number of different priority threads), a single bit scan is 
performed as a native processor command to find the highest bit set. Regardless of the number of 
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threads in the ready queue, this operation takes a constant amount of time, which is why you may 
sometimes see the Windows scheduling algorithm referred to as an O(1), or constant time, 
algorithm. 

  

Table 5-16 lists the KPRCB fields involved in thread scheduling. 

  

The dispatcher database is synchronized by raising IRQL to SYNCH_LEVEL (which is 
defined as level 2). (For an explanation of interrupt priority levels, see the “Trap Dispatching” 
section in Chapter 3.) Raising IRQL in this way prevents other threads from interrupting thread 
dispatching on the processor because threads normally run at IRQL 0 or 1. However, on a 
multiprocessor system, more is required than just raising IRQL because other processors can 
simultaneously raise to the same IRQL and attempt to operate on the dispatcher database. How 
Windows synchronizes access to the dispatcher database is explained in the “Multiprocessor 
Systems” section later in the chapter. 

5.7.8 Quantum 

As mentioned earlier in the chapter, a quantum is the amount of time a thread gets to run 
before Windows checks to see whether another thread at the same priority is waiting to run. If a 
thread completes its quantum and there are no other threads at its priority, Windows permits the 
thread to run for another quantum. On Windows Vista, threads run by default for 2 clock intervals; 
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on Windows Server systems, by default, a thread runs for 12 clock intervals. (We’ll explain how 
you can change these values later.) The rationale for the longer default value on server systems is 
to minimize context switching. By having a longer quantum, server applications that wake up as 
the result of a client request have a better chance of completing the request and going back into a 
wait state before their quantum ends. 

The length of the clock interval varies according to the hardware platform. The frequency of 
the clock interrupts is up to the HAL, not the kernel. For example, the clock interval for most x86 
uniprocessors is about 10 milliseconds, and for most x86 and x64 multiprocessors it is about 15 
milliseconds. This clock interval is stored in the kernel variable KeMaximumIncrement as 
hundreds of nanoseconds. 

Because of changes in thread run-time accounting in Windows Vista (briefly mentioned 
earlier in the thread activity experiment), although threads still run in units of clock intervals, the 
system does not use the count of clock ticks as the deciding factor for how long a thread has run 
and whether its quantum has expired. Instead, when the system starts up, a calculation is made 
whose result is the number of clock cycles that each quantum is equivalent to (this value is stored 
in the kernel variable KiCyclesPerClockQuantum). This calculation is made by multiplying the 
processor speed in Hz (CPU clock cycles per second) with the number of seconds it takes for one 
clock tick to fire (based on the KeMaximumIncrement value described above). 

The end result of this new accounting method is that, as of Windows Vista, threads do not 
actually run for a quantum number based on clock ticks; they instead run for a quantum target, 
which represents an estimate of what the number of CPU clock cycles the thread has consumed 
should be when its turn would be given up. This target should be equal to an equivalent number of 
clock interval timer ticks because, as we’ve just seen, the calculation of clock cycles per quantum 
is based on the clock interval timer frequency, which you can check using the following 
experiment. On the other hand, because interrupt cycles are not charged to the thread, the actual 
clock time may be longer. 

EXPERIMENT: Determining the Clock Interval Frequency 

The Windows GetSystemTimeAdjustment function returns the clock interval. To determine 
the clock interval, download and run the Clockres program from Windows Sysinternals 
(www.microsoft.com/technet/sysinternals). Here’s the output from a dualcore 32-bit Windows 
Vista system: 

1. C:\>clockres   

2. ClockRes - View the system clock resolution   

3. By Mark Russinovich   

4. SysInternals - www.sysinternals.com   

5. The system clock interval is 15.600100 ms  

Quantum Accounting 

Each process has a quantum reset value in the kernel process block. This value is used when 
creating new threads inside the process and is duplicated in the kernel thread block, which is then 
used when giving a thread a new quantum target. The quantum reset value is stored in terms of 
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actual quantum units (we’ll discuss what these mean soon), which are then multiplied by the 
number of clock cycles per quantum, resulting in the quantum target.  

As a thread runs, CPU clock cycles are charged at different events (context switches, 
interrupts, and certain scheduling decisions). If at a clock interval timer interrupt, the number of 
CPU clock cycles charged has reached (or passed) the quantum target, then quantum end 
processing is triggered. If there is another thread at the same priority waiting to run, a context 
switch occurs to the next thread in the ready queue. 

Internally, a quantum unit is represented as one third of a clock tick (so one clock tick equals 
three quantums). This means that on Windows Vista systems, threads, by default, have a quantum 
reset value of 6 (2 * 3), and that Windows Server 2008 systems have a quantum reset value of 36 
(12 * 3). For this reason, the KiCyclesPerClockQuantum value is divided by three at the end of the 
calculation previously described, since the original value would describe only CPU clock cycles 
per clock interval timer tick. 

The reason a quantum was stored internally as a fraction of a clock tick rather than as an 
entire tick was to allow for partial quantum decay on wait completion on versions of Windows 
prior to Windows Vista. Prior versions used the clock interval timer for quantum expiration. If this 
adjustment were not made, it would have been possible for threads never to have their quantums 
reduced. For example, if a thread ran, entered a wait state, ran again, and entered another wait 
state but was never the currently running thread when the clock interval timer fired, it would never 
have its quantum charged for the time it was running. Because threads now have CPU clock 
cycles charged instead of quantums, and because this no longer depends on the clock interval 
timer, these adjustments are not required.  

EXPERIMENT: Determining the Clock Cycles per Quantum 

Windows doesn’t expose the number of clock cycles per quantum through any function, but 
with the calculation and description we’ve given, you should be able to determine this on your 
own using the following steps and a kernel debugger such as WinDbg in local debugging mode. 

1. Obtain your processor frequency as Windows has detected it. You can use the value stored 
in the PRCB’s MHz field, which can be displayed with the !cpuinfo command. Here is a sample 
output of a dual-core Intel system running at 2829 MHz. 

1. lkd> !cpuinfo   

2. CP F/M/S Manufacturer MHz PRCB Signature MSR 8B Signature Features   

3. 0 6,15,6 GenuineIntel 2829 000000c700000000 >000000c700000000<A< 

SPAN>00f3fff   

4. 1 6,15,6 GenuineIntel 2829 000000c700000000 a00f3fff   

5. Cached Update Signature 000000c700000000  

6. Initial Update Signature 000000c700000000  

2. Convert the number to Hertz (Hz). This is the number of CPU clock cycles that occur each 
second on your system. In this case, 2,829,000,000 cycles per second. 

3. Obtain the clock interval on your system by using clockres. This measures how long it 
takes before the clock fires. On the sample system used here, this interval was 15.600100 ms. 
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4. Convert this number to the number of times the clock interval timer fires each second. One 
second is 1000 ms, so divide the number derived in step 3 by 1000. In this case, the timer fires 
every 0.0156001 second. 

5. Multiply this count by the number of cycles each second that you obtained in step 2. In our 
case, 44,132,682.9 cycles have elapsed after each clock interval. 

6. Remember that each quantum unit is one-third of a clock interval, so divide the number of 
cycles by three. In our example, this gives us 14,710,894, or 0xE0786E in hexidecimal. This is the 
number of clock cycles each quantum unit should take on a system running at 2829 MHz with a 
clock interval of around 15 ms. 

7. To verify your calculation, dump the value of KiCyclesPerClockQuantum on your 
system—it should match. 

1. lkd> dd nt!KiCyclesPerClockQuantum l1  
2. 81d31ae8 00e0786e  

Controlling the Quantum 

You can change the thread quantum for all processes, but you can choose only one of two 
settings: short (2 clock ticks, the default for client machines) or long (12 clock ticks, the default 
for server systems). 

Note By using the job object on a system running with long quantums, you can select other 
quantum values for the processes in the job. For more information on the job object, see the “Job 
Objects” section later in the chapter. 

To change this setting, right-click on your computer name’s icon on the desktop, choose 
Properties, click the Advanced System Settings label, select the Advanced tab, click the Settings 
button in the Performance section, and finally click the Advanced tab. The dialog box displayed is 
shown in Figure 5-16. 
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The Programs setting designates the use of short, variable quantums—the default for 
Windows Vista. If you install Terminal Services on Windows Server 2008 systems and configure 
the server as an application server, this setting is selected so that the users on the terminal server 
will have the same quantum settings that would normally be set on a desktop or client system. You 
might also select this manually if you were running Windows Server as your desktop operating 
system. 

The Background Services option designates the use of long, fixed quantums—the default for 
Windows Server 2008 systems. The only reason you might select this option on a workstation 
system is if you were using the workstation as a server system. 

One additional difference between the Programs and Background Services settings is the 
effect they have on the quantum of the threads in the foreground process. This is explained in the 
next section. 

Quantum Boosting 

When a window is brought into the foreground on a client system, all the threads in the 
process containing the thread that owns the foreground window have their quantums tripled. Thus, 
threads in the foreground process run with a quantum of 6 clock ticks, whereas threads in other 
processes have the default client quantum of 2 clock ticks. In this way, when you switch away 
from a CPU-intensive process, the new foreground process will get proportionally more of the 
CPU, because when its threads run they will have a longer turn than background threads (again, 
assuming the thread priorities are the same in both the foreground and background processes). 

Note that this adjustment of quantums applies only to processes with a priority higher than 
Idle on systems configured to Programs in the Performance Options settings described in the 
previous section. Thread quantums are not changed for the foreground process on systems 
configured to Background Services (the default on Windows Server 2008 systems).  

Quantum Settings Registry Value 

The user interface to control quantum settings described earlier modifies the registry value  

HKLM\SYSTEM\CurrentControlSet\Control\PriorityControl\Win32PrioritySeparation. In 
addition to specifying the relative length of thread quantums (short or long), this registry value 
also defines whether or not threads in the foreground process should have their quantums boosted 
(and if so, the amount of the boost). This value consists of 6 bits divided into the three 2-bit fields 
shown in Figure 5-17. 

  

The fields shown in Figure 5-17 can be defined as follows: 

■ Short vs. Long A setting of 1 specifies long, and 2 specifies short. A setting of 0 or 3 
indicates that the default will be used (short for Windows Vista, long for Windows Server 2008 
systems). 
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■ Variable vs. Fixed A setting of 1 means to vary the quantum for the foreground process, 
and 2 means that quantum values don’t change for foreground processes. A setting of 0 or 3 means 
that the default (which is variable for Windows Vista and fixed for Windows Server 2008 systems) 
will be used. 

■ Foreground Quantum Boost This field (stored in the kernel variable PsPrioritySeperation) 
must have a value of 0, 1, or 2. (A setting of 3 is invalid 

and treated as 2.) It is used as an index into a three-element byte array named 
PspForegroundQuantum to obtain the quantum for the threads in the foreground process. The 
quantum for threads in background processes is taken from the first entry in this quantum table. 
Table 5-17 shows the possible settings for PspForegroundQuantum. 

  

Note that when you’re using the Performance Options dialog box described earlier, you can 
choose from only two combinations: short quantums with foreground quantums tripled, or long 
quantums with no quantum changes for foreground threads. However, you can select other 
combinations by modifying the Win32PrioritySeparation registry value directly.  

EXPERIMENT: effects of Changing the Quantum Configuration 

Using a local debugger (Kd or WinDbg), you can see how the two quantum configuration 
settings, Programs and Background Services, affect the PsPrioritySeperation and 
PspForegroundQuantum tables, as well as modify the QuantumReset value of threads on the 
system. Take the following steps: 

1. Open the System utility in Control Panel (or right-click on your computer name’s icon on 
the desktop, and choose Properties). Click the Advanced System Settings label, select the 
Advanced tab, click the Settings button in the Performance section, and finally click the Advanced 
tab. Select the Programs option and click Apply. Keep this window open for the duration of the 
experiment. 

2. Dump the values of PsPrioritySeperation (this is a deliberate misspelling inside the 
Windows kernel, not an error in this book) and PspForegroundQuantum, as shown here. The 
values shown are what you should see on a Windows Vista system after making the change in step 
1. Notice how the variable, short quantum table is being used, and that a priority boost of 2 will 
apply to foreground applications. 

1. lkd> dd PsPrioritySeperation l1  

2. 81d3101c 00000002  

3. lkd> db PspForegroundQuantum l3  

4. 81d0946c 06 0c 12  

3. Now take a look at the QuantumReset value of any process on the system. As described 
earlier, this is the default, full quantum of each thread on the system when it is replenished. This 
value is cached into each thread of the process, but the KPROCESS structure is easier to look at. 
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Notice in this case it is 6, since WinDbg, like most other applications, gets the quantum set in the 
first entry of the PspForegroundQuantum table. 

1. lkd> .process   

2. Implicit process is now 85b32d90  

3. lkd> dt _KPROCESS 85b32d90  

4. nt!_KPROCESS   

5. +0x000 Header : _DISPATCHER_HEADER   

6. +0x010 ProfileListHead : _LIST_ENTRY [ 0x85b32da0 - 0x85b32da0 ]   

7. +0x018 DirectoryTableBase : 0xb45b0880  

8. +0x01c Unused0 : 0  

9. +0x020 LdtDescriptor : _KGDTENTRY   

10. +0x028 Int21Descriptor : _KIDTENTRY   

11. +0x030 IopmOffset : 0x20ac   

12. +0x032 Iopl : 0 ''  

13. +0x033 Unused : 0 ''  

14. +0x034 ActiveProcessors : 1  

15. +0x038 KernelTime : 0  

16. +0x03c UserTime : 0  

17. +0x040 ReadyListHead : _LIST_ENTRY [ 0x85b32dd0 - 0x85b32dd0 ]   

18. +0x048 SwapListEntry : _SINGLE_LIST_ENTRY   

19. +0x04c VdmTrapcHandler : (null)   

20. +0x050 ThreadListHead : _LIST_ENTRY [ 0x861e7e0c - 0x8620637c ]   

21. +0x058 ProcessLock : 0  

22. +0x05c Affinity : 3  

23. +0x060 AutoAlignment : 0y0  

24. +0x060 DisableBoost : 0y0  

25. +0x060 DisableQuantum : 0y0  

26. +0x060 ReservedFlags : 0y00000000000000000000000000000 (0)   

27. +0x060 ProcessFlags : 0  

28. +0x064 BasePriority : 8 ''  

29. +0x065 QuantumReset : 6 ''  

4. Now change the Performance option to Background Services in the dialog box you opened 
in step 1. 

5. Repeat the commands shown in steps 2 and 3. You should see the values change in a 
manner consistent with our discussion in this section: 

1. lkd> dd PsPrioritySeperation L1  

2. 81d3101c 00000000  

3. lkd> db PspForegroundQuantum l 3  

4. 81d0946c 24 24 24 $$$   

5. lkd> dt _KPROCESS 85b32d90  

6. nt!_KPROCESS   

7. +0x000 Header : _DISPATCHER_HEADER   
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8. +0x010 ProfileListHead : _LIST_ENTRY [ 0x85b32da0 - 0x85b32da0 ]   

9. +0x018 DirectoryTableBase : 0xb45b0880  

10. +0x01c Unused0 : 0  

11. +0x020 LdtDescriptor : _KGDTENTRY   

12. +0x028 Int21Descriptor : _KIDTENTRY   

13. +0x030 IopmOffset : 0x20ac   

14. +0x032 Iopl : 0 ''  

15. +0x033 Unused : 0 ''  

16. +0x034 ActiveProcessors : 1  

17. +0x038 KernelTime : 0  

18. +0x03c UserTime : 0  

19. +0x040 ReadyListHead : _LIST_ENTRY [ 0x85b32dd0 - 0x85b32dd0 ]   

20. +0x048 SwapListEntry : _SINGLE_LIST_ENTRY   

21. +0x04c VdmTrapcHandler : (null)   

22. +0x050 ThreadListHead : _LIST_ENTRY [ 0x861e7e0c - 0x860c14f4 ]   

23. +0x058 ProcessLock : 0  

24. +0x05c Affinity : 3  

25. +0x060 AutoAlignment : 0y0  

26. +0x060 DisableBoost : 0y0  

27. +0x060 DisableQuantum : 0y0  

28. +0x060 ReservedFlags : 0y00000000000000000000000000000 (0)   

29. +0x060 ProcessFlags : 0  

30. +0x064 BasePriority : 8 ''  

31. +0x065 QuantumReset : 36 '$'  

5.7.9 Scheduling Scenarios 

Windows bases the question of “Who gets the CPU?” on thread priority; but how does this 
approach work in practice? The following sections illustrate just how priority-driven preemptive 
multitasking works on the thread level. 

Voluntary Switch 

First a thread might voluntarily relinquish use of the processor by entering a wait state on 
some object (such as an event, a mutex, a semaphore, an I/O completion port, a process, a thread, 
a window message, and so on) by calling one of the Windows wait functions (such as 
WaitForSingleObject or WaitForMultipleObjects). Waiting for objects is described in more detail 
in Chapter 3. 

Figure 5-18 illustrates a thread entering a wait state and Windows selecting a new thread to 
run. 

In Figure 5-18, the top block (thread) is voluntarily relinquishing the processor so that the 
next thread in the ready queue can run (as represented by the halo it has when in the Running 
column). Although it might appear from this figure that the relinquishing thread’s priority is being 
reduced, it’s not—it’s just being moved to the wait queue of the objects the thread is waiting for. 
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Preemption 

In this scheduling scenario, a lower-priority thread is preempted when a higher-priority 
thread becomes ready to run. This situation might occur for a couple of reasons: 

■ A higher-priority thread’s wait completes. (The event that the other thread was waiting for 
has occurred.) 

■ A thread priority is increased or decreased. 

In either of these cases, Windows must determine whether the currently running thread 
should still continue to run or whether it should be preempted to  allow a higher-priority thread to 
run. 

Note Threads running in user mode can preempt threads running in kernel mode—the mode 
in which the thread is running doesn’t matter. The thread priority is the determining factor.  

When a thread is preempted, it is put at the head of the ready queue for the priority it was 
running at. Figure 5-19 illustrates this situation.  

In Figure 5-19, a thread with priority 18 emerges from a wait state and repossesses the CPU, 
causing the thread that had been running (at priority 16) to be bumped to the head of the ready 
queue. Notice that the bumped thread isn’t going to the end of the queue but to the beginning; 
when the preempting thread has finished running, the bumped thread can complete its quantum. 
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Quantum End 

When the running thread exhausts its CPU quantum, Windows must determine whether the 
thread’s priority should be decremented and then whether another thread should be scheduled on 
the processor. 

If the thread priority is reduced, Windows looks for a more appropriate thread to schedule. 
(For example, a more appropriate thread would be a thread in a ready queue with a higher priority 
than the new priority for the currently running thread.) If the thread priority isn’t reduced and 
there are other threads in the ready queue at the same priority level, Windows selects the next 
thread in the ready queue at that same priority level and moves the previously running thread to 
the tail of that queue (giving it a new quantum value and changing its state from running to ready). 
This case is illustrated in Figure 5-20. If no other thread of the same priority is ready to run, the 
thread gets to run for another quantum. 

  

As we’ve seen, instead of simply relying on a clock interval timer–based quantum to 
schedule threads, Windows uses an accurate CPU clock cycle count to maintain quantum targets. 
One factor we haven’t yet mentioned is that Windows also uses this count to determine whether 
quantum end is currently appropriate for the thread—something that may have happened 
previously and is important to discuss. 

Under the scheduling model prior to Windows Vista, which relied only on the clock interval 
timer, the following situation could occur: 

■ Threads A and B become ready to run during the middle of an interval (scheduling code 
runs not just at each clock interval, so this is often the case). 

■ Thread A starts running but is interrupted for a while. The time spent handling the interrupt 
is charged to the thread. 

■ Interrupt processing finishes, thread A starts running again, but it quickly hits the next 
clock interval. The scheduler can only assume that thread A had been running all this time and 
now switches to thread B. 

■ Thread B starts running and has a chance to run for a full clock interval (barring 
preemption or interrupt handling). 

In this scenario, thread A was unfairly penalized in two different ways. First of all, the time 
that it had to spend handling a device interrupt was accounted to its own CPU time, even though 
the thread had probably nothing to do with the interrupt. (Recall that interrupts are handled in the 
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context of whichever thread had been running at the time.) It was also unfairly penalized for the 
time the system was idling inside that clock interval before it was scheduled. 

Figure 5-21 represents this scenario. 

  

Because Windows keeps an accurate count of the exact number of CPU clock cycles spent 
doing work that the thread was scheduled to do (which means excluding interrupts), and because it 
keeps a quantum target of clock cycles that should have been spent by the thread at the end of its 
quantum, both of the unfair decisions that would have been made against thread A will not happen 
in Windows. 

Instead, the following situation will occur: 

■ Threads A and B become ready to run during the middle of an interval. 

■ Thread A starts running but is interrupted for a while. The CPU clock cycles spent 
handling the interrupt are not charged to the thread. 

■ Interrupt processing finishes, thread A starts running again, but it quickly hits the next 
clock interval. The scheduler looks at the number of CPU clock cycles that have been charged to 
the thread and compares them to the expected CPU clock cycles that should have been charged at 
quantum end. 

■ Because the former number is much smaller than it should be, the scheduler assumes that 
thread A started running in the middle of a clock interval and may have additionally been 
interrupted. 

■ Thread A gets its quantum increased by another clock interval, and the quantum target is 
recalculated. Thread A now has its chance to run for a full clock interval. 

■ At the next clock interval, thread A has finished its quantum, and thread B now gets a 
chance to run. 

Figure 5-22 represents this scenario. 

  

Termination 
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When a thread finishes running (either because it returned from its main routine, called 
ExitThread, or was killed with TerminateThread), it moves from the running state to the 
terminated state. If there are no handles open on the thread object, the thread is removed from the 
process thread list and the associated data structures are deallocated and released. 

5.7.10 Context Switching 

A thread’s context and the procedure for context switching vary depending on the processor’s 
architecture. A typical context switch requires saving and reloading the following data:  

■ Instruction pointer 

■ Kernel stack pointer 

■ A pointer to the address space in which the thread runs (the process’s page table directory) 

The kernel saves this information from the old thread by pushing it onto the current (old 
thread’s) kernel-mode stack, updating the stack pointer, and saving the stack pointer in the old 
thread’s KTHREAD block. The kernel stack pointer is then set to the new thread’s kernel stack, 
and the new thread’s context is loaded. If the new thread is in a different process, it loads the 
address of its page table directory into a special processor register so   that its address space is 
available. (See the description of address translation in Chapter 9.) If a kernel APC that needs to 
be delivered is pending, an interrupt at IRQL 1 is requested. Otherwise, control passes to the new 
thread’s restored instruction pointer and the new thread resumes execution. 

5.7.11 Idle Thread 

When no runnable thread exists on a CPU, Windows dispatches the per-CPU idle thread. 
Each CPU is allotted one idle thread because on a multiprocessor system one CPU can be 
executing a thread while other CPUs might have no threads to execute.  

Various Windows process viewer utilities report the idle process using different names. Task 
Manager and Process Explorer call it “System Idle Process,” while Tlist calls it “System Process.” 
If you look at the EPROCESS structure’s ImageFileName member, you’ll see the internal name 
for the process is “Idle.” Windows reports the priority of the idle thread as 0 (15 on x64 systems). 
In reality, however, the idle threads don’t have a  priority level because they run only when there 
are no real threads to run—they are not scheduled and never part of any ready queues. (Remember, 
only one thread per Windows system is actually running at priority 0—the zero page thread, 
explained in Chapter 9.) 

Apart from priority, there are many other fields in the idle process or its threads that may be 
reported as 0. This occurs because the idle process is not an actual full-blown object manager 
process object, and neither are its idle threads. Instead, the initial idle thread and idle process 
objects are statically allocated and used to bootstrap the system before the process manager 
initializes. Subsequent idle thread structures are allocated dynamically as additional processors are 
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brought online. Once process management initializes, it uses the special variable PsIdleProcess to 
refer to the idle process. 

Apart from some critical fields provided so that these threads and their process can have a 
PID and name, everything else is ignored, which means that query APIs may simply return zeroed 
data. 

The idle loop runs at DPC/dispatch level, polling for work to do, such as delivering deferred 
procedure calls (DPCs) or looking for threads to dispatch to. Although some details of the flow 
vary between architectures, the basic flow of control of the idle thread is as follows: 

1. Enables and disables interrupts (allowing any pending interrupts to be delivered). 

2. Checks whether any DPCs (described in Chapter 3) are pending on the processor. If DPCs 
are pending, clears the pending software interrupt and delivers them. (This will also perform timer 
expiration, as well as deferred ready processing. The latter is explained in the upcoming 
multiprocessor scheduling section.)  

3. Checks whether a thread has been selected to run next on the processor, and if so, 
dispatches that thread. 

4. Calls the registered power management processor idle routine (in case any power 
management functions need to be performed), which is either in the processor power driver (such 
as intelppm.sys) or in the HAL if such a driver is unavailable. 

5. On debug systems, checks if there is a kernel debugger trying to break into the system and 
gives it access. 

6. If requested, checks for threads waiting to run on other processors and schedules them 
locally. (This operation is also explained in the upcoming multiprocessor scheduling section.) 
 

5.7.12 Priority Boosts 

In six cases, the Windows scheduler can boost (increase) the current priority value of threads: 

■ On completion of I/O operations 

■ After waiting for executive events or semaphores 

■ When a thread has been waiting on an executive resource for too long 

■ After threads in the foreground process complete a wait operation 

■ When GUI threads wake up because of windowing activity 

■ When a thread that’s ready to run hasn’t been running for some time (CPU starvation) 

The intent of these adjustments is to improve overall system throughput and responsiveness 
as well as resolve potentially unfair scheduling scenarios. Like any scheduling algorithms, 
however, these adjustments aren’t perfect, and they might not benefit all applications.  
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Note Windows never boosts the priority of threads in the real-time range (16 through 31). 
Therefore, scheduling is always predictable with respect to other threads in the real-time range. 
Windows assumes that if you’re using the real-time thread priorities, you know what you’re doing. 

Windows Vista adds one more scenario in which a priority boost can occur, multimedia 
playback. Unlike the other priority boosts, which are applied directly by kernel code, multimedia 
playback boosts are managed by a user-mode service called the MultiMedia Class Scheduler 
Service (MMCSS). (Although the boosts are still done in kernel mode, the request to boost the 
threads is managed by this user-mode service.) We’ll first cover the typical kernelmanaged 
priority boosts and then talk about MMCSS and the kind of boosting it performs.  

Priority Boosting after I/O Completion 

Windows gives temporary priority boosts upon completion of certain I/O operations so that 
threads that were waiting for an I/O will have more of a chance to run right away and process 
whatever was being waited for. Recall that 1 quantum unit is deducted from the thread’s 
remaining quantum when it wakes up so that I/O bound threads aren’t unfairly favored. Although 
you’ll find recommended boost values in the Windows Driver Kit (WDK) header files (by 
searching for “#define IO” in Wdm.h or Ntddk.h), the actual value for the boost is up to the device 
driver. (These values are listed in Table 5-18.) It is the device driver that specifies the boost when 
it completes an I/O request on its call to the kernel function IoCompleteRequest. In Table 5-18, 
notice that I/O requests to devices that warrant better responsiveness have higher boost values. 

  

The boost is always applied to a thread’s current priority, not its base priority. As illustrated 
in Figure 5-23, after the boost is applied, the thread gets to run for one quantum at the elevated 
priority level. After the thread has completed its quantum, it decays one priority level and then 
runs another quantum. This cycle continues until the thread’s priority level has decayed back to its 
base priority. A thread with a higher priority can still preempt the boosted thread, but the 
interrupted thread gets to finish its time slice at the boosted priority level before it decays to the 
next lower priority. 
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As noted earlier, these boosts apply only to threads in the dynamic priority range (0 through 
15). No matter how large the boost is, the thread will never be boosted beyond level 15 into the 
real-time priority range. In other words, a priority 14 thread that receives a boost of 5 will go up to 
priority 15. A priority 15 thread that receives a boost will remain at priority 15. 

Boosts After Waiting for Events and Semaphores 

When a thread that was waiting for an executive event or a semaphore object has its wait 
satisfied (because of a call to the function SetEvent, PulseEvent, or ReleaseSemaphore), it 
receives a boost of 1. (See the value for EVENT_ INCREMENT and 
SEMAPHORE_INCREMENT in the WDK header files.) Threads that wait for events and 
semaphores warrant a boost for the same reason that threads that wait for I/O operations 
do—threads that block on events are requesting CPU cycles less frequently than CPU-bound 
threads. This adjustment helps balance the scales. 

This boost operates the same as the boost that occurs after I/O completion, as described in the 
previous section: 

■ The boost is always applied to the base priority (not the current priority). 

■ The priority will never be boosted above 15. 

■ The thread gets to run at the elevated priority for its remaining quantum (as described 
earlier, quantums are reduced by 1 when threads exit a wait)  before decaying one priority level at 
a time until it reaches its original base priority.  

A special boost is applied to threads that are awoken as a result of setting an event with the 
special functions NtSetEventBoostPriority (used in Ntdll.dll for critical sections) and 
KeSetEventBoostPriority (used for executive resources) or if a signaling gate is used (such as with 
pushlocks). If a thread waiting for an event is woken up as a result of the special event boost 
function and its priority is 13 or below, it will have its priority boosted to be the setting thread’s 
priority plus one. If its quantum is less than 4 quantum units, it is set to 4 quantum units. This 
boost is removed at quantum end. 

Boosts During Waiting on Executive Resources 

When a thread attempts to acquire an executive resource (ERESOURCE; see Chapter 3 for 
more information on kernel synchronization objects) that is already owned exclusively by another 
thread, it must enter a wait state until the other thread has released the resource. To avoid 
deadlocks, the executive performs this wait in intervals of five seconds instead of doing an infinite 
wait on the resource. 

At the end of these five seconds, if the resource is still owned, the executive will attempt to 
prevent CPU starvation by acquiring the dispatcher lock, boosting the owning thread or threads, 
and performing another wait. Because the dispatcher lock is held and the thread’s WaitNext flag is 
set to TRUE, this ensures a consistent state during the boosting process until the next wait is done. 

This boost operates in the following manner: 

■ The boost is always applied to the base priority (not the current priority) of the owner 
thread. 
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■ The boost raises priority to 14. 

■ The boost is only applied if the owner thread has a lower priority than the waiting thread, 
and only if the owner thread’s priority isn’t already 14. 

■ The quantum of the thread is reset so that the thread gets to run at the elevated priority for a 
full quantum, instead of only the quantum it had left. Just like other boosts, at each quantum end, 
the priority boost will slowly decrease by one level. 

Because executive resources can be either shared or exclusive, the kernel will first boost the 
exclusive owner and then check for shared owners and boost all of them. When the waiting thread 
enters the wait state again, the hope is that the scheduler will schedule one of the owner threads, 
which will have enough time to complete its work and release the resource. It’s important to note 
that this boosting mechanism is used only if the resource doesn’t have the Disable Boost flag set, 
which developers can choose to set if the priority inversion mechanism described here works well 
with their usage of the resource. 

Additionally, this mechanism isn’t perfect. For example, if the resource has multiple shared 
owners, the executive will boost all those threads to priority 14, resulting in a sudden surge of 
high-priority threads on the system, all with full quantums. Although the exclusive thread will run 
first (since it was the first to be boosted and therefore first on the ready list), the other shared 
owners will run next, since the waiting thread’s priority was not boosted. Only until after all the 
shared owners have gotten a chance to run and their priority decreased below the waiting thread 
will the waiting thread finally get its chance to acquire the resource. Because shared owners can 
promote or convert their ownership from shared to exclusive as soon as the exclusive owner 
releases the resource, it’s possible for this mechanism not to work as intended. 

Priority Boosts for Foreground Threads After Waits 

Whenever a thread in the foreground process completes a wait operation on a kernel object, 
the kernel function KiUnwaitThread boosts its current (not base) priority by the current value of 
PsPrioritySeperation. (The windowing system is responsible for determining which process is 
considered to be in the foreground.) As described in the section on quantum controls, 
PsPrioritySeperation reflects the quantum-table index used to select quantums for the threads of 
foreground applications. However, in this case, it is being used as a priority boost value. 

The reason for this boost is to improve the responsiveness of interactive applications—by 
giving the foreground application a small boost when it completes a wait, it has a better chance of 
running right away, especially when other processes at the same base priority might be running in 
the background. 

Unlike other types of boosting, this boost applies to all Windows systems, and you can’t 
disable this boost, even if you’ve disabled priority boosting using the Windows 
SetThreadPriorityBoost function. 

EXPERIMENT: Watching Foreground Priority Boosts and Decays 

Using the CPU Stress tool, you can watch priority boosts in action. Take the following steps: 
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1. Open the System utility in Control Panel (or right-click on your computer name’s icon on 
the desktop, and choose Properties). Click the Advanced System Settings label, select the 
Advanced tab, click the Settings button in the Performance section, and finally click the Advanced 
tab. Select the Programs option. This causes PsPrioritySeperation to get a value of 2. 

2. Run Cpustres.exe, and change the activity of thread 1 from Low to Busy. 

3. Start the Performance tool by selecting Programs from the Start menu and then selecting 
Reliability And Performance Monitor from the Administrative Tools menu. Click on the 
Performance Monitor entry under Monitoring Tools. 

4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add Counters dialog 
box. 

5. Select the Thread object, and then select the % Processor Time counter. 

6. In the Instances box, select and click Search. Scroll down until you see the CPUSTRES 
process. Select the second thread (thread 1). (The first thread is the GUI thread.) You should see 
something like this: 

  

7. Click the Add button, and then click OK. 

8. Select Properties from the Action menu. Change the Vertical Scale Maximum to 16 and set 
the interval to Sample Every N Seconds in the Graph Elements area. 
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9. Now bring the CPUSTRES process to the foreground. You should see the priority of the 
CPUSTRES thread being boosted by 2 and then decaying back to the base priority as follows: 

  

10. The reason CPUSTRES receives a boost of 2 periodically is because the thread you’re 
monitoring is sleeping about 25 percent of the time and then waking up (this is the Busy Activity 
level). The boost is applied when the thread wakes up. If you set the Activity level to Maximum, 
you won’t see any boosts because Maximum in CPUSTRES puts the thread into an infinite loop. 
Therefore, the thread doesn’t invoke any wait functions and as a result doesn’t receive any boosts. 

11. When you’ve finished, exit Reliability and Performance Monitor and CPU Stress. 

Priority Boosts After GUI Threads Wake Up 

Threads that own windows receive an additional boost of 2 when they wake up because of 
windowing activity such as the arrival of window messages. The windowing system (Win32k.sys) 
applies this boost when it calls KeSetEvent to set an event used to wake up a GUI thread. The 
reason for this boost is similar to the previous one—to favor interactive applications. 

EXPERIMENT: Watching Priority Boosts on GUI Threads 

You can also see the windowing system apply its boost of 2 for GUI threads that wake up to 
process window messages by monitoring the current priority of a GUI application and moving the 
mouse across the window. Just follow these steps: 

1. Open the System utility in Control Panel (or right-click on your computer name’s icon on 
the desktop, and choose Properties). Click the Advanced System Settings label, select the 
Advanced tab, click the Settings button in the Performance section, and finally click the Advanced 
tab. Be sure that the Programs option is selected. This causes PsPrioritySeperation to get a value 
of 2. 

2. Run Notepad from the Start menu by selecting Programs/Accessories/Notepad. 

3. Start the Performance tool by selecting Programs from the Start menu and then selecting 
Reliability And Performance Monitor from the Administrative Tools menu. Click on the 
Performance Monitor entry under Monitoring Tools. 
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4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add Counters dialog 
box. 

5. Select the Thread object, and then select the % Processor Time counter. 

6. In the Instances box, select , and then click Search. Scroll down until you see Notepad 
thread 0. Click it, click the Add button, and then click OK.  

7. As in the previous experiment, select Properties from the Action menu. Change the 
Vertical Scale Maximum to 16, set the interval to Sample Every N Seconds in the Graph Elements 
area, and click OK. 

8. You should see the priority of thread 0 in Notepad at 8, 9, or 10. Because Notepad entered 
a wait state shortly after it received the boost of 2 that threads in the foreground process receive, it 
might not yet have decayed from 10 to 9 and then to 8. 

9. With Reliability and Performance Monitor in the foreground, move the mouse across the 
Notepad window. (Make both windows visible on the desktop.) You’ll see that the priority 
sometimes remains at 10 and sometimes at 9, for the reasons just explained. (The reason you 
won’t likely catch Notepad at 8 is that it runs so little after receiving the GUI thread boost of 2 that 
it never experiences more than one priority level of decay before waking up again because of 
additional windowing activity and receiving the boost of 2 again.) 

10. Now bring Notepad to the foreground. You should see the priority rise to 12 and remain 
there (or drop to 11, because it might experience the normal priority decay that occurs for boosted 
threads on the quantum end) because the thread is receiving two boosts: the boost of 2 applied to 
GUI threads when they wake up to process windowing input and an additional boost of 2 because 
Notepad is in the foreground. 

11. If you then move the mouse over Notepad (while it’s still in the foreground), you might 
see the priority drop to 11 (or maybe even 10) as it experiences the priority decay that normally 
occurs on boosted threads as they complete their turn. However, the boost of 2 that is applied 
because it’s the foreground process remains as long as Notepad remains in the foreground. 

12. When you’ve finished, exit Reliability and Performance Monitor and Notepad. 

Priority Boosts for CPU Starvation 

Imagine the following situation: you have a priority 7 thread that’s running, preventing a 

priority 4 thread from ever receiving CPU time; however, a priority 11 thread is waiting for some 

resource that the priority 4 thread has locked. But because the priority 7 thread in the middle is 

eating up all the CPU time, the priority 4 thread will never run long enough to finish whatever it’s 

doing and release the resource blocking the priority 11 thread. What does Windows do to address 

this situation? 

We have previously seen how the executive code responsible for executive resources 

manages this scenario by boosting the owner threads so that they can have a chance to run and 
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release the resource. However, executive resources are only one of the many synchronization 

constructs available to developers, and the boosting technique will not apply to any other primitive. 

Therefore, Windows also includes a generic CPU starvation relief mechanism as part of a thread 

called the balance set manager (a system thread that exists primarily to perform memory 

management functions and is described in more detail in Chapter 9). 

Once per second, this thread scans the ready queues for any threads that have been in the 

ready state (that is, haven’t run) for approximately 4 seconds. If it finds such a thread, the balance 

set manager boosts the thread’s priority to 15 and sets the quantum target to an equivalent CPU 

clock cycle count of 4 quantum units. Once the quantum is expired, the thread’s priority decays 

immediately to its original base priority. If the thread wasn’t finished and a higher priority thread 

is ready to run, the decayed thread will return to the ready queue, where it again becomes eligible 

for another boost if it remains there for another 4 seconds. 

The balance set manager doesn’t actually scan all ready threads every time it runs. To 

minimize the CPU time it uses, it scans only 16 ready threads; if there are more threads at that 

priority level, it remembers where it left off and picks up again on the next pass. Also, it will boost 

only 10 threads per pass—if it finds 10 threads meriting this particular boost (which would 

indicate an unusually busy system), it stops the scan at that point and picks up again on the next 

pass. 

Note We mentioned earlier that scheduling decisions in Windows are not affected by the 

number of threads, and that they are made in constant time, or O(1). Because the balance set 

manager does need to scan ready queues manually, this operation does depend on the number of 

threads on the system, and more threads will require more scanning time. However, the balance 

set manager is not considered part of the scheduler or its algorithms and is simply an extended 

mechanism to increase reliability. Additionally, because of the cap on threads and queues to scan, 

the performance impact is minimized and predictable in a worst-case scenario.  

Will this algorithm always solve the priority inversion issue? No—it’s not perfect by any 

means. But over time, CPU-starved threads should get enough CPU time to finish whatever 

processing they were doing and reenter a wait state. 

EXPERIMENT: Watching Priority Boosts for CPu Starvation 

Using the CPU Stress tool, you can watch priority boosts in action. In this experiment, we’ll 

see CPU usage change when a thread’s priority is boosted. Take the following steps:  
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1. Run Cpustres.exe. Change the activity level of the active thread (by default, Thread 1) 

from Low to Maximum. Change the thread priority from Normal to Below Normal. The screen 

should look like this: 

  

2. Start the Performance tool by selecting Programs from the Start menu and then selecting 

Reliability And Performance Monitor from the Administrative Tools menu. Click on the 

Performance Monitor entry under Monitoring Tools. 

3. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add Counters dialog 

box. 

4. Select the Thread object, and then select the % Processor Time counter. 

5. In the Instances box, select , and then click Search. Scroll down until you see the 

CPUSTRES process. Select the second thread (thread 1). (The first thread is the GUI thread.) You 

should see something like this: 
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6. Click the Add button, and then click OK. 

7. Raise the priority of Performance Monitor to real time by running Task Manager, clicking 

the Processes tab, and selecting the Mmc.exe process. Right-click the process, select Set Priority, 

and then select Realtime. (If you receive a Task Manager Warning message box warning you of 

system instability, click the Yes button.) If you have a multiprocessor system, you will also need 

to change the affinity of the process: right-click and select Set Affinity. Then clear all other CPUs 

except for CPU 0. 

8. Run another copy of CPU Stress. In this copy, change the activity level of Thread 1 from 

Low to Maximum. 

9. Now switch back to Performance Monitor. You should see CPU activity every 6 or so 

seconds because the thread is boosted to priority 15. You can force updates to occur more 

frequently than every second by pausing the display with Ctrl+F, and then pressing Ctrl+U, which 

forces a manual update of the counters. Keep Ctrl+U pressed for continual refreshes.  

When you’ve finished, exit Performance Monitor and the two copies of CPU Stress. 

EXPERIMENT: “listening” to Priority Boosting 

To “hear” the effect of priority boosting for CPU starvation, perform the following steps on a 

system with a sound card: 

1. Because of MMCSS’s priority boosts (which we will describe in the next subsection), you 

will need to stop the MultiMedia Class Scheduler Service by opening the Services management 

interface (Start, Programs, Administrative Tools, Services). 

2. Run Windows Media Player (or some other audio playback program), and begin playing 

some audio content. 

3. Run Cpustres, and set the activity level of Thread 1 to Maximum. 

4. Raise the priority of Thread 1 from Normal to Time Critical. 

5. You should hear the music playback stop as the compute-bound thread begins consuming 

all available CPU time. 

6. Every so often, you should hear bits of sound as the starved thread in the audio playback 

process gets boosted to 15 and runs enough to send more data to the sound card. 

7. Stop Cpustres and Windows Media Player, and start the MMCSS service again.  

Priority Boosts for MultiMedia Applications and Games (MMCSS) 
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As we’ve just seen in the last experiment, although Windows’s CPU starvation priority 
boosts may be enough to get a thread out of an abnormally long wait state or potential deadlock, 
they simply cannot deal with the resource requirements imposed by a CPU-intensive application 
such as Windows Media Player or a 3D computer game. 

Skipping and other audio glitches have been a common source of irritation among Windows 
users in the past, and the user-mode audio stack in Windows Vista would have only made the 
situation worse since it offers even more chances for preemption. To address this, Windows Vista 
incorporates a new service (called MMCSS, described earlier in this chapter) whose purpose is to 
ensure “glitch-free” multimedia playback for applications that register with it. 

MMCSS works by defining several tasks, including: 

■ Audio 

■ Capture 

■ Distribution 

■ Games 

■ Playback 

■ Pro Audio 

■ Window Manager 

Note You can find the settings for MMCSS, including a lists of tasks (which can be modified 
by OEMs to include other specific tasks as appropriate) in the registry keys under 
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Multimedia\SystemProfile. 
Additionally, the SystemResponsiveness value allows you to fine-tune how much CPU usage 
MMCSS guarantees to low-priority threads. 

In turn, each of these tasks includes information about the various properties that differentiate 
them. The most important one for scheduling is called the Scheduling Category, which is the 
primary factor determining the priority of threads registered with MMCSS. Table 5-19 shows the 
various scheduling categories. 

  

The main mechanism behind MMCSS boosts the priority of threads inside a registered 
process to the priority level matching their scheduling category and relative priority within this 
category for a guaranteed period of time. It then lowers those threads to the Exhausted category so 
that other, nonmultimedia threads on the system can also get a chance to execute. 
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By default, multimedia threads will get 80 percent of the CPU time available, while other 
threads will receive 20 percent (based on a sample of 10 ms; in other words, 8 ms and 2 ms). 
MMCSS itself runs at priority 27, since it needs to preempt any Pro Audio threads in order to 
lower their priority to the Exhausted category. 

It is important to emphasize that the kernel still does the actual boosting of the values inside 
the KTHREAD (MMCSS simply makes the same kind of system call any other application would 
do), and the scheduler is still in control of these threads. It is simply their high priority that makes 
them run almost uninterrupted on a machine, since they are in the real-time range and well above 
threads that most user applications would be running in. 

As was discussed earlier, changing the relative thread priorities within a process does not 
usually make sense, and no tool allows this because only developers understand the importance of 
the various threads in their programs.  

On the other hand, because applications must manually register with MMCSS and provide it 
with information about what kind of thread this is, MMCSS does have the necessary data to 
change these relative thread priorities (and developers are well aware that this will be happening). 

EXPERIMENT: “listening” to MMCSS Priority Boosting 

We are now going to perform the same experiment as the prior one but without disabling the 
MMCSS service. In addition, we’ll take a look at the Performance tool to check the priority of the 
Windows Media Player threads. 

1. Run Windows Media Player (other playback programs may not yet take advantage of the 
API calls required to register with MMCSS) and begin playing some audio content. 

2. If you have a multiprocessor machine, be sure to set the affinity of the Wmplayer.exe 
process so that it only runs on one CPU (since we’ll be using only one CPUSTRES worker 
thread). 

3. Start the Performance tool by selecting Programs from the Start menu and then selecting 
Reliability And Performance Monitor from the Administrative Tools menu. Click on the 
Performance Monitor entry under Monitoring Tools. 

4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add Counters dialog 
box. 

5. Select the Thread object, and then select the % Processor Time counter. 

6. In the Instances box, select , and then click Search. Scroll down until you see Wmplayer, 
and then select all its threads. Click the Add button, and then click OK. 

7. As in the previous experiment, select Properties from the Action menu. Change the 
Vertical Scale Maximum to 31, set the interval to Sample Every N Seconds in the Graph Elements 
area, and click OK. 

You should see one or more priority 21 threads inside Wmplayer, which will be constantly 
running unless there is a higher-priority thread requiring the CPU after they are dropped to the 
Exhausted category. 
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8. Run Cpustres, and set the activity level of Thread 1 to Maximum. 

9. Raise the priority of Thread 1 from Normal to Time Critical. 

10. You should notice the system slowing down considerably, but the music playback will 
continue. Every so often, you’ll be able to get back some responsiveness from the rest of the 
system. Use this time to stop Cpustres. 

11. If the Performance tool was unable to capture data during the time Cpustres ran, run it 
again, but use Highest instead of Time Critical. This change will slow down the system less, but it 
still requires boosting from MMCSS, and, because once the multimedia thread is put in the 
Exhausted category, there will always be a higher priority thread requesting the CPU 
(CPUSTRES), you should notice Wmplayer’s priority 21 thread drop every so often, as shown 
here. 

  

MMCSS’s functionality does not stop at simple priority boosting, however. Because of the 
nature of network drivers on Windows and the NDIS stack, DPCs are quite common mechanisms 
for delaying work after an interrupt has been received from the network card. Because DPCs run 
at an IRQL level higher than user-mode code (see Chapter 3 for more information on DPCs and 
IRQLs), long-running network card driver code could still interrupt media playback during 
network transfers, or when playing a game for example. 

Therefore, MMCSS also sends a special command to the network stack, telling it to throttle 
network packets during the duration of the media playback. This throttling is designed to 
maximize playback performance, at the cost of some small loss in network throughput (which 
would not be noticeable for network operations usually performed during playback, such as 
playing an online game). The exact mechanisms behind it do not belong to any area of the 
scheduler, so we will leave them out of this description. 

Note The original implementation of the network throttling code had some design issues 
causing significant network throughput loss on machines with 1000 Mbit network adapters, 
especially if multiple adapters were present on the system (a common feature of midrange 
motherboards). This issue was analyzed by the MMCSS and networking teams at Microsoft and 
later fixed. 
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5.7.13 Multiprocessor Systems 

On a uniprocessor system, scheduling is relatively simple: the highest-priority thread that 
wants to run is always running. On a multiprocessor system, it is more complex, as Windows 
attempts to schedule threads on the most optimal processor for the thread, taking into account the 
thread’s preferred and previous processors, as well as the configuration of the multiprocessor 
system. Therefore, while Windows attempts to schedule the highest-priority runnable threads on 
all available CPUs, it only guarantees to be running the (single) highestpriority thread somewhere. 

Before we describe the specific algorithms used to choose which threads run where and when, 
let’s examine the additional information Windows maintains to track thread and processor state on 
multiprocessor systems and the two different types of multiprocessor systems supported by 
Windows (hyperthreaded, multicore, and NUMA).  

Multiprocessor Considerations in the Dispatcher Database 

In addition to the ready queues and the ready summary, Windows maintains two bitmasks 
that track the state of the processors on the system. (How these bitmasks are used is explained in 
the upcoming section “Multiprocessor Thread-Scheduling Algorithms”.) 

Following are the two bitmasks that Windows maintains: 

■ The active processor mask (KeActiveProcessors), which has a bit set for each usable 
processor on the system (This might be less than the number of actual processors if the licensing 
limits of the version of Windows running supports less than the number of available physical 
processors.) 

■ The idle summary (KiIdleSummary), in which each set bit represents an idle processor 
Whereas on uniprocessor systems, the dispatcher database is locked by raising IRQL to both 
DPC/dispatch level and Synch level, on multiprocessor systems more is required, because each 
processor could, at the same time, raise IRQL and attempt to operate on the dispatcher database. 
(This is true for any systemwide structure accessed from high IRQL.) (See Chapter 3 for a general 
description of kernel synchronization and spinlocks.)  

Because on a multiprocessor system one processor might need to modify another processor’s 
per-CPU scheduling data structures (such as inserting a thread that would like to run on a certain 
processor), these structures are synchronized by using a new per-PRCB queued spinlock, which is 
held at IRQL SYNCH_LEVEL. (See Table 5-20 for the various values of SYNCH_LEVEL.) 
Thus, thread selection can occur while locking only an individual  processor’s PRCB, in contrast 
to doing this on Windows XP, where the systemwide dispatcher spinlock had to be held. 

  

There is also a per-CPU list of threads in the deferred ready state. These represent threads 
that are ready to run but have not yet been readied for execution; the actual ready operation has 
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been deferred to a more appropriate time. Because each processor manipulates only its own 
per-processor deferred ready list, this list is not synchronized by the PRCB spinlock. The deferred 
ready thread list is processed before exiting the thread dispatcher, before performing a context 
switch, and after processing a DPC. Threads on the deferred ready list are either dispatched 
immediately or are moved to the per-processor ready queue for their priority level. 

Note that the systemwide dispatcher spinlock still exists and is used, but it is held only for the 
time needed to modify systemwide state that might affect which thread runs next. For example, 
changes to synchronization objects (mutexes, events, and semaphores) and their wait queues 
require holding the dispatcher lock to prevent more than one processor from changing the state of 
such objects (and the consequential action of possibly readying threads for execution). Other 
examples include changing the priority of a thread, timer expiration, and swapping of thread 
kernel stacks. 

Thread context switching is also synchronized by using a finer-grained per-thread spinlock, 
whereas in Windows XP context switching was synchronized by holding a systemwide context 
swap spinlock. 

Hyperthreaded and Multicore Systems 

As described in the “Symmetric Multiprocessing” section in Chapter 2, Windows supports 
hyperthreaded and multicore multiprocessor systems in two primary ways: 

1. Logical processors as well as per-package cores do not count against physical processor 
licensing limits. For example, Windows Vista Home Basic, which has a licensed processor limit 
of 1, will use all four cores on a single processor system. 

2. When choosing a processor for a thread, if there is a physical processor with all logical 
processors idle, a logical processor from that physical processor will be selected, as opposed to 
choosing an idle logical processor on a physical processor that has another logical processor 
running a thread. 

EXPERIMENT: Viewing Hyperthreading Information 

You can examine the information Windows maintains for hyperthreaded processors using 
the !smt command in the kernel debugger. The following output is from a dualprocessor 
hyperthreaded Xeon system (four logical processors): 

1. lkd> !smt   

2. SMT Summary:   

3. ------------   

4. KeActiveProcessors: ****---------------------------- (0000000f)   

5. KiIdleSummary: -***---------------------------- (0000000e)   

6. No PRCB Set Master SMT Set #LP IAID   

7. 0 ffdff120 Master *-*----------------------------- (00000005) 2 00  

8. 1 f771f120 Master -*-*---------------------------- (0000000a) 2 06  

9. 2 f7727120 ffdff120 *-*----------------------------- (00000005) 2 01  

10. 3 f772f120 f771f120 -*-*---------------------------- (0000000a) 2 07  

11. Number of licensed physical processors: 2  
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Logical processors 0 and 1 are on separate physical processors (as indicated by the term 
“Master”). 

NUMA Systems 

Another type of multiprocessor system supported by Windows is one with a nonuniform 
memory access (NUMA) architecture. In a NUMA system, processors are grouped together in 
smaller units called nodes. Each node has its own processors and memory and is connected to the 
larger system through a cache-coherent interconnect bus. These systems are called “nonuniform” 
because each node has its own local high-speed memory. While any processor in any node can 
access all of memory, node-local memory is much faster to access. 

The kernel maintains information about each node in a NUMA system in a data structure 
called KNODE. The kernel variable KeNodeBlock is an array of pointers to the KNODE 
structures for each node. The format of the KNODE structure can be shown using the dt command 
in the kernel debugger, as shown here: 

1. lkd> dt nt!_knode   

2. nt!_KNODE   

3. +0x000 PagedPoolSListHead : _SLIST_HEADER   

4. +0x008 NonPagedPoolSListHead : [3] _SLIST_HEADER   

5. +0x020 PfnDereferenceSListHead : _SLIST_HEADER   

6. +0x028 ProcessorMask : Uint4B   

7. +0x02c Color : UChar   

8. +0x02d Seed : UChar   

9. +0x02e NodeNumber : UChar   

10. +0x02f Flags : _flags   

11. +0x030 MmShiftedColor : Uint4B   

12. +0x034 FreeCount : [2] Uint4B   

13. +0x03c PfnDeferredList : Ptr32 _SINGLE_LIST_ENTRY   

14. +0x040 CachedKernelStacks : _CACHED_KSTACK_LIST   

EXPERIMENT: Viewing NuMa Information 

You can examine the information Windows maintains for each node in a NUMA system 
using the !numa command in the kernel debugger. The following partial output is from a 
32-processor NUMA system by NEC with 4 processors per node: 

1. 21: kd> !numa   

2. NUMA Summary:   

3. ------------   

4. Number of NUMA nodes : 8  

5. Number of Processors : 32  

6. MmAvailablePages : 0x00F70D2C   

7. KeActiveProcessors : ********************************-------------------- 

8. (00000000ffffffff)   

9. NODE 0 (E00000008428AE00):   

10. ProcessorMask : ****----------------------------------------------------- 
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11. Color : 0x00000000  

12. MmShiftedColor : 0x00000000  

13. Seed : 0x00000000  

14. Zeroed Page Count: 0x00000000001CF330  

15. Free Page Count : 0x0000000000000000  

16. NODE 1 (E00001597A9A2200):   

17. ProcessorMask : ----****------------------------------------------------- 

18. Color : 0x00000001  

19. MmShiftedColor : 0x00000040  

20. Seed : 0x00000006  

21. Zeroed Page Count: 0x00000000001F77A0  

22. Free Page Count : 0x0000000000000004  

The following partial output is from a 64-processor NUMA system from Hewlett- 

Packard with 4 processors per node: 

1. 26: kd> !numa   

2. NUMA Summary:   

3. ------------   

4. Number of NUMA nodes : 16  

5. Number of Processors : 64  

6. MmAvailablePages : 0x03F55E67  

7. KeActiveProcessors : ****************************************************

************   

8. (ffffffffffffffff)   

9. NODE 0 (E000000084261900):   

10. ProcessorMask : ****----------------------------------------------------  

11. Color : 0x00000000  

12. MmShiftedColor : 0x00000000  

13. Seed : 0x00000001  

14. Zeroed Page Count: 0x00000000003F4430  

15. Free Page Count : 0x0000000000000000  

16. NODE 1 (E0000145FF992200):   

17. ProcessorMask : ----****------------------------------------------------- 

18. Color : 0x00000001  

19. MmShiftedColor : 0x00000040  

20. Seed : 0x00000007  

21. Zeroed Page Count: 0x00000000003ED59A   

22. Free Page Count : 0x0000000000000000  

Applications that want to gain the most performance out of NUMA systems can set the 
affinity mask to restrict a process to the processors in a specific node. This information can be 
obtained using the functions listed in Table 5-21. Functions that can alter thread affinity are listed 
in Table 5-13. 
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How the scheduling algorithms take into account NUMA systems will be covered in the 
upcoming section “Multiprocessor Thread-Scheduling Algorithms” (and the optimizations in the 
memory manager to take advantage of node-local memory are covered in Chapter 9).  

Affinity 

Each thread has an affinity mask that specifies the processors on which the thread is allowed 
to run. The thread affinity mask is inherited from the process affinity mask. By default, all 
processes (and therefore all threads) begin with an affinity mask that is equal to the set of active 
processors on the system—in other words, the system is free to schedule all threads on any 
available processor. 

However, to optimize throughput and/or partition workloads to a specific set of processors, 
applications can choose to change the affinity mask for a thread. This can be done at several 
levels: 

■ Calling the SetThreadAffinityMask function to set the affinity for an individual thread 

■ Calling the SetProcessAffinityMask function to set the affinity for all the threads in a 
process. Task Manager and Process Explorer provide a GUI to this function if you rightclick a 
process and choose Set Affinity. The Psexec tool (from Sysinternals) provides a command-line 
interface to this function. (See the –a switch.) 

■ By making a process a member of a job that has a jobwide affinity mask set using the 
SetInformationJobObject function (Jobs are described in the upcoming “Job Objects” section.) 

■ By specifying an affinity mask in the image header when compiling the application (For 
more information on the detailed format of Windows images, search for “Portable Executable and 
Common Object File Format Specification” on www.microsoft.com.) You can also set the 
“uniprocessor” flag for an image (at compile time). If this flag is set, the system chooses a single 
processor at process creation time and assigns that as the process affinity mask, starting with the 
first processor and then going round-robin across all the processors. For example, on a 
dual-processor system, the first time you run an image marked as uniprocessor, it is assigned to 
CPU 0; the second time, CPU 1; the third time, CPU 0; the fourth time, CPU 1; and so on. This 
flag can be useful as a temporary workaround for programs that have multithreaded 
synchronization bugs that, as a result of race conditions, surface on multiprocessor systems but 
that don’t occur on uniprocessor systems. (This has actually saved the authors of this book on two 
different occasions.) 

EXPERIMENT: Viewing and Changing Process affinity 

In this experiment, you will modify the affinity settings for a process and see that process 
affinity is inherited by new processes: 
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1. Run the command prompt (Cmd.exe). 

2. Run Task Manager or Process Explorer, and find the Cmd.exe process in the process list. 

3. Right-click the process, and select Affinity. A list of processors should be displayed. 

For example, on a dual-processor system you will see this: 

  

4. Select a subset of the available processors on the system, and click OK. The process’s 
threads are now restricted to run on the processors you just selected. 

5. Now run Notepad.exe from the command prompt (by typing Notepad.exe). 

6. Go back to Task Manager or Process Explorer and find the new Notepad process. 
Right-click it, and choose Affinity. You should see the same list of processors you chose for the 
command prompt process. This is because processes inherit their affinity settings from their 
parent. 

Windows won’t move a running thread that could run on a different processor from one CPU 
to a second processor to permit a thread with an affinity for the first processor to run on the first 
processor. For example, consider this scenario: CPU 0 is running a priority 8 thread that can run 
on any processor, and CPU 1 is running a priority 4 thread that can run on any processor. A 
priority 6 thread that can run on only CPU 0 becomes ready. What happens? 

Windows won’t move the priority 8 thread from CPU 0 to CPU 1 (preempting the priority 4 
thread) so that the priority 6 thread can run; the priority 6 thread has to wait. Therefore, changing 
the affinity mask for a process or a thread can result in threads getting less CPU time than they 
normally would, as Windows is restricted from running the thread on certain processors. 
Therefore, setting affinity should be done with extreme care—in most cases, it is optimal to let 
Windows decide which threads run where. 

Ideal and Last Processor 

Each thread has two CPU numbers stored in the kernel thread block: 

■ Ideal processor, or the preferred processor that this thread should run on 

■ Last processor, or the processor on which the thread last ran 

The ideal processor for a thread is chosen when a thread is created using a seed in the process 
block. The seed is incremented each time a thread is created so that the ideal processor for each 
new thread in the process will rotate through the available processors on the system. For example, 
the first thread in the first process on the system is assigned an ideal processor of 0. The second 
thread in that process is assigned an ideal processor of 1. However, the next process in the system 
has its first thread’s ideal processor set to 1, the second to 2, and so on. In that way, the threads 
within each process are spread evenly across the processors. 
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Note that this assumes the threads within a process are doing an equal amount of work. This 
is typically not the case in a multithreaded process, which normally has one or more housekeeping 
threads and then a number of worker threads. Therefore, a multithreaded application that wants to 
take full advantage of the platform might find it advantageous to specify the ideal processor 
numbers for its threads by using the SetThreadIdealProcessor function. 

On hyperthreaded systems, the next ideal processor is the first logical processor on the next 
physical processor. For example, on a dual-processor hyperthreaded system with four logical 
processors, if the ideal processor for the first thread is assigned to logical processor 0, the second 
thread would be assigned to logical processor 2, the third thread to logical processor 1, the fourth 
thread to logical process 3, and so forth. In this way, the threads are spread evenly across the 
physical processors. 

On NUMA systems, when a process is created, an ideal node for the process is selected. The 
first process is assigned to node 0, the second process to node 1, and so on. Then, the ideal 
processors for the threads in the process are chosen from the process’s ideal node. The ideal 
processor for the first thread in a process is assigned to the first processor in the node. As 
additional threads are created in processes with the same ideal node, the next processor is used for 
the next thread’s ideal processor, and so on. 

Dynamic Processor Addition and Replacement 

As we’ve seen, developers can fine-tune which threads are allowed to (and in the case of the 
ideal processor, should) run on which processor. This works fine on systems that have a constant 
number of processors during their run time (for example, desktop machines require shutting down 
the computer to make any sort of hardware changes to the processor or their count). 

Today’s server systems, however, cannot afford the downtime that CPU replacement or 
addition normally requires. In fact, one of the times when adding a CPU is required for a server is 
at times of high load that is above what the machine can support at its current level of performance. 
Having to shut down the server during a period of peak usage would defeat the purpose. To meet 
this requirement, the latest generation of server motherboards and systems support the addition of 
processors (as well as their replacement) while the machine is still running. The ACPI BIOS and 
related hardware on the machine have been specifically built to allow and be aware of this need, 
but operating system participation is required for full support. 

Dynamic processor support is provided through the HAL, which will notify the kernel of a 
new processor on the system through the function KeStartDynamicProcessor. This routine does 
similar work to that performed when the system detects more than one processor at startup and 
needs to initialize the structures related to them. When a dynamic processor is added, a variety of 
system components perform some additional work. For example, the memory manager allocates 
new pages and memory structures optimized for the CPU. It also initializes a new DPC kernel 
stack while the kernel initializes the Global Descriptor Table (GDT), the Interrupt Descriptor 
Table ( IDT), the processor control region (PCR), the processor control block (PRCB), and other 
related structures for the processor.  

Other executive parts of the kernel are also called, mostly to initialize the per-processor 
lookaside lists for the processor that was added. For example, the I/O manager, the executive 
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lookaside list code, the cache manager, and the object manager all use per-processor lookaside 
lists for their frequently allocated structures. 

Finally, the kernel initializes threaded DPC support for the processor and adjusts exported 
kernel variables to report the new processor. Different memory manager masks and process seeds 
based on processor counts are also updated, and processor features need to be updated for the new 
processor to match the rest of the system (for example, enabling virtualization support on the 
newly added processor). The initialization sequence completes with the notification to the 
Windows Hardware Error Architecture (WHEA) component that a new processor is online. 

The HAL is also involved in this process. It is called once to start the dynamic processor after 
the kernel is aware of it, and it is called again after the kernel has finished initialization of the 
processor. However, these notifications and callbacks only make the kernel aware and respond to 
processor changes. Although an additional processor increases the throughput of the kernel, it 
does nothing to help drivers. 

To handle drivers, the system has a new default executive callback, the processor add 
callback, that drivers can register with for notifications. Similar to the callbacks that notify drivers 
of power state or system time changes, this callback allows driver code to, for example, create a 
new worker thread if desirable so that it can handle more work at the same time.  

Once drivers are notified, the final kernel component called is the Plug and Play manager, 
which adds the processor to the system’s device node and rebalances interrupts so that the new 
processor can handle interrupts that were already registered for other processors. Unfortunately, 
until now, CPU-hungry applications have still been left out of this process, but Windows Server 
2008 and Windows Vista Service Pack 1 have improved the process to allow applications to be 
able to take advantage of newer processors as well.  

However, a sudden change of affinity can have potentially breaking changes for a running 
application (especially when going from a single-processor to a multiprocessor environment) 
through the appearance of potential race conditions or simply misdistribution of work (since the 
process might have calculated the perfect ratios at startup, based on the number of CPUs it was 
aware of). As a result, applications do not take advantage of a dynamically added processor by 
default—they must request it. 

The Windows APIs SetProcessAffinityUpdateMode and QueryProcessAffinityMode (which 
use the undocumented NtSet/QueryInformationProcess system call) tell the process manager that 
these applications should have their affinity updated (by setting the AffinityUpdateEnable flag in 
EPROCESS), or that they do not want to deal with affinity updates (by setting the 
AffinityPermanent flag in EPROCESS). Once an application has told the system that its affinity is 
permanent, it cannot later change its mind and request affinity updates, so this is a onetime 
change. 

As part of KeStartDynamicProcessor, a new step has been added after interrupts are 
rebalanced, which is to call the process manager to perform affinity updates through 
PsUpdateActiveProcessAffinity. Some Windows core processes and services already have affinity 
updates enabled, while third-party software will need to be recompiled to take advantage of the 
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new API call. The System process, Svchost processes, and Smss are all compatible with dynamic 
processor addition. 

5.7.14 Multiprocessor Thread-Scheduling Algorithms 

Now that we’ve described the types of multiprocessor systems supported by Windows as 
well as the thread affinity and ideal processor settings, we’re ready to examine how this 
information is used to determine which threads run where. There are two basic decisions to 
describe: 

■ Choosing a processor for a thread that wants to run 

■ Choosing a thread on a processor that needs something to do 

Choosing a Processor for a Thread When There Are Idle Processors  

When a thread becomes ready to run, Windows first tries to schedule the thread to run on an 
idle processor. If there is a choice of idle processors, preference is given first to the thread’s ideal 
processor, then to the thread’s previous processor, and then to the currently executing processor 
(that is, the CPU on which the scheduling code is running). 

To select the best idle processor, Windows starts with the set of idle processors that the 
thread’s affinity mask permits it to run on. If the system is NUMA and there are idle CPUs in the 
node containing the thread’s ideal processor, the list of idle processors is reduced to that set. If this 
eliminates all idle processors, the reduction is not done. Next, if the system is running 
hyperthreaded processors and there is a physical processor with all logical processors idle, the list 
of idle processors is reduced to that set. If that results in an empty set of processors, the reduction 
is not done. 

If the current processor (the processor trying to determine what to do with the thread that 
wants to run) is in the remaining idle processor set, the thread is scheduled on it. If the current 
processor is not in the remaining set of idle processors, it is a hyperthreaded system, and there is 
an idle logical processor on the physical processor containing the ideal processor for the thread, 
the idle processors are reduced to that set. If not, the system checks whether there are any idle 
logical processors on the physical processor containing the thread’s previous processor. If that set 
is nonzero, the idle processors are reduced to that list. Finally, the lowest numbered CPU in the 
remaining set is selected as the processor to run the thread on. 

Once a processor has been selected for the thread to run on, that thread is put in the standby 
state and the idle processor’s PRCB is updated to point to this thread. When the idle loop on that 
processor runs, it will see that a thread has been selected to run and will dispatch that thread. 

Choosing a Processor for a Thread When There Are No Idle Processors 

If there are no idle processors when a thread wants to run, Windows compares the priority of 
the thread running (or the one in the standby state) on the thread’s ideal processor to determine 
whether it should preempt that thread. 
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If the thread’s ideal processor already has a thread selected to run next (waiting in the 
standby state to be scheduled) and that thread’s priority is less than the priority of the thread being 
readied for execution, the new thread preempts that first thread out of the standby state and 
becomes the next thread for that CPU. If there is already a thread running on that CPU, Windows 
checks whether the priority of the currently running thread is less than the thread being readied for 
execution. If so, the currently running thread is marked to be preempted and Windows queues an 
interprocessor interrupt to the target processor to preempt the currently running thread in favor of 
this new thread. 

Note Windows doesn’t look at the priority of the current and next threads on all the 
CPUs—just on the one CPU selected as just described. If no thread can be preempted on that one 
CPU, the new thread is put in the ready queue for its priority level, where it awaits its turn to get 
scheduled. Therefore, Windows does not guarantee to be running all the highest-priority threads, 
but it will always run the highest-priority thread.  

If the ready thread cannot be run right away, it is moved into the ready state where it awaits 
its turn to run. Note that threads are always put on their ideal processor’s per-processor ready 
queues. 

Selecting a Thread to Run on a Specific CPU 

Because each processor has its own list of threads waiting to run on that processor, when a 
thread finishes running, the processor can simply check its per-processor ready queue for the next 
thread to run. If the per-processor ready queues are empty, the idle thread for that processor is 
scheduled. The idle thread then begins scanning other processor’s ready queues for threads it can 
run. Note that on NUMA systems, the idle thread first looks at processors on its node before 
looking at other nodes’ processors. 

5.7.15 CPU Rate Limits 

As part of the new hard quota management system added in Windows Vista (which builds on 
previous quota support present since the first version of Windows NT, but adds hard limits instead 
of soft hints), support for limiting CPU usage was added to the system in three different ways: 
per-session, per-user, or per-system. Unfortunately, information on enabling these new limits has 
not yet been documented, and no tool that is part of the operating system allows you to set these 
limits: you must modify the registry settings manually. Because all the quotas—save one—are 
memory quotas, we will cover those in Chapter 9, which deals with the memory manager, and 
focus our attention on the CPU rate limit.  

The new quota system can be accessed through the registry key 
HKLM\SYSTEM\Current-ControlSet\Control\Session Manager\QuotaSystem, as well as through 
the standard NtSetInformationProcess system call. CPU rate limits can therefore be set in one of 
three ways: 

■ By creating a new value called CpuRateLimit and entering the rate information. 
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■ By creating a new key with the security ID (SID) of the account you want to limit, and 
creating a CpuRateLimit value inside that key. 

■ By calling NtSetInformationProcess and giving it the process handle of the process to limit 
and the CPU rate limiting information. 

In all three cases, the CPU rate limit data is not a straightforward value; it is based on a 
compressed bitfield, documented in the WDK as part of the RATE_QUOTA_LIMIT structure. 
The bottom four bits define the rate phase, which can be expressed either as one, two, or three 
seconds—this value defines how often the rate limiting should be applied and is called the 
PS_RATE_PHASE. The rest of the bits are used for the actual rate, as a value representing a 
percentage of maximum CPU usage. Because any number from 0 to 100 can be represented with 
only 7 bits, the rest of the bits are unused. Therefore, a rate limit of 40 percent every 2 seconds 
would be defined by the value 0x282, or 101000 0010 in binary.  

The process manager, which is responsible for enforcing the CPU rate limit, uses a variety of 
system mechanisms to do its job. First of all, rate limiting is able to reliably work because of the 
CPU cycle count improvements discussed earlier, which allow the process manager to accurately 
determine how much CPU time a process has taken and know whether the limit should be 
enforced. It then uses a combination of DPC and APC routines to throttle down DPC and APC 
CPU usage, which are outside the direct control of user-mode developers but still result in CPU 
usage in the system (in the case of a systemwide CPU rate limit). 

Finally, the main mechanism through which rate limiting works is by creating an artificial 
wait on a kernel gate object (making the thread uniquely bound to this object and putting it in a 
wait state, which does not consume CPU cycles). This mechanism operates through the normal 
routine of an APC object queued to the thread or threads inside the process currently responsible 
for the work. The gate is signaled by an internal worker thread inside the process manager 
responsible for replenishment of the CPU usage, which is queued by a DPC responsible for 
replenishing systemwide CPU usage requests. 

5.8 Job Objects 

A job object is a nameable, securable, shareable kernel object that allows control of one or 
more processes as a group. A job object’s basic function is to allow groups of processes to be 
managed and manipulated as a unit. A process can be a member of only one job object. By default, 
its association with the job object can’t be broken and all processes created by the process and its 
descendents are associated with the same job object as well. The job object also records basic 
accounting information for all processes associated with the job and for all processes that were 
associated with the job but have since terminated. Table 5-22 lists the Windows functions to create 
and manipulate job objects. 
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The following are some of the CPU-related and memory-related limits you can specify for a 
job: 

■ Maximum number of active processes Limits the number of concurrently existing 
processes in the job. 

■ Jobwide user-mode CPU time limit Limits the maximum amount of user-mode CPU time 
that the processes in the job can consume (including processes that have run and exited). Once this 
limit is reached, by default all the processes in the job will be terminated with an error code and no 
new processes can be created in the job (unless the limit is reset). The job object is signaled, so 
any threads waiting for the job will be released. You can change this default behavior with a call 
to EndOfJobTimeAction. 

■ Per-process user-mode CPU time limit Allows each process in the job to accumulate only a 
fixed maximum amount of user-mode CPU time. When the maximum is reached, the process 
terminates (with no chance to clean up). 

■ Job scheduling class Sets the length of the time slice (or quantum) for threads in processes 
in the job. This setting applies only to systems running with long, fixed quantums (the default for 
Windows Server systems). The value of the job-scheduling class determines the quantum as 
shown here: 

  

■ Job processor affinity Sets the processor affinity mask for each process in the job. 
(Individual threads can alter their affinity to any subset of the job affinity, but processes can’t alter 
their process affinity setting.) 

■ Job process priority class Sets the priority class for each process in the job. Threads can’t 
increase their priority relative to the class (as they normally can). Attempts to increase thread 
priority are ignored. (No error is returned on calls to SetThreadPriority, but the increase doesn’t 
occur.) 



 416

■ Default working set minimum and maximum Defines the specified working set minimum 
and maximum for each process in the job. (This setting isn’t jobwide—each process has its own 
working set with the same minimum and maximum values.) 

■ Process and job committed virtual memory limit Defines the maximum amount of virtual 
address space that can be committed by either a single process or the entire job.  

Jobs can also be set to queue an entry to an I/O completion port object, which other threads 
might be waiting for, with the Windows  GetQueuedCompletionStatus function. 

You can also place security limits on processes in a job. You can set a job so that each 
process runs under the same jobwide access token. You can then create a job to restrict processes 
from impersonating or creating processes that have access tokens that contain the local 
administrator’s group. In addition, you can apply security filters so that when threads in processes 
contained in a job impersonate client threads, certain privileges and security IDs (SIDs) can be 
eliminated from the impersonation token. 

Finally, you can also place user-interface limits on processes in a job. Such limits include 
being able to restrict processes from opening handles to windows owned by threads outside the 
job, reading and/or writing to the clipboard, and changing the many user-interface system 
parameters via the Windows SystemParametersInfo function.  

EXPERIMENT: Viewing the Job Object 

You can view named job objects with the Performance tool. (See the Job Object and Job 
Object Details performance objects.) You can view unnamed jobs with the kernel debugger !job or 
dt nt!_ejob commands. 

To see whether a process is associated with a job, you can use the kernel debugger !process 
command or Process Explorer. Follow these steps to create and view an unnamed job object: 

1. From the command prompt, use the runas command to create a process running the 
command prompt (Cmd.exe). For example, type runas /user:\< username> cmd. You’ll be 
prompted for your password. Enter your password, and a Command Prompt window will appear. 
The Windows service that executes runas commands creates an unnamed job to contain all 
processes (so that it can terminate these processes at logoff time). 

2. From the command prompt, run Notepad.exe. 

3. Then run Process Explorer and notice that the Cmd.exe and Notepad.exe processes are 
highlighted as part of a job. (You can configure the colors used to highlight processes that are 
members of a job by clicking Options, Configure Highlighting.) Here is a screen shot showing 
these two processes: 
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4. Double-click either the Cmd.exe or Notepad.exe process to bring up the process properties. 
You will see a Job tab in the process properties dialog box. 

5. Click the Job tab to view the details about the job. In this case, there are no quotas 
associated with the job, but there are two member processes: 

  

6. Now run the kernel debugger on the live system, display the process list with !process, and 
find the recently created process running Cmd.exe. Then display the process block by 
using !process , find the address of the job object, and finally display the job object with the !job 
command. Here’s some partial debugger output of these commands on a live system: 

1. lkd> !process 0 0  

2. **** NT ACTIVE PROCESS DUMP ****   

3. .   

4. .   

5. PROCESS 8567b758 SessionId: 0 Cid: 0fc4 Peb: 7ffdf000 ParentCid: 00b0  

6. DirBase: 1b3fb000 ObjectTable: e18dd7d0 HandleCount: 19.   

7. Image: Cmd.exe   

8. PROCESS 856561a0 SessionId: 0 Cid: 0d70 Peb: 7ffdf000 ParentCid: 0fc4  

9. DirBase: 2e341000 ObjectTable: e19437c8 HandleCount: 16.   

10. Image: Notepad.exe   

11. lkd> !process 0fc4  

12. Searching for Process with Cid == fc4  

13. PROCESS 8567b758 SessionId: 0 Cid: 0fc4 Peb: 7ffdf000 ParentCid: 00b0  

14. DirBase: 1b3fb000 ObjectTable: e18dd7d0 HandleCount: 19.   

15. Image: Cmd.exe   

16. BasePriority 8  

17. .   

18. .   

19. Job 85557988  

20. lkd> !job 85557988  
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21. Job at 85557988  

22. TotalPageFaultCount 0  

23. TotalProcesses 2  

24. ActiveProcesses 2  

25. TotalTerminatedProcesses 0  

26. LimitFlags 0  

27. MinimumWorkingSetSize 0  

28. MaximumWorkingSetSize 0  

29. ActiveProcessLimit 0  

30. PriorityClass 0  

31. UIRestrictionsClass 0  

32. SecurityLimitFlags 0  

33. Token 00000000  

7. Finally, use the dt command to display the job object and notice the additional fields 
shown about the job: 

1. lkd> dt nt!_ejob 85557988  

2. nt!_EJOB   

3. +0x000 Event : _KEVENT   

4. +0x010 JobLinks : _LIST_ENTRY [ 0x81d09478 - 0x87f55030 ]   

5. +0x018 ProcessListHead : _LIST_ENTRY [ 0x87a08dd4 - 0x8679284c ]   

6. +0x020 JobLock : _ERESOURCE   

7. +0x058 TotalUserTime : _LARGE_INTEGER 0x0  

8. +0x060 TotalKernelTime : _LARGE_INTEGER 0x0  

9. +0x068 ThisPeriodTotalUserTime : _LARGE_INTEGER 0x0  

10. +0x070 ThisPeriodTotalKernelTime : _LARGE_INTEGER 0x0  

11. +0x078 TotalPageFaultCount : 0  

12. +0x07c TotalProcesses : 2  

13. +0x080 ActiveProcesses : 2  

14. +0x084 TotalTerminatedProcesses : 0  

15. +0x088 PerProcessUserTimeLimit : _LARGE_INTEGER 0x0  

16. +0x090 PerJobUserTimeLimit : _LARGE_INTEGER 0x0  

17. +0x098 LimitFlags : 0  

18. +0x09c MinimumWorkingSetSize : 0  

19. +0x0a0 MaximumWorkingSetSize : 0  

20. +0x0a4 ActiveProcessLimit : 0  

21. +0x0a8 Affinity : 0  

22. +0x0ac PriorityClass : 0 ''  

23. +0x0b0 AccessState : (null)   

24. +0x0b4 UIRestrictionsClass : 0  

25. +0x0b8 EndOfJobTimeAction : 0  

26. +0x0bc CompletionPort : 0x87e3d2e8  

27. +0x0c0 CompletionKey : 0x07a89508  

28. +0x0c4 SessionId : 1  
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29. +0x0c8 SchedulingClass : 5  

30. +0x0d0 ReadOperationCount : 0  

31. +0x0d8 WriteOperationCount : 0  

32. +0x0e0 OtherOperationCount : 0  

33. +0x0e8 ReadTransferCount : 0  

34. +0x0f0 WriteTransferCount : 0  

35. +0x0f8 OtherTransferCount : 0  

36. +0x100 ProcessMemoryLimit : 0  

37. +0x104 JobMemoryLimit : 0  

38. +0x108 PeakProcessMemoryUsed : 0x19e   

39. +0x10c PeakJobMemoryUsed : 0x2ed   

40. +0x110 CurrentJobMemoryUsed : 0x2ed   

41. +0x114 MemoryLimitsLock : _EX_PUSH_LOCK   

42. +0x118 JobSetLinks : _LIST_ENTRY [ 0x8575cff0 - 0x8575cff0 ]   

43. +0x120 MemberLevel : 0  

44. +0x124 JobFlags : 0  

5.9 Conclusion 

In this chapter, we’ve examined the structure of processes and threads and jobs, seen how 
they are created, and looked at how Windows decides which threads should run and for how long. 

In the next chapter we’ll look at a part of the system that’s received more attention in the last 
few years than ever before, Windows security. 
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6. Security 

Preventing unauthorized access to sensitive data is essential in any environment in which 
multiple users have access to the same physical or network resources. An operating system, as 
well as individual users, must be able to protect files, memory, and configuration settings from 
unwanted viewing and modification. Operating system security includes obvious mechanisms 
such as accounts, passwords, and file protection. It also includes less obvious mechanisms, such as 
protecting the operating system from corruption, preventing less privileged users from performing 
actions (rebooting the computer, for example), and not allowing user programs to adversely affect 
the programs of other users or the operating system.  

In this chapter, we explain how every aspect of the design and implementation of Windows 
was influenced in some way by the stringent requirements of providing robust security. 

6.1 Security Ratings 

Having software, including operating systems, rated against well-defined standards helps the 
government, corporations, and home users protect proprietary and personal data stored in 
computer systems. The current security rating standard used by the United States and many other 
countries is the Common Criteria (CC). To understand the security capabilities designed into 
Windows, however, it’s useful to know the history of the security ratings system that influenced 
the design of Windows, the Trusted Computer System Evaluation Criteria (TCSEC).  

Trusted Computer System Evaluation Criteria 

The National Computer Security Center (NCSC, at www.radium.ncsc.mil/tpep/) was 
established in 1981 as part of the U.S. Department of Defense’s (DoD) National Security Agency 
(NSA). One goal of the NCSC was to create a range of security ratings, listed in Table 6-1, to be 
used to indicate the degree of protection commercial operating systems, network components, and 
trusted applications offer. These security ratings, which can be found at 
www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html, were defined in 1983 and are 
commonly referred to as “the Orange Book.” 

The TCSEC standard consists of “levels of trust” ratings, where higher levels build on lower 
levels by adding more rigorous protection and validation requirements. No operating system meets 
the A1, or “Verified Design,” rating. Although a few operating systems have earned one of the 
B-level ratings, C2 is considered sufficient and the highest rating practical for a general-purpose 
operating system. 
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In July 1995, Windows NT 3.5 (Workstation and Server) with Service Pack 3 was the first 
version of Windows NT to earn the C2 rating. In March 1999, Windows NT 4 with Service Pack 3 
achieved an E3 rating from the U.K. government’s Information Technology Security (ITSEC) 
organization, a rating equivalent to a U.S. C2 rating. In November 1999, Windows NT 4 with 
Service Pack 6a earned a C2 rating in both stand-alone and networked configurations. 

The following were the key requirements for a C2 security rating, and they are still 
considered the core requirements for any secure operating system: 

■ A secure logon facility, which requires that users can be uniquely identified and that they 
must be granted access to the computer only after they have been authenticated in some way. 

■ Discretionary access control, which allows the owner of a resource to determine who can 
access the resource and what they can do with it. The owner grants rights that permit various kinds 
of access to a user or to a group of users. 

■ Security auditing, which affords the ability to detect and record security-related events or 
any attempts to create, access, or delete system resources. Logon identifiers record the identities of 
all users, making it easy to trace anyone who performs an unauthorized action. 

■ Object reuse protection, which prevents users from seeing data that another user has 
deleted or from accessing memory that another user previously used and then released. For 
example, in some operating systems, it’s possible to create a new file of a certain length and then 
examine the contents of the file to see data that happens to have occupied the location on the disk 
where the file is allocated. This data might be sensitive information that was stored in another 
user’s file but had been deleted. Object reuse protection prevents this potential security hole by 
initializing all objects, including files and memory, before they are allocated to a user.  

Windows also meets two requirements of B-level security: 

■ Trusted path functionality, which prevents Trojan horse programs from being able to 
intercept users’ names and passwords as they try to log on. The trusted path functionality in 
Windows comes in the form of its Ctrl+Alt+Delete logon-attention sequence, which cannot be 
intercepted by nonprivileged applications. This sequence of keystrokes, which is also known as 
the secure attention sequence (SAS), always pops up a logon dialog box, so would-be Trojan 
horses can easily be recognized. A Trojan horse presenting a fake logon dialog box will be 
bypassed when the SAS is entered. 

■ Trusted facility management, which requires support for separate account roles for 
administrative functions. For example, separate accounts are provided for administration 
(Administrators), user accounts charged with backing up the computer, and standard users. 



 422

Windows meets all of these requirements through its security subsystem and related 
components. 

The Common Criteria 

In January 1996, the United States, United Kingdom, Germany, France, Canada, and the 
Netherlands released the jointly developed Common Criteria for Information Technology Security 
Evaluation (CCITSE) security evaluation specification. CCITSE, which is usually referred to as 
the Common Criteria (CC), is the recognized multinational standard for product security 
evaluation. The CC home page is at www.niap-ccevs.org/cc-scheme/. 

The CC is more flexible than the TCSEC trust ratings and has a structure closer to the ITSEC 
standard than to the TCSEC standard. The CC includes the concept of a Protection Profile (PP), 
used to collect security requirements into easily specified and compared sets, and the concept of a 
Security Target (ST), which contains a set of security requirements that can be made by reference 
to a PP. 

Windows Server 2003 SP1 was evaluated as meeting the requirements of the Controlled 
Access PP, which is the equivalent of TCSEC C2 rating, and additional CC functional and 
assurance requirements in September of 2006. Details of its conformance can be found at 
www.niap-ccevs.org/cc-scheme/vpl; specifically, the additional requirements satisfied by 
Windows Server 2003 SP1 can be found in the certified Windows Server 2003/XP Common 
Criteria Security Target at www.niap-ccevs.org/cc-scheme/st/st_vid10151-st.pdf. 

6.2 Security System Components 

These are the core components and databases that implement Windows security: 

■ Security reference monitor (SRM) A component in the Windows executive 
(%SystemRoot%\System32\Ntoskrnl.exe) that is responsible for defining the access token data 
structure to represent a security context, performing security access checks on objects, 
manipulating privileges (user rights), and generating any resulting security audit messages. 

■ Local Security Authority subsystem (Lsass) A user-mode process running the image 
%SystemRoot%\System32\Lsass.exe that is responsible for the local system security policy (such 
as which users are allowed to log on to the machine, password policies, privileges granted to users 
and groups, and the system security auditing settings), user authentication, and sending security 
audit messages to the Event Log. The Local Security Authority service 
(Lsasrv—%SystemRoot%\System32\Lsasrv.dll), a library that Lsass loads, implements most of 
this functionality. 

■ Lsass policy database A database that contains the local system security policy settings. 
This database is stored in the registry under HKLM\SECURITY. It includes such information as 
what domains are entrusted to authenticate logon attempts, who has permission to access the 
system and how (interactive, network, and service logons), who is assigned which privileges, and 
what kind of security auditing is to be performed. The Lsass policy database also stores “secrets” 
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that include logon information used for cached domain logons and Windows service user-account 
logons. (See Chapter 4 for more information on Windows services.) 

■ Security Accounts Manager (SAM) service A set of subroutines responsible for managing 
the database that contains the user names and groups defined on the local machine. The SAM 
service, which is implemented as %SystemRoot%\System32\Samsrv.dll, runs in the Lsass process. 

■ SAM database A database that on systems not functioning as domain controllers contains 
the defined local users and groups, along with their passwords and other attributes. On domain 
controllers, the SAM stores the system’s administrator recovery account definition and password. 
This database is stored in the registry under HKLM\SAM. 

■ Active Directory A directory service that contains a database that stores information about 
objects in a domain. A domain is a collection of computers and their associated security groups 
that are managed as a single entity. Active Directory stores information about the objects in the 
domain, including users, groups, and computers. Password information and privileges for domain 
users and groups are stored in Active Directory, which is replicated across the computers that are 
designated as domain controllers of the domain. The Active Directory server, implemented as 
%SystemRoot%\System32\Ntdsa.dll, runs in the Lsass process. For more information on Active 
Directory, see Chapter 12. 

■ Authentication packages These include dynamic-link libraries (DLLs) that run both in the 
context of the Lsass process and client processes and that implement Windows authentication 
policy. An authentication DLL is responsible for checking whether a given user name and 
password match, and if so, returning to the Lsass information detailing the user’s security identity, 
which Lsass uses to generate a token. 

■ Interactive logon manager (Winlogon) A user-mode process running 
%System-Root%\System32\Winlogon.exe that is responsible for responding to the SAS and for 
managing interactive logon sessions. Winlogon creates a user’s first process when the user logs on, 
for example. 

■ Logon user interface (LogonUI) A user-mode process that presents users with the user 
interface they can use to authenticate themselves on the system. Uses credential providers to query 
user credentials through various methods. 

■ Credential providers (CPs) In-process COM objects that run in the LogonUI process 
(started on demand by Winlogon when the SAS is performed) and used to obtain a user’s name 
and password, smartcard PIN, or biometric data (such as a fingerprint). The standard CPs are 
%SystemRoot%\System32\authui.dll and 
%SystemRoot%\System32\SmartcardCredentialProvider.dll 

■ Network logon service (Netlogon) A Windows service 
(%SystemRoot%\System32\Netlogon.dll) that sets up the secure channel to a domain controller, 
over which security requests—such as an interactive logon (if the domain controller is running 
Windows NT 4) or LAN Manager and NT LAN Manager (v1 and v2) authentication 
validation—are sent. 
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■ Kernel Security Device Driver (KSecDD) A kernel-mode library of functions that 
implement the local procedure call (LPC) interfaces that other kernel-mode security components, 
including the Encrypting File System (EFS), use to communicate with Lsass in user mode. 
KSecDD is located in %SystemRoot%\System32\Drivers\Ksecdd.sys. 

Figure 6-1 shows the relationships among some of these components and the databases they 
manage. 

  

EXPERIMENT: looking inside HKlM\SaM and HKlM\Security 

The security descriptors associated with the SAM and Security keys in the registry prevent 
access by any account other than the local system account. One way to gain access to these keys 
for exploration is to reset their security, but that can weaken the system’s security. Another way is 
to execute Regedit.exe while running as the local system account, and PsExec from Windows 
Sysinternals (www.microsoft.com/technet/sysinternals) supports an option that enables you to 
launch processes in the local system account. Run Regedit using the PsExec command, shown 
below, to gain access to the SAM and Security databases without disturbing their security settings:  

1. C:\>psexec –s –i –d c:\windows\regedit.exe  
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The SRM, which runs in kernel mode, and Lsass, which runs in user mode, communicate 
using the ALPC facility described in Chapter 3. During system initialization, the SRM creates a 
port, named SeRmCommandPort, to which Lsass connects. When the Lsass process starts, it 
creates an ALPC port named SeLsaCommandPort. The SRM connects to this port, resulting in the 
creation of private communication ports. The SRM creates a shared memory section for messages 
longer than 256 bytes, passing a handle in the connect call. Once the SRM and Lsass connect to 
each other during system initialization, they no longer listen on their respective connect ports. 
Therefore, a later user process has no way to connect successfully to either of these ports for 
malicious purposes—the connect request will never complete. 

Figure 6-2 shows the communication paths as they exist after system initialization. 

 

6.3 Protecting Objects 

Object protection and access logging is the essence of discretionary access control and 
auditing. The objects that can be protected on Windows include files, devices, mailslots, pipes 
(named and anonymous), jobs, processes, threads, events, keyed events, event pairs, mutexes, 
semaphores, shared memory sections, I/O completion ports, LPC ports, waitable timers, access 
tokens, volumes, window stations, desktops, network shares, services, registry keys, printers, and 
Active Directory objects.  
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Because system resources that are exported to user mode (and hence require security 
validation) are implemented as objects in kernel mode, the Windows object manager plays a key 
role in enforcing object security. (For more information on the object manager, see Chapter 3.) To 
control who can manipulate an object, the security system must first be sure of each user’s identity. 
This need to guarantee the user’s identity is the reason that Windows requires authenticated logon 
before accessing any system resources. When a process requests a handle to an object, the object 
manager and the security system use the caller’s security identification to determine whether the 
caller should be assigned a handle that grants the process access to the object it desires. 

As discussed later in this chapter, a thread can assume a different security context than that of 
its process. This mechanism is called impersonation, and when a thread is impersonating, security 
validation mechanisms use the thread’s security context instead of that of the thread’s process. 
When a thread isn’t impersonating, security validation falls back on using the security context of 
the thread’s owning process. It’s important to keep in mind that all the threads in a process share 
the same handle table, so when a thread opens an object—even if it’s impersonating—all the 
threads of the process have access to the object.  

Sometimes, validating the identity of a user isn’t enough for the system to grant access to a 
resource that should be accessible by the account. Logically, one can think of a clear distinction 
between a service running the Alice account, and an unknown application that Alice downloaded 
while browsing the Internet. Windows achieves this kind of intrauser isolation with the Windows 
integrity mechanism, which implements integrity levels. The Windows integrity mechanism is 
used by User Account Control (UAC) elevations, Protected Mode Internet Explorer (PMIE), and 
User Interface Privilege Isolation (UIPI). 

6.3.1 Access Checks 

The Windows security model requires that a thread specify up front, at the time that it opens 
an object, what types of actions it wants to perform on the object. The object manager calls the 
SRM to perform access checks based on a thread’s desired access, and if the access is granted, a 
handle is assigned to the thread’s process with which the thread (or other threads in the process) 
can perform further operations on the object. As explained in Chapter 3, the object manager 
records the access permissions granted for a handle in the process’s handle table.  

One event that causes the object manager to perform security access validation is when a 
process opens an existing object using a name. When an object is opened by name, the object 
manager performs a lookup of the specified object in the object manager namespace. If the object 
isn’t located in a secondary namespace, such as the configuration manager’s registry namespace or 
a file system driver’s file system namespace, the object manager calls the internal function 
ObpCreateHandle once it locates the object. As its name implies, ObpCreateHandle creates an 
entry in the process’s handle table that becomes associated with the object. ObpCreateHandle first 
calls ObpIncrementHandleCount to see if the thread has permission to access the object, and if the 
thread does, ObpCreateHandle calls the executive function ExCreateHandle to create the entry in 
the process handle table. ObpIncrementHandleCount calls ObCheckObjectAccess to carry out the 
security access check.  
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ObpIncrementHandleCount passes ObCheckObjectAccess the security credentials of the 
thread opening the object, the types of access to the object that the thread is requesting (read, write, 
delete, and so forth), and a pointer to the object. ObCheckObjectAccess first locks the object’s 
security descriptor and the security context of the thread. The object security lock prevents another 
thread in the system from changing the object’s security while the access check is in progress. The 
lock on the thread’s security context prevents another thread of that process or a different process 
from altering the security identity of the thread while security validation is in progress. 
ObCheckObjectAccess then calls the object’s security method to obtain the security settings of the 
object. (See Chapter 3 for a description of object methods.) The call to the security method might 
invoke a function in a different executive component. However, many executive objects rely on 
the system’s default security management support. 

When an executive component defining an object doesn’t want to override the SRM’s default 
security policy, it marks the object type as having default security. Whenever the SRM calls an 
object’s security method, it first checks to see whether the object has default security. An object 
with default security stores its security information in its header, and its security method is 
SeDefaultObjectMethod. An object that doesn’t rely on default security must manage its own 
security information and supply a specific security method. Objects that rely on default security 
include mutexes, events, and semaphores. A file object is an example of an object that overrides 
default security. The I/O manager, which defines the file object type, has the file system driver on 
which a file resides manage (or choose not to implement) the security for its files. Thus, when the 
system queries the security on a file object that represents a file on an NTFS volume, the I/O 
manager file object security method retrieves the file’s security using the NTFS file system driver. 
Note, however, that ObCheckObjectAccess isn’t executed when files are opened, because they 
reside in secondary namespaces; the system invokes a file object’s security method only when a 
thread explicitly queries or sets the security on a file (with the Windows SetFileSecurity or 
GetFileSecurity functions, for example). 

After obtaining an object’s security information, ObCheckObjectAccess invokes the SRM 
function SeAccessCheck. SeAccessCheck is one of the functions at the heart of the Windows 
security model. Among the input parameters SeAccessCheck accepts are the object’s security 
information, the security identity of the thread as captured by ObCheckObjectAccess, and the 
access that the thread is requesting. SeAccessCheck returns True or False, depending on whether 
the thread is granted the access it requested to the object. 

Another event that causes the object manager to execute access validation is when a process 
references an object using an existing handle. Such references often occur indirectly, as when a 
process calls on a Windows API to manipulate an object and passes an object handle. For example, 
a thread opening a file can request read permission to a file. If the thread has permission to access 
the object in this way, as dictated by its security context and the security settings of the file, the 
object manager creates a handle—representing the file—in the handle table of the thread’s process. 
The accesses the process is granted through the handle are stored with the handle by the object 
manager. 

Subsequently, the thread could attempt to write to the file using the WriteFile Windows 
function, passing the file’s handle as a parameter. The system service NtWriteFile, which 
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WriteFile calls via Ntdll.dll, uses the object manager function ObReferenceObjectByHandle to 
obtain a pointer to the file object from the handle. ObReferenceObjectByHandle accepts the 
access that the caller wants from the object as a parameter. After finding the handle entry in the 
process’s handle table, ObReferenceObjectByHandle compares the access being requested with 
the access granted at the time the file was opened. In this example, ObReferenceObjectByHandle 
will indicate that the write operation should fail because the caller didn’t obtain write access when 
the file was opened. 

The Windows security functions also enable Windows applications to define their own 
private objects and to call on the services of the SRM to enforce the Windows security model on 
those objects. Many kernel-mode functions that the object manager and other executive 
components use to protect their own objects are exported as Windows user-mode APIs. The 
user-mode equivalent of SeAccessCheck is AccessCheck, for example. Windows applications can 
therefore leverage the flexibility of the security model and transparently integrate with the 
authentication and administrative interfaces that are present in Windows. 

The essence of the SRM’s security model is an equation that takes three inputs: the security 
identity of a thread, the access that the thread wants to an object, and the security settings of the 
object. The output is either “yes” or “no” and indicates whether or not the security model grants 
the thread the access it desires. The following sections describe the inputs in more detail and then 
document the model’s access validation algorithm. 

Security Identifiers (SIDs) 

Instead of using names (which might or might not be unique) to identify entities that perform 
actions in a system, Windows uses security identifiers (SIDs). Users have SIDs, and so do local 
and domain groups, local computers, domains, and domain members. A SID is a variable-length 
numeric value that consists of a SID structure revision number, a 48-bit identifier authority value, 
and a variable number of 32-bit subauthority or relative identifier (RID) values. The authority 
value identifies the agent that issued the SID, and this agent is typically a Windows local system 
or a domain. Subauthority values identify trustees relative to the issuing authority, and RIDs are 
simply a way for Windows to create unique SIDs based on a common-base SID. Because SIDs are 
long and Windows takes care to generate truly random values within each SID, it is virtually 
impossible for Windows to issue the same SID twice on machines or domains anywhere in the 
world. 

When displayed textually, each SID carries an S prefix, and its various components are 
separated with hyphens: 

1. S-1-5-21-1463437245-1224812800-863842198-1128  

In this SID, the revision number is 1, the identifier authority value is 5 (the Windows security 
authority), and four subauthority values plus one RID (1128) make up the remainder of the SID. 
This SID is a domain SID, but a local computer on the domain would have a SID with the same 
revision number, identifier authority value, and number of subauthority values.  

When you install Windows, the Windows Setup program issues the computer a SID. 
Windows assigns SIDs to local accounts on the computer. Each local-account SID is based on the 
source computer’s SID and has a RID at the end. RIDs for user accounts and groups start at 1000 
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and increase in increments of 1 for each new user or group. Similarly, Dcpromo.exe, the utility 
used to create a new Windows domain, reuses the computer SID of the computer being promoted 
to domain controller as the domain SID, and it re-creates a new SID for the computer if it is ever 
demoted. Windows issues to new domain accounts SIDS that are based on the domain SID and 
have an appended RID (again starting at 1000 and increasing in increments of 1 for each new user 
or group). A RID of 1028 indicates that the SID is the twenty-ninth SID the domain issued. 

Windows issues SIDS that consist of a computer or domain SID with a predefined RID to 
many predefined accounts and groups. For example, the RID for the administrator account is 500, 
and the RID for the guest account is 501. A computer’s local administrator account, for example, 
has the computer SID as its base with the RID of 500 appended to it: 

1. S-1-5-21-13124455-12541255-61235125-500  

Windows also defines a number of built-in local and domain SIDs to represent groups. For 
example, a SID that identifies any and every account (except anonymous users) is the Everyone 
SID: S-1-1-0. Another example of a group that a SID can represent is the network group, which is 
the group that represents users who have logged on to a machine from the network. The 
network-group SID is S-1-5-2. Table 6-2, reproduced here from the Windows SDK documentation, 
shows some basic well-known SIDs, their numeric values, and their use.  

Finally, Winlogon creates a unique logon SID for each interactive logon session. A typical 
use of a logon SID is in an access control entry (ACE) that allows access for the duration of a 
client’s logon session. For example, a Windows service can use the LogonUser function to start a 
new logon session. The LogonUser function returns an access token from which the service can 
extract the logon SID. The service can then use the SID in an ACE that allows the client’s logon 
session to access the interactive window station and desktop. The SID for a logon session is 
S-1-5-5-0, and the RID is randomly generated. 

 

EXPERIMENT: using PsgetSid and Process explorer to View SiDs 

You can easily see the SID representation for any account you’re using by running the 
PsGetSid utility from Sysinternals. 

PsGetSid’s options allow you to translate machine and user account names to their 
corresponding SIDs and vice versa. 
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If you run PsGetSid with no options, it prints the SID assigned to the local computer. By 
using the fact that the Administrator’s account always has a RID of 500, you can determine the 
name assigned to the account (in cases where a system administrator has renamed the account for 
security reasons) simply by passing the machine SID appended with -500 as PsGetSid’s 
command-line argument. 

To obtain the SID of a domain account, enter the user name with the domain as a prefix: 

1. c:\>psgetsid redmond\daryl  

You can determine the SID of a domain by specifying the domain’s name as the argument to 
PsGetSid: 

1. c:\>psgetsid Redmond  

Finally, by examining the RID of your own account, you know at least a number of security 
accounts, equal to the number resulting from subtracting 999 from your RID, have been created in 
your domain or on your local machine (depending on whether you are using a domain or local 
machine account). You can determine what accounts have been assigned RIDs by passing a SID 
with the RID you want to query to PsGetSid. If PsGetSid reports that no mapping between the SID 
and an account name was possible and the RID is lower than that of your account, you know that 
the account assigned the RID has been deleted. 

For example, to find out the name of the account assigned the twenty-eighth RID, pass the 
domain SID appended with -1027 to PsGetSid: 

1. c:\>psgetsid S-1-5-21-1787744166-3910675280-2727264193-1027  

2. Account for S-1-5-21-1787744166-3910675280-2727264193-1027:  

3. User: redmond\daryl  

Process Explorer can also show you information on account and group SIDs on your system 
through its Security tab. This tab shows you information such as who owns this process and which 
groups the account is a member of. To view this information, simply double-click on any process 
(for example, Explorer.exe) in the Process list, and then click on the Security tab. You should see 
something similar to the following. 
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The information displayed in the User field contains the friendly name of the account owning 
this process, while the SID field contains the actual SID value. The Group list includes 
information on all the groups that this account is a member of. (Groups are described later in this 
chapter.) 

Integrity Levels 

As mentioned earlier, integrity levels can override discretionary access to differentiate a 
process and objects running as and owned by the same user, offering the ability to isolate code and 
data within a user account. The mechanism of mandatory integrity control allows the SRM to have 
more detailed information about the nature of the caller by associating it with an integrity level. It 
also provides information on the trust required to access the object by defining an integrity level 
for it. These integrity levels are specified by a SID, as described in Table 6-3. 

  

  

EXPERIMENT: looking at the integrity level of Processes 

You can use Process Explorer from Sysinternals to quickly display the integrity level for the 
processes on your system. The following steps demonstrate this functionality. 

1. Launch Internet Explorer in Protected Mode. 

2. Open an elevated Command Prompt window. 

3. Open Microsoft Paint normally (without elevating it). 

4. Now open Process Explorer, right-click on any of the columns in the Process list, and then 
click Select Columns. You should see a dialog box similar to the one shown here. 
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5. Select the Integrity Level check box and close the dialog box. 

6. Process Explorer will now show you the integrity level of the processes on your system. 
You should see the Protected Mode Internet Explorer process at Low, Microsoft Paint at Medium, 
and the elevated command prompt at High. Also note that the services and system processes are 
running at an even higher integrity level, System. 

  

Every process has an integrity level that is represented in the process’s token and propagated 
according to the following rules: 

■ A process inherits the integrity level of its parent (which means an elevated command 
prompt will spawn other elevated processes). 

■ If the file object for the executable image to which the child process belongs has an 
integrity level and the parent process’s integrity level is medium or higher, the child process will 
inherit the lower of the two. 

■ A parent process can also create a child process with an explicit integrity level (for 
example, when launching Protected Mode Internet Explorer from an elevated command prompt). 

EXPERIMENT: understanding Protected Mode internet explorer 

As mentioned earlier, one of the users of the Windows integrity mechanism is Internet 
Explorer’s Protected Mode, also called Protected Mode Internet Explorer (PMIE). This feature 
was added in Internet Explorer 7 to take advantage of the Windows integrity levels. This 
experiment will show you how PMIE utilizes integrity levels to provide a safer Internet experience. 
To do this, we’ll use Process Monitor to trace Internet Explorer’s behavior. 
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1. Make sure that you haven’t disabled UAC and PMIE on your systems (they are both on by 
default), and close any running instances of Internet Explorer. 

2. Run Process Monitor, and select Filter, Filter to display the filtering dialog box. Add an 
include filter for the process name Iexplore.exe, as shown next: 

  

3. Run Process Explorer, and repeat the previous experiment to display the Integrity Level 
column. 

4. Now launch Internet Explorer. You should see a flurry of events appear in the Process 
Monitor window and a quick succession of events in Process Explorer, showing some processes 
starting and some exiting. 

5. Once Internet Explorer is running, Process Explorer will show you two new processes: 
Iexplore.exe, running at low integrity level, and Ieuser.exe, running at medium integrity level. Part 
of the added protection offered by PMIE is that Iexplore.exe runs at low integrity, so this confirms 
the behavior. 

6. You can get more information about the behavior that just occurred by looking at the 
processes that started and exited based on the Iexplore.exe filter you set up. Reduce the number of 
Process Monitor events displayed by excluding registry and file events (click the respective icons 
in the toolbar). You can reduce the number of events even more by right-clicking on the 
operations Thread Start and Load Image and then selecting Exclude from the pop-up menu that 
appears. You should be left with the events shown next. 

  

7. Notice what actually occurred: a first instance of Iexplore.exe (PID 748) was started, 
which created the Ieuser.exe process and a second Iexplore.exe process (PID 1492). Then, the first 
Iexplore.exe instance exited, leaving the child process behind. You can use the Process Tree 
functionality in Process Monitor to see these events in a more obvious manner. Click on Tools, 
and then click Process Tree and scroll down to the first Iexplore.exe entry. You should see a tree 
similar to the following: 
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8. You can get more information on the behavior that just occurred by doubleclicking on the 
first and second Iexplore.exe Process Start events. Shown next is the information for the first 
process: 

  

9. Note that the integrity level for this process is actually medium, not low, as we would 
expect. However, if you repeat step 8 on the second instance of Internet Explorer, you’ll notice 
that the integrity level is indeed low. Finally, if you check the Ieuser.exe process, you’ll also 
notice a medium integrity level. This explains why the initial process is actually running at 
medium. A low integrity level process cannot create a medium integrity level process, so for 
Ieuser.exe to run at medium, it must be launched from a medium or higher process. 

10. Now let’s examine Ieuser.exe. Double-click on the Process Create event responsible for 
creating the process, and take a look at the stack by clicking on the Stack tab. You should see a 
trace similar to the one shown next. 
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Note the functions named LaunchLoRIEModeIE and CreateBrokerProcess. The second 
function is actually responsible for creating the Ieuser.exe process, which is indeed called the IE 
broker process. This process is used to allow operations such as user-initiated file downloads to be 
saved to any directory the user has access to. As we’ll see, because a process at low integrity level 
cannot write to files and directories with a higher integrity level, it would not be possible for users 
to save their downloads if there weren’t a broker process at medium integrity level (or higher) to 
handle this operation. 

11. Finally, you can take a look at the stack trace behind the creation of the second 
Iexplore.exe instance running at low integrity level. You’ll see the same function, Launch 
LoRIEModeIE, involved in the operation, which calls CreateIEIn Protected-Mode and 
CreateMICIEProcess (where MIC stands for Mandatory Integrity Control). The function 
LaunchProtectedModeIEWithToken calls the Windows API function CreateProcessAsUser to 
perform the creation at low integrity level. The following screen shows this sequence of events in 
the stack trace of the Process Create event: 
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Table 6-3 lists the integrity level associated with processes, but how about objects? Objects 
also have an integrity level stored as part of their security descriptor, in a structure that is called 
the mandatory label. 

To support migrating from previous versions of Windows (whose registry keys and files 
would not include integrity level information), as well as to make it simpler for application 
developers, all objects have an implicit integrity level in order to avoid having to manually specify 
one. This implicit integrity level is the medium level, meaning that the mandatory policy 
(described shortly) on the object will be performed on tokens accessing this object with an 
integrity level lower than medium.  

When a process creates an object without specifying an integrity level, the system checks the 
integrity level in the token. For tokens with a level medium or higher, the implicit integrity level 
of the object remains medium. However, when a token contains an integrity level lower than 
medium, the object is created with an explicit integrity level that matches the level in the token. 

The reason that objects that are created by high or system integrity level processes have a 
medium integrity level themselves is so that users can disable and enable UAC: if object integrity 
levels always inherited their creator’s integrity level, the applications of an administrator who 
disables UAC and subsequently reenables it would potentially fail because they would not be able 
to modify any registry settings or files that they created when running at the high integrity level. 
Objects can also have an explicit integrity level that is set by the system or by the creator of the 
object. For example, the following objects are given an explicit integrity level by the kernel when 
it creates them: 

■ Processes 

■ Threads 

■ Tokens 

■ Jobs 
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The reason for assigning an integrity level to these objects is to prevent a process for the 
same user, but one running at a lower integrity level, from accessing these objects and modifying 
their content or behavior (for example, DLL injection or code modification). 

EXPERIMENT: looking at the integrity level of Objects 

You can use the Accesschk tool from Sysinternals to display the integrity level of objects on 
the system, such as files, processes, and registry keys. Here’s an experiment showing the purpose 
of the LocalLow directory in Windows. 

1. Browse to C:\Users\UserName\ in a command prompt. 

2. Try running Accesschk on the AppData folder. 

3. Note the differences between Local and LocalLow in your output, similar to the one shown 
here: 

1. C:\Users\Abby\AppData\Local   

2. Medium Mandatory Level (Default) [No-Write-Up]   

3. RW Local Abby-PC\Abby   

4. RW NT AUTHORITY\SYSTEM   

5. RW BUILTIN\Administrators   

6. C:\Users\Abby\AppData\LocalLow   

7. Low Mandatory Level [No-Write-Up]   

8. RW Local Abby-PC\Abby   

9. RW NT AUTHORITY\SYSTEM   

10. RW BUILTIN\Administrators   

11. C:\Users\Abby\AppData\Roaming   

12. Medium Mandatory Level (Default) [No-Write-Up]   

13. RW Local Abby-PC\Abby   

14. RW NT AUTHORITY\SYSTEM   

15. RW BUILTIN\Administrators   

4. Notice that the LocalLow directory has an integrity level that is set to Low, while the 
Local and Roaming directories have an integrity level of Medium (Default). The default means the 
system is using an implicit integrity level. 

5. You can pass the –e flag to Accesschk so that it only displays explicit integrity levels. If 
you run the tool on the AppData folder again, you’ll notice only the LocalLow information is 
displayed.  

The –o (Object), –k (Key), and –p (Process) flags allow you to specify something other than 
a file or directory. 

Apart from an integrity level, objects also have a mandatory policy, which defines the actual 
level of protection that’s applied based on the integrity level check. Three types are possible, 
shown in Table 6-4. The integrity level and the mandatory policy are stored together in the same 
ACE. 
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Tokens 

The SRM uses an object called a token (or access token) to identify the security context of a 
process or thread. A security context consists of information that describes the privileges, accounts, 
and groups associated with the process or thread. Tokens also include information such as the 
session ID, the integrity level, and UAC virtualization state. (We’ll describe UAC’s virtualization 
mechanism later in this chapter.) 

During the logon process (described at the end of this chapter), Lsass creates an initial token 
to represent the user logging on. It then determines whether the user logging on is a member of a 
powerful group or possesses a powerful privilege. Windows Vista considers a user an 
administrator if the user is a member of any of the administrator-type groups listed here: 

■ Built-In Administrators 

■ Certificate Administrators 

■ Domain Administrators 

■ Enterprise Administrators 

■ Policy Administrators 

■ Schema Administrators 

■ Domain Controllers 

■ Enterprise Read-Only Domain Controllers 

■ Read-Only Domain Controllers 

■ Account Operators 

■ Backup Operators 

■ Cryptographic Operators 

■ Network Configuration Operators 

■ Print Operators 

■ System Operators 

■ RAS Servers 
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■ Power Users 

■ Pre-Windows 2000 Compatible Access 

Many of the groups listed are used only on domain-joined systems and don’t give users local 
administrative rights directly. Instead they allow users to modify domainwide settings. If one or 
more of these groups are present, Lsass creates a restricted token for the user (called the filtered 
admin token), and creates a logon session for both. The standard user token is attached to the 
initial process(es) that Winlogon starts (by default, Userinit.exe).  

Note If UAC has been disabled, administrators run with a token that includes their 
administrator group memberships and privileges. 

Because child processes by default inherit a copy of the token of their creators, all processes 
in the user’s session run under the same token. You can also generate a token by using the 
Windows LogonUser function. You can then use this token to create a process that runs within the 
security context of the user logged on through the LogonUser function by passing the token to the 
Windows CreateProcessAsUser function. The CreateProcessWithLogon function also creates a 
token by creating a new logon session with an initial process, which is how the Runas command 
launches processes under alternative tokens. 

Tokens vary in size because different user accounts have different sets of privileges and 
associated group accounts. However, all tokens contain the same information, shown in Figure 
6-3. 

  



 440

The security mechanisms in Windows use two components to determine what objects can be 
accessed and what secure operations can be performed. One component comprises the token’s 
user account SID and group SID fields. The SRM uses SIDs to determine whether a process or 
thread can obtain requested access to a securable object, such as an NTFS file. 

The group SIDs in a token indicate which groups a user’s account is a member of. For 
example, a server application can disable specific groups to restrict a token’s credentials when the 
server application is performing actions a client requests. Disabling a group produces nearly the 
same effect as if the group wasn’t present in the token (it results in a deny-only group, described 
later). (Disabled SIDs are used as part of security access checks, described later in the chapter.) 
Group SIDs can also include a special SID that contains the integrity level of the process or thread. 
The SRM uses another field in the token, which describes the mandatory integrity policy, to 
perform the mandatory integrity check described later in the chapter.  

The second component in a token that determines what the token’s thread or process can do 
is the privilege array. A token’s privilege array is a list of rights associated with the token. An 
example privilege is the right for the process or thread associated with the token to shut down the 
computer. Privileges are described in more detail later in this chapter. A token’s default primary 
group field and default discretionary access control list (DACL) field are security attributes that 
Windows applies to objects that a process or thread creates when it uses the token. By including 
security information in tokens, Windows makes it convenient for a process or thread to create 
objects with standard security attributes, because the process or thread doesn’t need to request 
discrete security information for every object it creates. 

Each token’s type distinguishes a primary token (a token that identifies the security context 
of a process) from an impersonation token (a type of token that threads use to temporarily adopt a 
different security context, usually of another user). Impersonation tokens carry an impersonation 
level that signifies what type of impersonation is active in the token. (Impersonation is described 
later in this chapter.) 

A token also includes the mandatory policy for the process or thread, which defines how MIC 
will behave when processing this token. There are two policies: 

■ TOKEN_MANDATORY_NO_WRITE_UP, which is enabled by default, sets the 
No-Write-Up policy on this token, specifying that the process or thread will not be able to access 
objects with a higher integrity level for write access. 

■ TOKEN_MANDATORY_NEW_PROCESS_MIN, which is also enabled by default, 
specifies that the SRM should look at the integrity level of the executable image when launching a 
child process and compute the minimum integrity level of the parent process and the file object’s 
integrity level as the child’s integrity level. 

Token flags include parameters that determine the behavior of certain UAC and UIPI 
mechanisms, such as virtualization and user interface access, that will be described later in this 
chapter. 

The remainder of the fields in a token serve informational purposes. The token source field 
contains a short textual description of the entity that created the token. Programs that want to 
know where a token originated use the token source to distinguish among sources such as the 
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Windows Session Manager, a network file server, or the remote procedure call (RPC) server. The 
token identifier is a locally unique identifier (LUID) that the SRM assigns to the token when it 
creates the token. The Windows executive maintains the executive LUID, a counter it uses to 
assign a unique numeric identifier to each token. 

The token authentication ID is another kind of LUID. A token’s creator assigns the token’s 
authentication ID when calling the LsaLogonUser function. If the creator doesn’t specify a LUID, 
Lsass obtains the LUID from the executive LUID. Lsass copies the authentication ID for all 
tokens descended from an initial logon token. A program can obtain a token’s authentication ID to 
see whether the token belongs to the same logon session as other tokens the program has 
examined. 

The executive LUID refreshes the modified ID every time a token’s characteristics are 
modified. An application can test the modified ID to discover changes in a security context since 
the context’s last use. Tokens contain an expiration time field that can be used by applications 
performing their own security to reject a token after a specified amount of time. However, 
Windows does not make use of this field internally. 

Note To guarantee system security, the fields in a token are immutable (because they are 
located in kernel memory). Except for fields that can be modified through a specific system call 
designed to modify certain token attributes (assuming the caller has the appropriate access rights 
to the token object), data such as the privileges and SIDs in a token can never be modified. 

EXPERIMENT: Viewing access Tokens 

The kernel debugger dt _TOKEN command displays the format of an internal token object. 
Although this structure differs from the user-mode token structure returned by Windows API 
security functions, the fields are similar. For further information on tokens, see the description in 
the Windows SDK documentation.  

The following output is from the kernel debugger’s dt nt!_TOKEN command: 

1. kd> dt nt!_TOKEN   

2. +0x000 TokenSource : _TOKEN_SOURCE   

3. +0x010 TokenId : _LUID   

4. +0x018 AuthenticationId : _LUID   

5. +0x020 ParentTokenId : _LUID   

6. +0x028 ExpirationTime : _LARGE_INTEGER   

7. +0x030 TokenLock : Ptr32 _ERESOURCE   

8. +0x034 ModifiedId : _LUID   

9. +0x040 Privileges : _SEP_TOKEN_PRIVILEGES   

10. +0x058 AuditPolicy : _SEP_AUDIT_POLICY   

11. +0x074 SessionId : Uint4B   

12. +0x078 UserAndGroupCount : Uint4B   

13. +0x07c RestrictedSidCount : Uint4B   

14. +0x080 VariableLength : Uint4B   

15. +0x084 DynamicCharged : Uint4B   

16. +0x088 DynamicAvailable : Uint4B   
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17. +0x08c DefaultOwnerIndex : Uint4B   

18. +0x090 UserAndGroups : Ptr32 _SID_AND_ATTRIBUTES   

19. +0x094 RestrictedSids : Ptr32 _SID_AND_ATTRIBUTES   

20. +0x098 PrimaryGroup : Ptr32 Void   

21. +0x09c DynamicPart : Ptr32 Uint4B   

22. +0x0a0 DefaultDacl : Ptr32 _ACL   

23. +0x0a4 TokenType : _TOKEN_TYPE   

24. +0x0a8 ImpersonationLevel : _SECURITY_IMPERSONATION_LEVEL   

25. +0x0ac TokenFlags : Uint4B   

26. +0x0b0 TokenInUse : UChar   

27. +0x0b4 IntegrityLevelIndex : Uint4B   

28. +0x0b8 MandatoryPolicy : Uint4B   

29. +0x0bc ProxyData : Ptr32 _SECURITY_TOKEN_PROXY_DATA   

30. +0x0c0 AuditData : Ptr32 _SECURITY_TOKEN_AUDIT_DATA   

31. +0x0c4 LogonSession : Ptr32 _SEP_LOGON_SESSION_REFERENCES   

32. +0x0c8 OriginatingLogonSession : _LUID   

33. +0x0d0 SidHash : _SID_AND_ATTRIBUTES_HASH   

34. +0x158 RestrictedSidHash : _SID_AND_ATTRIBUTES_HASH   

35. +0x1e0 VariablePart : Uint4B   

You can examine the token for a process with the !token command. You’ll find the address 
of the token in the output of the !process command, as shown here: 

1. lkd> !process d6c 1  

2. Searching for Process with Cid == d6c   

3. PROCESS 85450508 SessionId: 1 Cid: 0d6c Peb: 7ffda000 ParentCid:  

0ecc   

4. DirBase: cc9525e0 ObjectTable: afd75518 HandleCount: 18.   

5. Image: cmd.exe   

6. VadRoot 85328e78 Vads 24 Clone 0 Private 148. Modified 0. Locked 0.  

7. DeviceMap a0688138  

8. Token afd48470  

9. ElapsedTime 01:10:14.379  

10. UserTime 00:00:00.000  

11. KernelTime 00:00:00.000  

12. QuotaPoolUsage[PagedPool] 42864  

13. QuotaPoolUsage[NonPagedPool] 1152  

14. Working Set Sizes (now,min,max) (566, 50, 345)                          

    (2264KB, 200KB, 1380KB)   

15. PeakWorkingSetSize 582  

16. VirtualSize 22 Mb   

17. PeakVirtualSize 25 Mb   

18. PageFaultCount 680  

19. MemoryPriority BACKGROUND   

20. BasePriority 8  
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21. CommitCharge 437  

22. lkd> !token afd48470  

23. _TOKEN afd48470  

24. TS Session ID: 0x1  

25. User: S-1-5-21-2778343003-3541292008-524615573-500                     

    (User: ALEX-LAPTOP\Administrator)   

26. Groups:   

27. 00 S-1-5-21-2778343003-3541292008-524615573-513                         

    (Group: ALEX-LAPTOP\None)   

28. Attributes - Mandatory Default Enabled   

29. 01 S-1-1-0 (Well Known Group: localhost\Everyone)   

30. Attributes - Mandatory Default Enabled   

31. 02 S-1-5-21-2778343003-3541292008-524615573-1000                        

    (Alias: ALEX-LAPTOP\Debugger Users)   

32. Attributes - Mandatory Default Enabled   

33. 03 S-1-5-32-544 (Alias: BUILTIN\Administrators)   

34. Attributes - Mandatory Default Enabled Owner   

35. 04 S-1-5-32-545 (Alias: BUILTIN\Users)   

36. Attributes - Mandatory Default Enabled   

37. 05 S-1-5-4 (Well Known Group: NT AUTHORITY\INTERACTIVE)   

38. Attributes - Mandatory Default Enabled   

39. 06 S-1-5-11 (Well Known Group: NT AUTHORITY\Authenticated Users)   

40. Attributes - Mandatory Default Enabled   

41. 07 S-1-5-15 (Well Known Group: NT AUTHORITY\This Organization)   

42. Attributes - Mandatory Default Enabled   

43. 08 S-1-5-5-0-89263 (no name mapped)   

44. Attributes - Mandatory Default Enabled LogonId   

45. 09 S-1-2-0 (Well Known Group: localhost\LOCAL)   

46. Attributes - Mandatory Default Enabled   

47. 10 S-1-5-64-10 (Well Known Group: NT AUTHORITY\NTLM Authentication)  

48. Attributes - Mandatory Default Enabled   

49. 11 S-1-16-12288 Unrecognized SID   

50. Attributes - GroupIntegrity GroupIntegrityEnabled   

51. Primary Group: S-1-5-21-2778343003-3541292008-524615573-513           

    (Group: ALEX-LAPTOP\None)   

52. Privs:   

53. 05 0x000000005 SeIncreaseQuotaPrivilege Attributes -   

54. 08 0x000000008 SeSecurityPrivilege Attributes -   

55. 09 0x000000009 SeTakeOwnershipPrivilege Attributes -   

56. 10 0x00000000a SeLoadDriverPrivilege Attributes -   

57. 11 0x00000000b SeSystemProfilePrivilege Attributes -   

58. 12 0x00000000c SeSystemtimePrivilege Attributes -   

59. 13 0x00000000d SeProfileSingleProcessPrivilege Attributes -   

60. 14 0x00000000e SeIncreaseBasePriorityPrivilege Attributes -   
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61. 15 0x00000000f SeCreatePagefilePrivilege Attributes -   

62. 17 0x000000011 SeBackupPrivilege Attributes -   

63. 18 0x000000012 SeRestorePrivilege Attributes -   

64. 19 0x000000013 SeShutdownPrivilege Attributes -   

65. 20 0x000000014 SeDebugPrivilege Attributes -   

66. 22 0x000000016 SeSystemEnvironmentPrivilege Attributes -   

67. 23 0x000000017 SeChangeNotifyPrivilege Attributes - Enabled Default  

68. 24 0x000000018 SeRemoteShutdownPrivilege Attributes -   

69. 25 0x000000019 SeUndockPrivilege Attributes -   

70. 28 0x00000001c SeManageVolumePrivilege Attributes -   

71. 29 0x00000001d SeImpersonatePrivilege Attributes - Enabled Default   

72. 30 0x00000001e SeCreateGlobalPrivilege Attributes - Enabled Default  

73. 33 0x000000021 SeIncreaseWorkingSetPrivilege Attributes -   

74. 34 0x000000022 SeTimeZonePrivilege Attributes -   

75. 35 0x000000023 SeCreateSymbolicLinkPrivilege Attributes -   

76. Authentication ID: (0,be1a2)   

77. Impersonation Level: Identification   

78. TokenType: Primary   

79. Source: User32 TokenFlags: 0x0 ( Token in use )   

80. Token ID: 711076 ParentToken ID: 0  

81. Modified ID: (0, 711081)   

82. RestrictedSidCount: 0 RestrictedSids: 00000000  

83. OriginatingLogonSession: 3e7  

You can indirectly view token contents with Process Explorer’s Security tab in its process 
Properties dialog box. The dialog box shows the groups and privileges included in the token of the 
process you examine. 

EXPERIMENT: launching a Program at low integrity level 

When you elevate a program, either by using the Run As Administrator option or because the 
program is requesting it, the program is explicitly launched at high integrity level; however, it is 
also possible to launch a program (other than PMIE) at low integrity level by using Psexec from 
Sysinternals. 

1. Launch Notepad at low integrity level by using the following command: 

c:\psexec –l notepad.exe  

2. Try opening a file in the %SystemRoot%\System32 directory. Notice that you can browse 
the directory and open any file contained within it. 

3. Now create a new file, write some text, and try saving it in the %SystemRoot%\System32 
directory. Notepad should present a message box indicating a lack of permissions and recommend 
saving the file in the Documents folder. 

4. Accept Notepad’s suggestion. You will get the same message box again, and repeatedly 
for each attempt. 
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5. Now try saving the file in the LocalLow directory of your user profile, shown in the 
previous experiment. 

In the previous experiment, saving a file in the LocalLow directory worked because Notepad 
was running with low integrity level, and only the LocalLow directory also had low integrity level. 
All the other locations where you tried to write the file had an implicit medium integrity level. 
(You can verify this with Accesschk.) However, reading from the %SystemRoot%\System32 
directory, as well as opening files within it, did work, even though the directory and its file also 
have an implicit medium integrity level. 

Impersonation 

Impersonation is a powerful feature Windows uses frequently in its security model. Windows 
also uses impersonation in its client/server programming model. For example, a server application 
can export resources such as files, printers, or databases. Clients wanting to access a resource send 
a request to the server. When the server receives the request, it must ensure that the client has 
permission to perform the desired operations on the resource. For  example, if a user on a remote 
machine tries to delete a file on an NTFS share, the server exporting the share must determine 
whether the user is allowed to delete the file. The obvious way to determine whether a user has 
permission is for the server to query the user’s account and group SIDs and scan the security 
attributes on the file. This approach is tedious to program, prone to errors, and wouldn’t permit 
new security features to be supported  transparently. Thus, Windows provides impersonation 
services to simplify the server’s job. 

Impersonation lets a server notify the SRM that the server is temporarily adopting the 
security profile of a client making a resource request. The server can then access resources on 
behalf of the client, and the SRM carries out the access validations. Usually, a server has access to 
more resources than a client does and loses some of its security credentials during impersonation. 
However, the reverse can be true: the server can gain security credentials during impersonation.  

A server impersonates a client only within the thread that makes the impersonation request. 
Thread-control data structures contain an optional entry for an impersonation token. However, a 
thread’s primary token, which represents the thread’s real security credentials, is always accessible 
in the process’s control structure. Windows makes impersonation available through several 
mechanisms. If a server communicates with a client through a named pipe, the server can use the 
ImpersonateNamed-PipeClient Windows API function to tell the SRM that it wants to 
impersonate the user on the other end of the pipe. If the server is communicating with the client 
through Dynamic Data Exchange (DDE) or an RPC, it can make similar impersonation requests 
using DdeImpersonateClient and RpcImpersonateClient. A thread can create an impersonation 
token that’s simply a copy of its process token with the ImpersonateSelf function. The thread can 
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then alter its impersonation token, to disable SIDs or privileges, for example. Finally, a Security 
Support Provider Interface (SSPI) package can impersonate its clients with 
ImpersonateSecurityContext. SSPIs implement a network authentication protocol such as LAN 

Manager version 2 or Kerberos. 

After the server thread finishes its task, it reverts to its primary security context. These forms 
of impersonation are convenient for carrying out specific actions at the request of a client and for 
ensuring that object accesses are audited correctly. (For example, the audit that is generated gives 
the identity of the impersonated client rather than that of the server process.) The disadvantage to 
these forms of impersonation is that they can’t execute an entire program in the context of a client. 
In addition, an impersonation token can’t access files or printers on network shares unless it is a 
delegation-level impersonation (described shortly) and has sufficient credentials to authenticate to 
the remote machine, or the file or printer share supports null sessions. (A null session is one that 
results from an anonymous logon.) If an entire application must execute in a client’s security 
context or must access network resources without using impersonation, the client must be logged 
on to the system. The LogonUser Windows API function enables this action. LogonUser takes an 
account name, a password, a domain or computer name, a logon type (such as interactive, batch, 
or service), and a logon provider as input, and it returns a primary token. A server thread can 
adopt the token as an impersonation token, or the server can start a program that has the client’s 
credentials as its primary token. From a security standpoint, a process created using the token 
returned from an interactive logon via LogonUser, such as with the CreateProcessAsUser API, 
looks like a program a user starts by logging on to the machine interactively. The disadvantage to 
this approach is that a server must obtain the user’s account name and password. If the server 
transmits this information across the network, the server must encrypt it securely so that a 
malicious user snooping network traffic can’t capture it.  

To prevent the misuse of impersonation, Windows doesn’t let servers perform impersonation 
without a client’s consent. A client process can limit the level of impersonation that a server 
process can perform by specifying a security quality of service (SQOS) when connecting to the 
server. A process can specify SECURITY_ANONYMOUS, SECURITY_IDENTIFICATION, 
SECURITY_IMPERSONATION, and SECURITY_DELEGATION as flags for the Windows 
CreateFile function. Each level lets a server perform different types of operations with respect to 
the client’s security context: 

■ SecurityAnonymous is the most restrictive level of impersonation—the server can’t 
impersonate or identify the client. 

■ SecurityIdentification level lets the server obtain the identity (the SIDs) of the client and 
the client’s privileges, but the server can’t impersonate the client. 

■ SecurityImpersonation level lets the server identify and impersonate the client on the local 
system. 

■ SecurityDelegation is the most permissive level of impersonation. It lets the server 
impersonate the client on local and remote systems. 
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If the client doesn’t set an impersonation level, Windows chooses the SecurityImpersonation 
level by default. The CreateFile function also accepts SECURITY_EFFECTIVE_ONLY and 
SECURITY_CONTEXT_TRACKING as modifiers for the impersonation setting: 

■ SECURITY_EFFECTIVE_ONLY prevents a server from enabling or disabling a client’s 
privileges or groups while the server is impersonating. 

■ SECURITY_CONTEXT_TRACKING specifies that any changes a client makes to its 
security context are reflected in a server that is impersonating it. If this option isn’t specified, the 
server adopts the context of the client at the time of the impersonation and doesn’t receive any 
changes. This option is honored only when the client and server processes are on the same system. 

To prevent spoofing scenarios in which a low integrity process could create a user interface 
that captured user credentials and then used LogonUser to obtain that user’s token, a special 
integrity policy applies to impersonation scenarios: a thread cannot impersonate a token of higher 
integrity than its own. For example, a low integrity application cannot spoof a dialog box that 
queries administrative credentials and then attempt to launch a process at a higher privilege level. 
The integrity mechanism policy for impersonation access tokens is that the integrity level of the 
access token that is returned by LsaLogonUser must be no higher than the integrity level of the 
calling process. 

Restricted Tokens 

A restricted token is created from a primary or impersonation token using the 
Create-RestrictedToken function. The restricted token is a copy of the token it’s derived from, 
with the following possible modifications: 

■ Privileges can be removed from the token’s privilege array.  

■ SIDs in the token can be marked as deny-only. These SIDs remove access to any resources 
for which the SID’s access is denied by using a matching access-denied ACE that would 
otherwise be overridden by an ACE granting access to a group containing the SID earlier in the 
security descriptor. 

■ SIDs in the token can be marked as restricted. These SIDs are subject to a second pass of 
the access check algorithm, which will parse only the restricted SIDs in the token. The results of 
both the first pass and the second pass must grant access to the resource or no access is granted to 
the object. 

Restricted tokens are useful when an application wants to impersonate a client at a reduced 
security level, primarily for safety reasons when running untrusted code. For example, the 
restricted token can have the shutdown-system privilege removed from it to prevent code executed 
in the restricted token’s security context from rebooting the system.  

Filtered Admin Token 

As we saw earlier, restricted tokens are also used by UAC to create the filtered admin token 
that all user applications will inherit. A filtered admin token has the following characteristics: 

■ The integrity level is set to medium. 
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■ The administrator and administrator-like SIDs mentioned previously are marked as 
deny-only to prevent a security hole if the group was removed altogether. For example, if a file 
had an access control list (ACL) that denied the Administrators group all access but granted some 
access to another group the user belongs to, the user would be granted access if the Administrators 
group was absent from the token, which would give the standard user version of the user’s identity 
more access than the user’s administrator identity. 

■ All privileges are stripped except Change Notify, Shutdown, Undock, Increase Working 
Set, and Time Zone. 

EXPERIMENT: looking at Filtered admin Tokens 

You can make Explorer launch a process with either the standard user token or the 
administrator token by following these steps on a Windows machine with UAC enabled:  

1. Log on to an account that’s a member of the Administrators group. 

2. Click Start, Programs, Accessories, Command Prompt, right-click on the shortcut, and then 
select Run As Administrator. You will see a command prompt with the word Administrator in the 
title bar. 

3. Now repeat the process, but simply click on the shortcut—this will launch a second 
command prompt without administrative privileges. 

4. Run Process Explorer, and view the Security tab in the Properties dialog boxes for the two 
command prompt processes you launched. Note that the standard user token contains a deny-only 
SID and a Medium Mandatory Label, and that it has only a couple of privileges. The properties on 
the right in the following screen shot are from a command prompt running with an administrator 
token, and the properties on the left are from one running with the filtered administrative token: 

  

6.3.2 Security Descriptors and Access Control 

Tokens, which identify a user’s credentials, are only part of the object security equation. 
Another part of the equation is the security information associated with an object, which specifies 
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who can perform what actions on the object. The data structure for this information is called a 
security descriptor. A security descriptor consists of the following attributes: 

■ Revision number The version of the SRM security model used to create the descriptor. 

■ Flags Optional modifiers that define the behavior or characteristics of the descriptor. These 
flags are listed in Table 6-5. 

■ Owner SID The owner’s security ID. 

■ Group SID The security ID of the primary group for the object (used only by POSIX). 

■ Discretionary access control list (DACL) Specifies who has what access to the object. 

■ System access control list (SACL) Specifies which operations by which users should be 
logged in the security audit log and the explicit integrity level of an object.  
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An access control list (ACL) is made up of a header and zero or more access control entry 
(ACE) structures. There are two types of ACLs: DACLs and SACLs. In a DACL, each ACE 
contains a SID and an access mask (and a set of flags, explained shortly). Eight types of ACEs can 
appear in a DACL: access allowed, access denied, allowed-object, denied-object, allowedcallback, 
denied-callback, allowed-object-callback, and denied-object-callback. As you would expect, the 
access-allowed ACE grants access to a user, and the access-denied ACE denies the access rights 
specified in the access mask. The callback ACEs are used by applications that make use of the 
AuthZ API (described later) to register a callback that AuthZ will call when it performs an access 
check involving this ACE. 

The difference between allowed-object and access allowed, and between denied-object and 
access denied, is that the object types are used only within Active Directory. ACEs of these types 
have a GUID (globally unique identifier) field that indicates that the ACE applies only to 
particular objects or subobjects (those that have GUID identifiers). In addition, another optional 
GUID indicates what type of child object will inherit the ACE when a child is created within an 
Active Directory container that has the ACE applied to it. (A GUID is a 128-bit identifier 
guaranteed to be universally unique.) 

The accumulation of access rights granted by individual ACEs forms the set of access rights 
granted by an ACL. If no DACL is present (a null DACL) in a security descriptor, everyone has 
full access to the object. If the DACL is empty (that is, it has 0 ACEs), no user has access to the 
object. 
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The ACEs used in DACLs also have a set of flags that control and specify characteristics of 
the ACE related to inheritance. Some object namespaces have containers and objects. A container 
can hold other container objects and leaf objects, which are its child objects. Examples of 
containers are directories in the file system namespace and keys in the registry namespace. Certain 
flags in an ACE control how the ACE propagates to child objects of the container associated with 
the ACE. Table 6-6, reproduced in part from the Windows SDK, lists the inheritance rules for 
ACE flags. 

  

A SACL contains two types of ACEs, system audit ACEs and system audit-object ACEs. 
These ACEs specify which operations performed on the object by specific users or groups should 
be audited. Audit information is stored in the system Audit Log. Both successful and unsuccessful 
attempts can be audited. Like their DACL object-specific ACE cousins, system audit-object ACEs 
specify a GUID indicating the types of objects or subobjects that the ACE applies to and an 
optional GUID that controls propagation of the ACE to particular child object types. If a SACL is 
null, no auditing takes place on the object. (Security auditing is described later in this chapter.) 
The inheritance flags that apply to DACL ACEs also apply to system audit and system 
audit-object ACEs. 

Figure 6-4 is a simplified picture of a file object and its DACL. 

  

As shown in Figure 6-4, the first ACE allows USER1 to query the file. The second ACE 
allows members of the group TEAM1 to have read and write access to the file, and the third ACE 
grants all other users (Everyone) execute access. 

EXPERIMENT: Viewing a Security Descriptor  
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Most executive subsystems rely on the object manager’s default security functionality to 
manage security descriptors for their objects. The object manager’s default security functions use 
the security descriptor pointer to store security descriptors for such objects. For example, the 
process manager uses default security, so the object manager stores process and thread security 
descriptors in the object headers of process and thread objects, respectively. The security 
descriptor pointer of events, mutexes, and semaphores also store their security descriptors. You 
can use live kernel debugging to view the security descriptors of these objects once you locate 
their object header, as outlined in the following steps. (Note that both Process Explorer and 
Accesschk can also show security descriptors for processes.) 

1. Start the kernel debugger. 

2. Type !process 0 0 explorer.exe to obtain process information about Explorer: 

1. lkd> !process 0 0 explorer.exe   

2. PROCESS 84fce020 SessionId: 1 Cid: 0804 Peb: 7ffd3000 ParentCid: 05ec   

3. DirBase: 1f14f420 ObjectTable: 90369388 HandleCount: 428.   

4. Image: explorer.exe  

3. Type !object with the address following the word PROCESS in the output of the previous 
command as the argument to show the object data structure:  
1. lkd> !object 84fce020  

2. Object: 84fce020 Type: (83dd3bc0) Process   

3. ObjectHeader: 84fce008 (old version)   

4. HandleCount: 5 PointerCount: 185  

4. Type dt _ObJeCT_HeaDeR and the address of the object header field from the previous 
command’s output to show the object header data structure, including the security descriptor 
pointer value:  
1. lkd> dt _object_header 84fce008  

2. nt!_OBJECT_HEADER   

3. +0x000 PointerCount : 187  

4. +0x004 HandleCount : 5  

5. +0x004 NextToFree : 0x00000005  

6. +0x008 Type : 0x83dd3bc0 _OBJECT_TYPE   

7. +0x00c NameInfoOffset : 0 ''  

8. +0x00d HandleInfoOffset : 0 ''  

9. +0x00e QuotaInfoOffset : 0 ''  

10. +0x00f Flags : 0x20 ' '  

11. +0x010 ObjectCreateInfo : 0x84c91b78 _OBJECT_CREATE_INFORMATION   

12. +0x010 QuotaBlockCharged : 0x84c91b78  

13. +0x014 SecurityDescriptor : 0x9036770a   

14. +0x018 Body : _QUAD   

5. Security descriptor pointers in the object header use the low three bits as flags, so type the 
following command to dump the security descriptor by entering the address displayed in the object 
header structure, but with the low three bits removed:  
1. lkd> !sd 0x9036770a & -8  

2. ->Revision: 0x1  
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3. ->Sbz1 : 0x0  

4. ->Control : 0x8814  

5. SE_DACL_PRESENT   

6. SE_SACL_PRESENT   

7. SE_SACL_AUTO_INHERITED   

8. SE_SELF_RELATIVE   

9. ->Owner : S-1-5-32-544  

10. ->Group : S-1-5-21-529698691-1302229678-416145009-513  

11. ->Dacl :   

12. ->Dacl : ->AclRevision: 0x2  

13. ->Dacl : ->Sbz1 : 0x0  

14. ->Dacl : ->AclSize : 0x50  

15. ->Dacl : ->AceCount : 0x3  

16. ->Dacl : ->Sbz2 : 0x0  

17. ->Dacl : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE   

18. ->Dacl : ->Ace[0]: ->AceFlags: 0x0  

19. ->Dacl : ->Ace[0]: ->AceSize: 0x18  

20. ->Dacl : ->Ace[0]: ->Mask : 0x001fffff   

21. ->Dacl : ->Ace[0]: ->SID: S-1-5-32-544  

22. ->Dacl : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE   

23. ->Dacl : ->Ace[1]: ->AceFlags: 0x0  

24. ->Dacl : ->Ace[1]: ->AceSize: 0x14  

25. ->Dacl : ->Ace[1]: ->Mask : 0x001fffff   

26. ->Dacl : ->Ace[1]: ->SID: S-1-5-18  

27. ->Dacl : ->Ace[2]: ->AceType: ACCESS_ALLOWED_ACE_TYPE   

28. ->Dacl : ->Ace[2]: ->AceFlags: 0x0  

29. ->Dacl : ->Ace[2]: ->AceSize: 0x1c   

30. ->Dacl : ->Ace[2]: ->Mask : 0x00121411  

31. ->Dacl : ->Ace[2]: ->SID: S-1-5-5-0-97946  

32. ->Sacl :   

33. ->Sacl : ->AclRevision: 0x2  

34. ->Sacl : ->Sbz1 : 0x0  

35. ->Sacl : ->AclSize : 0x1c   

36. ->Sacl : ->AceCount : 0x1  

37. ->Sacl : ->Sbz2 : 0x0  

38. ->Sacl : ->Ace[0]: ->AceType: SYSTEM_MANDATORY_LABEL_ACE_TYPE   

39. ->Sacl : ->Ace[0]: ->AceFlags: 0x0  

40. ->Sacl : ->Ace[0]: ->AceSize: 0x14  

41. ->Sacl : ->Ace[0]: ->Mask : 0x00000003  

42. ->Sacl : ->Ace[0]: ->SID: S-1-16-12288  

The security descriptor contains three access-allowed ACEs: one for the Administrators group 
(S-1-5-32-544), one for the System account (S-1-5-18), and the last for the Logon SID 
(S-1-5-5-0-97946). The system access control list has one entry (S-1-16-12288) labeling the 
process as high integrity level. (This example output was taken from a Windows Server 2008 
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system logged on to the Administrator account, which is why Explorer is running at high instead 
of medium.) ACL Assignment  

To determine which DACL to assign to a new object, the security system uses the first 
applicable rule of the following four assignment rules: 

1. If a caller explicitly provides a security descriptor when creating the object, the security 
system applies it to the object. If the object has a name and resides in a container object (for 
example, a named event object in the \BaseNamedObjects object manager namespace directory), 
the system merges any inheritable ACEs (ACEs that might propagate from the object’s container) 
into the DACL unless the security descriptor has the SE_DACL_PROTECTED flag set, which 
prevents inheritance. 

2. If a caller doesn’t supply a security descriptor and the object has a name, the security 
system looks at the security descriptor in the container in which the new object name is stored. 
Some of the object directory’s ACEs might be marked as inheritable, meaning that they should be 
applied to new objects created in the object directory. If any of these inheritable ACEs are present, 
the security system forms them into an ACL, which it attaches to the new object. (Separate flags 
indicate ACEs that should be inherited only by container objects rather than by objects that aren’t 
containers.) 

3. If no security descriptor is specified and the object doesn’t inherit any ACEs, the security 
system retrieves the default DACL from the caller’s access token and applies it to the new object. 
Several subsystems on Windows have hard-coded DACLs that they assign on object creation (for 
example, services, LSA, and SAM objects). 

4. If there is no specified descriptor, no inherited ACEs, and no default DACL, the system 
creates the object with no DACL, which allows everyone (all users and groups) full access to the 
object. This rule is the same as the third rule in which a token contains a null default DACL. 

The rules the system uses when assigning a SACL to a new object are similar to those used 
for DACL assignment, with some exceptions. The first is that inherited system audit ACEs don’t 
propagate to objects with security descriptors marked with the SE_SACL_PROTECTED flag 
(similar to the SE_DACL_PROTECTED flag, which protects DACLs). Second, if there are no 
specified security audit ACEs and there is no inherited SACL, no SACL is applied to the object. 
This behavior is different from that used to apply default DACLs because tokens don’t have a 
default SACL. 

When a new security descriptor containing inheritable ACEs is applied to a container, the 
system automatically propagates the inheritable ACEs to the security descriptors of child objects. 
(Note that a security descriptor’s DACL doesn’t accept inherited DACL ACEs if its 
SE_DACL_PROTECTED flag is enabled, and its SACL doesn’t inherit SACL ACEs if the 
descriptor has the SE_SACL_PROTECTED flag set.) The order in which inheritable ACEs are 
merged with an existing child object’s security descriptor is such that any ACEs that were 
explicitly applied to the ACL are kept ahead of ACEs that the object inherits. The system uses the 
following rules for propagating inheritable ACEs: 

■ If a child object with no DACL inherits an ACE, the result is a child object with a DACL 
containing only the inherited ACE. 
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■ If a child object with an empty DACL inherits an ACE, the result is a child object with a 
DACL containing only the inherited ACE. 

■ For objects in Active Directory only, if an inheritable ACE is removed from a parent object, 
automatic inheritance removes any copies of the ACE inherited by child objects.  

■ For objects in Active Directory only, if automatic inheritance results in the removal of all 
ACEs from a child object’s DACL, the child object has an empty DACL rather than no DACL. 

As you’ll soon discover, the order of ACEs in an ACL is an important aspect of the Windows 
security model. 

Note Inheritance is generally not directly supported by the object stores such as file systems, 
the registry, or Active Directory. Windows APIs that support inheritance, including 
SetSecurityInfo and SetNamedSecurityInfo, do so by invoking appropriate functions within the 
security inheritance support DLL (%SystemRoot%\System32\Ntmarta.dll) that know how to 
traverse those object stores. 

Determining Access 

Two methods are used for determining access to an object: 

■ The mandatory integrity check, which determines whether the integrity level of the caller is 
high enough to access the resource, based on the resource’s own integrity level and its mandatory 
policy. 

■ The discretionary access check, which determines the access that a specific user account 
has to an object. 

When a process tries to open an object, the integrity check takes place before the standard 
Windows DACL check in the kernel’s SeAccessCheck function because it is faster to execute and 
can quickly eliminate the need to perform the full discretionary access check. Given the default 
integrity policies, a process can only open an object for write access if its integrity level is equal to 
or higher than the object’s integrity level and the DACL also grants the process the accesses it 
desires. For example, a low integrity level process cannot open a medium integrity level process 
for write access, even if the DACL grants the process write access. 

With the default integrity policy, processes can open any object—with the exception of 
process, thread, and token objects—for read access as long as the object’s DACL grants them read 
access. That means a process running at low integrity level can open any files accessible to the 
user account in which it’s running. Protected Mode Internet Explorer uses integrity levels to help 
prevent malware that infects it from modifying user account settings, but it does not stop malware 
from reading the user’s documents. 

Recall that process and thread objects are exceptions because their integrity policy also 
includes No-Read-Up. That means a process’s integrity level must be equal to or higher than the 
integrity level of the process or thread it wants to open, and the DACL must grant it the accesses it 
wants for an open to succeed. Assuming the DACLs allow the desired access, Figure 6-5 shows 
the types of access that the processes running at medium or low have to other processes and 
objects. 
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user interface Privilege isolation (uiPi) 

The Windows messaging subsystem also honors integrity levels to implement UIPI. The 
subsystem does this by preventing a process from sending window messages to the windows 
owned by a process having a higher integrity level, with the following informational messages 
being exceptions: 

■ WM_NULL 

■ WM_MOVE 

■ WM_SIZE 

■ WM_GETTEXT 

■ WM_GETTEXTLENGTH 

■ WM_GETHOTKEY 

■ WM_GETICON 

■ WM_RENDERFORMAT 

■ WM_DRAWCLIPBOARD 

■ WM_CHANGECBCHAIN 

■ WM_THEMECHANGED 

This use of integrity levels prevents standard user processes from driving input into the 
windows of elevated processes or from performing a shatter attack (such as sending the process 
malformed messages that trigger internal buffer overflows, which can lead to the execution of 
code at the elevated process’s privileges). UIPI also blocks window hooks from affecting the 
windows of higher integrity level processes so that a standard user process can’t log the 
keystrokes the user types into an administrative application, for example. Journal hooks are also 
blocked in the same way to prevent lower integrity level processes from monitoring the behavior 
of higher integrity level processes.  
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Processes can choose to allow additional messages to pass the guard by calling the 
ChangeWindowMessageFilter API. This function is typically used to add messages required by 
custom controls to communicate outside native common controls in Windows. Because this 
function is per-process, however, and not per-thread, it is possible for two custom controls inside 
the same process to be using the same internal window messages, which could lead to one 
control’s potentially malicious window message to be allowed through, simply because it happens 
to be a query-only message for the other custom control. 

Because accessibility applications such as the On-Screen Keyboard (Osk.exe) are subject to 
UIPI’s restrictions (which would require the accessibility application to be executed for each kind 
of visible integrity level process on the desktop), these processes can enable UI Access. This flag 
can be present in the manifest file of the image and will run the process at a slightly higher 
integrity level than medium (between 0x2000 and 0x3000) if launched from a standard user 
account, or at high integrity level if launched from an administrator account. Note that in the 
second case, an elevation request won’t actually be displayed. For a process to set this flag, its 
image must also be signed and in one of several secure locations, including %SystemRoot% and 
%ProgramFiles%.  

Note Threads created by Csrss (which is responsible for console windows and, by extension, 
all command-line applications) always run with a UIPI integrity level of medium, regardless of 
how the actual command-line process was started. This means that it is possible to drive input to 
these kinds of applications from a low integrity level regardless of UIPI.  

After the integrity check is complete, and assuming the mandatory policy allows access to the 
object based on the caller’s integrity, one of two algorithms is used for the discretionary check to 
an object, which will determine the final outcome of the access check: 

■ One to determine the maximum access allowed to the object, a form of which is exported 
to user mode with the Windows GetEffectiveRightsFromAcl function. This is also used when a 
program specifies a desired access of MAXIMUM_ALLOWED, which is what the legacy APIs 
that don’t have a desired access parameter use. 

■ One to determine whether a specific desired access is allowed, which can be done with the 
Windows AccessCheck function or the AccessCheckByType function.  

The first algorithm examines the entries in the DACL as follows: 

1. If the object has no DACL (a null DACL), the object has no protection and the security 
system grants all access. 

2. If the caller has the take-ownership privilege, the security system grants write-owner 
access before examining the DACL. (Take-ownership privilege and write-owner access are 
explained in a moment.) 

3. If the caller is the owner of the object, the system looks for an OWNER_RIGHTS SID and 
uses that SID as the SID for the next steps. Otherwise, read-control and write-DACL access rights 
are granted. 

4. For each access-denied ACE that contains a SID that matches one in the caller’s access 
token, the ACE’s access mask is removed from the granted-access mask.  



 458

5. For each access-allowed ACE that contains a SID that matches one in the caller’s access 
token, the ACE’s access mask is added to the granted-access mask being computed, unless that 
access has already been denied. 

When all the entries in the DACL have been examined, the computed granted-access mask is 
returned to the caller as the maximum allowed access to the object. This mask represents the total 
set of access types that the caller will be able to successfully request when opening the object. 

The preceding description applies only to the kernel-mode form of the algorithm. The 
Windows version implemented by GetEffectiveRightsFromAcl differs in that it doesn’t perform 
step 2, and it considers a single user or group SID rather than an access token. 

Owner Rights 

Because owners of an object can normally override the security of an object by always being 
granted read-control and write-DACL rights, a specialized method of controlling this behavior is 
exposed by Windows: the Owner Rights SID. 

The Owner Rights SID exists for two main reasons: improving service hardening in the 
operating system, and allowing more flexibility for specific usage scenarios. For example, suppose 
an administrator wants to allow users to create files and folders but not to modify the ACLs on 
those objects. (Users could inadvertently or maliciously grant access to those files or folders to 
unwanted accounts.) By using an inheritable Owner Rights SID, the users can be prevented from 
editing or even viewing the ACL on the objects they create. A second usage scenario relates to 
group changes. Suppose an employee has been part of some confidential or sensitive group, has 
created several files while a member of that group, and has now been removed from the group for 
business reasons. Since that employee is still a user, he could continue accessing the sensitive 
files. 

As mentioned, Windows also uses the Owner Rights SID to improve service hardening. 
Whenever a service creates an object at run time, the Owner SID associated with that object is the 
account the service is running in (such as local system or local service) and not the actual service 
SID. This means that any other service in the same account would have access to the object by 
being an owner. The Owner Rights SID prevents that unwanted behavior. 

The second algorithm is used to determine whether a specific access request can be granted, 
based on the caller’s access token. Each open function in the Windows API that deals with 
securable objects has a parameter that specifies the desired access mask, which is the last 
component of the security equation. To determine whether the caller has access, the following 
steps are performed: 

1. If the object has no DACL (a null DACL), the object has no protection and the security 
system grants the desired access. 

2. If the caller has the take-ownership privilege, the security system grants write-owner 
access if requested and then examines the DACL. However, if write-owner access was the only 
access requested by a caller with take-ownership privilege, the security system grants that access 
and never examines the DACL. 
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3. If the caller is the owner of the object, the system looks for an OWNER_RIGHTS SID and 
uses that SID as the SID for the next steps. Otherwise, read-control and write-DACL access rights 
are granted. If these rights were the only access rights that the caller requested, access is granted 
without examining the DACL 

4. Each ACE in the DACL is examined from first to last. An ACE is processed if one of the 
following conditions is satisfied: 

a. The ACE is an access-deny ACE, and the SID in the ACE matches an enabled SID (SIDs 
can be enabled or disabled) or a deny-only SID in the caller’s access token. 

b. The ACE is an access-allowed ACE, and the SID in the ACE matches an enabled SID in 
the caller’s token that isn’t of type deny-only. 

c. It is the second pass through the descriptor for restricted-SID checks, and the SID in the 
ACE matches a restricted SID in the caller’s access token. 

d. The ACE isn’t marked as inherit-only. 

5. If it is an access-allowed ACE, the rights in the access mask in the ACE that were 
requested are granted; if all the requested access rights have been granted, the access check 
succeeds. If it is an access-denied ACE and any of the requested access rights are in the 
denied-access rights, access is denied to the object. 

6. If the end of the DACL is reached and some of the requested access rights still haven’t 
been granted, access is denied. 

7. If all accesses are granted but the caller’s access token has at least one restricted SID, the 
system rescans the DACL’s ACEs looking for ACEs with access-mask matches for the accesses 
the user is requesting and a match of the ACE’s SID with any of the caller’s restricted SIDs. Only 
if both scans of the DACL grant the requested access rights is the user granted access to the 
object. 

The behavior of both access-validation algorithms depends on the relative ordering of allow 
and deny ACEs. Consider an object with only two ACEs, where one ACE specifies that a certain 
user is allowed full access to an object and the other ACE denies the user access. If the allow ACE 
precedes the deny ACE, the user can obtain full access to the object, but if the order is reversed, 
the user cannot gain any access to the object. 

Several Windows functions, such as SetSecurityInfo and SetNamedSecurityInfo, apply ACEs 
in the preferred order of explicit deny ACEs preceding explicit allow ACEs. Note that the security 
editor dialog boxes with which you edit permissions on NTFS files and registry keys, for example, 
use these functions. SetSecurityInfo and SetNamedSecurityInfo also apply ACE inheritance rules 
to the security descriptor on which they are applied. 

Figure 6-6 shows an example access validation demonstrating the importance of ACE 
ordering. In the example, access is denied a user wanting to open a file even though an ACE in the 
object’s DACL grants the access because the ACE denying the user access (by virtue of the user’s 
membership in the Writers group) precedes the ACE granting access.  
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As we stated earlier, because it wouldn’t be efficient for the security system to process the 
DACL every time a process uses a handle, the SRM makes this access check only when a handle 
is opened, not each time the handle is used. Thus, once a process successfully opens a handle, the 
security system can’t revoke the access rights that have been granted, even if the object’s DACL 
changes. Also keep in mind that because kernel-mode code uses pointers rather than handles to 
access objects, the access check isn’t performed when the operating system uses objects. In other 
words, the Windows executive “trusts” itself in a security sense.  

The fact that an object’s owner is always granted write-DACL access to an object means that 
users can never be prevented from accessing the objects they own. If, for some reason, an object 
had an empty DACL (no access), the owner would still be able to open the object with 
write-DACL access and then apply a new DACL with the desired access permissions. 

  

A Warning Regarding the gui Security editors 

When you use the GUI permissions editors to modify security settings on a file, a registry, or 
an Active Directory object, or on another securable object, the main security dialog box shows 
you a potentially misleading view of the security that’s applied to the object. If you allow Full 
Control to the Everyone group and deny the Administrator group Full Control, the list might lead 
you to believe that the Everyone group accessallowed ACE precedes the Administrator deny ACE 
because that’s the order in which they appear. However, as we’ve said, the editors place deny 
ACEs before allow ACEs 

when they apply the ACL to the object. 
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The Permissions tab of the Advanced Security Settings dialog box shows the order of ACEs 
in the DACL. However, even this dialog box can be confusing because a complex DACL can have 
deny ACEs for various accesses followed by allow ACEs for other access types. 

  

The only definitive way to know what accesses a particular user or group will have to an 
object (other than having that user or a member of the group try to access the object) is to use the 
Effective Permissions tab of the dialog box that is displayed when you click the Advanced button 
in the Properties dialog box. Enter the name of the user or group you want to check, and the dialog 
box shows you what permissions they are allowed for the object. 
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The authZ aPi 

The AuthZ Windows API implements the same security model as the security reference 
monitor, but it implements the model totally in user mode in the 
%SystemRoot%\System32\Authz.dll library. This gives applications that want to protect their own 
private objects, such as database tables, the ability to leverage the Windows security model 
without incurring the cost of user-mode to kernel-mode transitions that they would make if they 
relied on the security reference monitor. 

The AuthZ API uses standard security descriptor data structures, SIDs, and privileges. 
Instead of using tokens to represent clients, AuthZ uses the AUTHZ_CLIENT_CONTEXT. 
AuthZ includes user-mode equivalents of all access-check and Windows security functions—for 
example, AuthzAccessCheck is the AuthZ version of the AccessCheck Windows API that uses the 
SeAccessCheck security reference monitor function.  

Another advantage available to applications that use AuthZ is that they can direct AuthZ to 
cache the results of security checks to improve subsequent checks that use the same client context 
and security descriptor. 

AuthZ is fully documented in the Windows SDK. 

6.4 Account Rights and Privileges 

Many operations performed by processes as they execute cannot be authorized through object 
access protection because they do not involve interaction with a particular object. For example, the 
ability to bypass security checks when opening files for backup is an attribute of an account, not of 
a particular object. Windows uses both privileges and account rights to allow a system 
administrator to control what accounts can perform security-related operations. 

A privilege is the right of an account to perform a particular system-related operation, such as 
shutting down the computer or changing the system time. An account right grants or denies the 
account to which it’s assigned the ability to perform a particular type of logon, such as a local 
logon or interactive logon, to a computer. 
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A system administrator assigns privileges to groups and accounts using tools such as the 
Active Directory Users and Groups MMC snap-in for domain accounts or the Local Security 
Policy Editor. You access the Local Security Policy Editor in the Administrative Tools folder of 
the Control Panel or the Start menu (if you’ve configured your Start menu to contain an 
Administrative Tools link). Figure 6-7 shows User Rights Assignment configuration in the Local 
Security Policy Editor, which displays the complete list of privileges and account rights available 
on Windows. Note that the tool makes no distinction between privileges and account rights. 
However, you can differentiate between them because any user right that contains the words log 
on is an account privilege. 

  

6.4.1 Account Rights 

Account rights are not enforced by the security reference monitor, nor are they stored in 
tokens. The function responsible for logon is LsaLogonUser. Winlogon, for example, calls the 
LogonUser API when a user logs on interactively to a computer, and LogonUser calls 
LsaLogonUser. The function takes a parameter that indicates the type of logon being performed, 
which includes interactive, network, batch, service, Terminal Server client, and unlock.  

In response to logon requests, the Local Security Authority (LSA) retrieves account rights 
assigned to a user from the LSA policy database at the time that a user attempts to log on to the 
system. LSA checks the logon type against the account rights assigned to the user account logging 
on and denies the logon if the account does not have the right that permits the logon type or it has 
the right that denies the logon type. Table 6-7 lists the user rights defined by Windows. 
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Windows applications can add and remove user rights from an account by using the 
LsaAddAccountRights and LsaRemoveAccountRights functions, and they can determine what 
rights are assigned to an account with LsaEnumerateAccountRights. 

 

6.4.2 Privileges 

The number of privileges defined by the operating system has grown over time. Unlike user 
rights, which are enforced in one place by the LSA, different privileges are defined by different 
components and enforced by those components. For example, the debug privilege, which allows a 
process to bypass security checks when opening a handle to another process with the OpenProcess 
Windows API, is checked for by the process manager. Table 6-8 is a full list of privileges, and it 
describes how and when system components check for them. 

When a component wants to check a token to see whether a privilege is present, it uses the 
PrivilegeCheck or LsaEnumerateAccountRights APIs if running in user mode and 
SeSinglePrivilegeCheck or SePrivilegeCheck if running in kernel mode. The privilege-related 
APIs are not account-right aware, but the account-right APIs are privilege-aware.  

Unlike account rights, privileges can be enabled and disabled. For a privilege check to 
succeed, the privilege must be in the specified token and it must be enabled. The idea behind this 
scheme is that privileges should be enabled only when their use is required so that a process 
cannot inadvertently perform a privileged security operation.  

EXPERIMENT: Seeing a Privilege get enabled 

By following these steps, you can see that the Date and Time Control Panel applet enables 
the SeTimeZonePrivilege privilege in response to you using its interface to change the time zone 
of the computer. 

1. Run Process Explorer, and set the refresh rate to Paused. 

2. Open the Date and Time item by right-clicking on the clock in the system tray region of 
the taskbar, and then select Adjust Date/Time. A new Rundll32 process will appear with a green 
highlight. 

3. Hover the mouse over the Rundll32 process and verify that the target contains the text 
“Time Date Control Panel Applet” as well as a path to Timedate.cpl. The presence of this 
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argument tells Rundll32, which is a Control Panel DLL hosting process, to load the DLL that 
implements the user interface that enables you to change the time and date. 

  

4. View the Security tab of the process Properties dialog box for your Rundll32 process. You 
should see that the SeTimeZonePrivilege privilege is disabled, which is indicated by its flag and 
the fact that it’s shown in gray. 

5. Now click the Change Time Zone button in the Control Panel item, close the process 
Properties dialog box, and then open it again. On the Security tab, you should now see that the 
SeTimeZonePrivilege privilege is enabled. 
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EXPERIMENT: The bypass Traverse Checking Privilege 

If you are a systems administrator, you must be aware of the Bypass Traverse Checking 
privilege (internally called SeNotifyPrivilege) and its implications. This experiment demonstrates 
that not understanding its behavior can lead to improperly applied security. 

1. Create a folder and, within that folder, a new text file with some sample text. 

2. Navigate in Explorer to the new file, and go to the Security tab of its Properties dialog box. 
Click the Advanced button, and clear the check box that controls inheritance. Select Copy when 
you are prompted as to whether you want to remove or copy inherited permissions. 

3. Next, modify the security of the new folder so that your account does not have any access 
to the folder. Do this by selecting your account and selecting all the Deny boxes in the permissions 
list. 

4. Run Notepad, and browse using the File, Open dialog box to the new directory. You 
should be denied access to the directory. 

5. In the File Name field of the Open dialog box, type the full path of the new file. The file 
should open. 

If your account does not have the Bypass Traverse Checking privilege, NTFS performs an 
access check on each directory of the path to a file when you try to open a file, which results in 
you being denied access to the file in this example. 

6.4.3 Super Privileges 

Several privileges are so powerful that a user to which they are assigned is effectively a 
“super user” who has full control over a computer. These privileges can be used in an infinite 
number of ways to gain unauthorized access to otherwise off-limit resources and to perform 
unauthorized operations. However, we’ll focus on using the privilege to execute code that grants 
the user privileges not assigned to the user, with the knowledge that this capability can be 
leveraged to perform any operation on the local machine that the user desires. This section lists the 
privileges and discusses the ways that they can be exploited. Other privileges, such as Lock Pages 
In Physical Memory, can be exploited for denial of service attacks on a system, but these are not 
discussed. Note that on systems with UAC enabled, these privileges will only be granted to 
applications running at high integrity level or higher, even if the account possesses them.  

■ Debug programs A user with this privilege can open any process on the system without 
regard to the security descriptor present on the process. The user could implement a program that 
opens the Lsass process, for example, copy executable code into its address space, and then inject 
a thread with the CreateRemoteThread Windows API to execute the injected code in a 
more-privileged security context. The code could grant the user additional privileges and group 
memberships. 

■ Take ownership This privilege allows a holder to take ownership of any securable object 
by writing his own SID into the owner field of the object’s security descriptor. Recall that an 
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owner is always granted permission to read and modify the DACL of the security descriptor, so a 
process with this privilege could modify the DACL to grant itself full access to the object and then 
close and reopen the object with full access. This would allow the owner to see sensitive data and 
to even replace system files that execute as part of normal system operation, such as Lsass, with 
his own programs that grant a user elevated privileges. 

■ Restore files and directories A user assigned this privilege can replace any file on the 
system with her own. She could exploit this power by replacing system files as described in the 
preceding paragraph. 

■ Load and unload device drivers A malicious user could use this privilege to load a device 
driver into the system. Device drivers are considered trusted parts of the operating system that can 
execute within it with System account credentials, so a driver could launch privileged programs 
that assign the user other rights. 

■ Create a token object This privilege can be used in the obvious way to generate tokens that 
represent arbitrary user accounts with arbitrary group membership and privilege assignment. 

■ Act as part of operating system LsaRegisterLogonProcess, the function a process calls to 
establish a trusted connection to Lsass, checks for this privilege. A malicious user with this 
privilege can establish a trusted-Lsass connection and then execute LsaLogonUser, a function 
used to create new logon sessions. LsaLogonUser requires a valid user name and password and 
accepts an optional list of SIDs that it adds to the initial token created for a new logon session. The 
user could therefore use her own user name and password to create a new logon session that 
includes the SIDs of more privileged groups or users in the resulting token. 

Note that the use of elevated privilege does not extend past the machine boundary to the 
network, because any interaction with another computer requires authentication with a domain 
controller and validation of domain passwords. Domain passwords are not stored on a computer 
either in plain text or encrypted form, so they are not accessible to malicious code. 

6.5 Security Auditing 

The object manager can generate audit events as a result of an access check, and Windows 
functions available to user applications can generate them directly. Kernel-mode code is always 
allowed to generate an audit event. Two privileges, SeSecurityPrivilege and SeAuditPrivilege, 
relate to auditing. A process must have the SeSecurityPrivilege privilege to manage the security 
Event Log and to view or set an object’s SACL. Processes that call audit system services, however, 
must have the SeAuditPrivilege privilege to successfully generate an audit record. 

The audit policy of the local system controls the decision to audit a particular type of security 
event. The audit policy, also called the local security policy, is one part of the security policy 
Lsass maintains on the local system, and it is configured with the Local Security Policy Editor 
shown in Figure 6-8. 
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Lsass sends messages to the SRM to inform it of the auditing policy at system initialization 
time and when the policy changes. Lsass is responsible for receiving audit records generated based 
on the audit events from the SRM, editing the records, and sending them to the Event Logger. 
Lsass (instead of the SRM) sends these records because it adds pertinent details, such as the 
information needed to more completely identify the process that is being audited.  

The SRM sends audit records via its ALPC connection to Lsass. The Event Logger then 
writes the audit record to the security Event Log. In addition to audit records the SRM passes, 
both Lsass and the SAM generate audit records that Lsass sends directly to the Event Logger, and 
the AuthZ API allows for applications to generate application-defined audits. Figure 6-9 depicts 
this overall flow. 

  

Audit records are put on a queue to be sent to the LSA as they are received—they are 
not  submitted in batches. The audit records are moved from the SRM to the security subsystem 
in one of two ways. If the audit record is small (less than the maximum ALPC message size), it is 
sent as an ALPC message. The audit records are copied from the address space of the SRM to the 
address space of the Lsass process. If the audit record is large, the SRM uses shared memory to 
make the message available to Lsass and simply passes a pointer in an ALPC message. 

Figure 6-10 brings together the concepts covered so far in this chapter by illustrating the 
basic process and thread security structures. In the figure, notice that the process object and the 
thread objects have ACLs, as do the access-token objects themselves. Also in this figure, thread 2 
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and thread 3 each have an impersonation token, whereas thread 1 defaults to the process access 
token. 

  

6.6 logon 

Interactive logon (as opposed to network logon) occurs through the interaction of the logon 
process (Winlogon), the logon user interface process (LogonUI) and its credential providers, Lsass, 
one or more authentication packages, and the SAM or Active Directory. Authentication packages 
are DLLs that perform authentication checks. Kerberos is the Windows authentication package for 
interactive logon to a domain, and MSV1_0 is the Windows authentication package for interactive 
logon to a local computer, for domain logons to trusted pre– Windows 2000 domains, and for 
times when no domain controller is accessible. 

Winlogon is a trusted process responsible for managing security-related user interactions. It 
coordinates logon, starts the user’s first process at logon, handles logoff, and manages various 
other operations relevant to security, including launching LogonUI for entering passwords at 
logon, changing passwords, and locking and unlocking the workstation. The Winlogon process 
must ensure that operations relevant to security aren’t visible to any other active processes. For 
example, Winlogon guarantees that an untrusted process can’t get control of the desktop during 
one of these operations and thus gain access to the password.  

Winlogon relies on the credential providers installed on the system to obtain a user’s account 
name or password. Credential providers are COM objects located inside DLLs. The default 
providers are %SystemRoot%\System32\authui.dll and %SystemRoot%\System32\Smartcard- 
CredentialProvider.dll, which support both password and smartcard PIN authentication. Allowing 
other credential providers to be installed allows Windows to use different user-identification 
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mechanisms. For example, a third party might supply a credential provider that uses a thumbprint 
recognition device to identify users and extract their passwords from an encrypted database. 

To protect Winlogon’s address space from bugs in credential providers that might cause the 
Winlogon process to crash (which, in turn, will result in a system crash, as Winlogon is considered 
a critical system process), a separate process, LogonUI.exe, is used to actually load the credential 
providers and display the Windows logon interface to users. This process is started on demand 
whenever Winlogon needs to present a user interface to the user, and it exits after the action has 
finished. It also allows Winlogon to simply restart a new LogonUI process should it crash for any 
reason. 

Winlogon is the only process that intercepts logon requests from the keyboard, which are sent 
through an RPC message from Win32k.sys. Winlogon immediately launches the LogonUI 
application to display the user interface for logon. After obtaining a user name and password from 
credential providers, Winlogon calls Lsass to authenticate the user attempting to log on. If the user 
is authenticated, the logon process activates a logon shell on behalf of that user. The interaction 
between the components involved in logon is illustrated in Figure 6-11. 

  

In addition to supporting alternative credential providers, LogonUI can load additional 
network provider DLLs that need to perform secondary authentication. This capability allows 
multiple network providers to gather identification and authentication information all at one time 
during normal logon. A user logging on to a Windows system might simultaneously be 
authenticated on a UNIX server. That user would then be able to access resources of the UNIX 
server from the Windows machine without requiring additional authentication. Such a capability is 
known as one form of single sign-on. 

6.6.1 Winlogon Initialization 

During system initialization, before any user applications are active, Winlogon performs the 
following steps to ensure that it controls the workstation once the system is ready for user 
interaction: 
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1. Creates and opens an interactive window station (for example, \Sessions\1\Windows 
\WindowStations\WinSta0 in the object manager namespace) to represent the keyboard, mouse, 
and monitor. Winlogon creates a security descriptor for the station that has one and only one ACE 
containing only the System SID. This unique security descriptor ensures that no other process can 
access the workstation unless explicitly allowed by Winlogon. 

2. Creates and opens two desktops: an application desktop (\Sessions\1\Windows\WinSta0 
\Default, also known as the interactive desktop) and a Winlogon desktop (\Sessions\1\Windows 
\WinSta0\Winlogon, also known as the secure desktop). The security on the Winlogon desktop is 
created so that only Winlogon can access that desktop. The other desktop allows both Winlogon 
and users to access it. This arrangement means that any time the Winlogon desktop is active, no 
other process has access to any active code or data associated with the desktop. Windows uses this 
feature to protect the secure operations that involve passwords and locking and unlocking the 
desktop.  

3. Before anyone logs on to a computer, the visible desktop is Winlogon’s. After a user logs 
on, pressing Ctrl+Alt+Delete switches the desktop from Default to Winlogon and launches 
LogonUI. (This explains why all the windows on your interactive desktop seem to disappear when 
you press Ctrl+Alt+Delete and then return when you dismiss the Windows Security dialog box.) 
Thus, the SAS always brings up a secure desktop controlled by Winlogon. 

4. Establishes an ALPC connection with Lsass’s LsaAuthenticationPort. This connection will 
be used for exchanging information during logon, logoff, and password operations and is made by 
calling LsaRegisterLogonProcess. 

5. It initializes and registers a window class data structure that associates a Winlogon 
procedure with the window it subsequently creates. 

6. It registers the Winlogon RPC message server, which listens for SAS notifications from 
Win32k. This measure prevents Trojan horse programs from gaining control of the screen when 
the SAS is entered. 

7. It registers the window so that the procedure associated with this window gets called if a 
user logs off or if the screen saver times out. The Windows subsystem checks to verify that the 
process requesting notification is the Winlogon process. 

Note The Wininit process performs steps similar to steps 1 and 2 to allow legacy interactive 
services running on session 0 to display windows, but it does not perform any other steps since 
session 0 is not available for user logon. (See Chapter 3 for more information on Wininit and 
session isolation.) 

How SaS is implemented 

The SAS is secure because no application can intercept the Ctrl+Alt+Delete keystroke 
combination or prevent Winlogon from receiving it. Win32k.sys reserves the Ctrl+Alt+Delete key 
combination so that whenever the Windows input system (implemented in the raw input thread in 
Win32k) sees the combination, it sends an RPC message to Winlogon’s message server, which 
listens for such notifications. The keystrokes that map to a registered hot key are otherwise not 
sent to any process other than the one that registered it, and only the thread that registered a hot 
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key can unregister it, so a Trojan horse application cannot deregister Winlogon’s ownership of the 
SAS.  

A Windows function, SetWindowsHook, enables an application to install a hook procedure 
that’s invoked every time a keystroke is pressed, even before hot keys are processed, and it allows 
the hook to squash keystrokes. However, the Windows hot key processing code contains a special 
case for Ctrl+Alt+Delete that disables hooks so that the keystroke sequence can’t be intercepted. 
In addition, if the interactive desktop is locked, only hot keys owned by Winlogon are processed.  

Once the Winlogon desktop is created during initialization, it becomes the active desktop. 
When the Winlogon desktop is active, it is always locked. Winlogon unlocks its desktop only to 
switch to the application desktop or the screen-saver desktop. (Only the Winlogon process can 
lock or unlock a desktop.) 

6.6.2 User Logon Steps 

Logon begins when a user presses the SAS (Ctrl+Alt+Delete). After the SAS is pressed, 
Winlogon starts LogonUI, which calls the credential providers to obtain a user name and password. 
Winlogon also creates a unique local logon SID for this user that it assigns to this instance of the 
desktop (keyboard, screen, and mouse). Winlogon passes this SID to Lsass as part of the 
LsaLogonUser call. If the user is successfully logged on, this SID will be included in the logon 
process token—a step that protects access to the desktop. For example, another logon to the same 
account but on a different system will be unable to write to the first machine’s desktop because 
this second logon won’t be in the first logon’s desktop token.  

When the user name and password have been entered, Winlogon retrieves a handle to a 
package by calling the Lsass function LsaLookupAuthenticationPackage. Authentication packages 
are listed in the registry under HKLM\SYSTEM\CurrentControlSet\Control\Lsa. Winlogon passes 
logon information to the authentication package via LsaLogonUser. Once a package authenticates 
a user, Winlogon continues the logon process for that user. If none of the authentication packages 
indicates a successful logon, the logon process is aborted.  

Windows uses two standard authentication packages for interactive logons: Kerberos and 
MSV1_0. The default authentication package on a stand-alone Windows system is MSV1_0 
(%SystemRoot%\System32\Msv1_0.dll), an authentication package that implements LAN 
Manager 2 protocol. Lsass also uses MSV1_0 on domain-member computers to authenticate to 
pre–Windows 2000 domains and computers that can’t locate a domain controller for 
authentication. (Laptop computers that are disconnected from the network fall into this latter 
category.) The Kerberos authentication package, %SystemRoot%\System32\Kerberos.dll, is used 
on computers that are members of Windows domains. The Windows Kerberos package, with the 
cooperation of Kerberos services running on a domain controller, supports the Kerberos protocol. 
This protocol is based on Internet RFC 1510. (Visit the Internet Engineering Task Force [IETF] 
Web site, www.ietf.org, for detailed information on the Kerberos standard.) 

The MSV1_0 authentication package takes the user name and a hashed version of the 
password and sends a request to the local SAM to retrieve the account information, which includes 
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the password, the groups to which the user belongs, and any account restrictions. MSV1_0 first 
checks the account restrictions, such as hours or type of accesses allowed. If the user can’t log on 
because of the restrictions in the SAM database, the logon call fails and MSV1_0 returns a failure 
status to the LSA.  

MSV1_0 then compares the hashed password and user name to that stored by the SAM. In 
the case of a cached domain logon, MSV1_0 accesses the cached information by using Lsass 
functions that store and retrieve “secrets” from the LSA database (the SECURITY hive of the 
registry). If the information matches, MSV1_0 generates an LUID for the logon session and 
creates the logon session by calling Lsass, associating this unique identifier with the session and 
passing the information needed to ultimately create an access token for the user. (Recall that an 
access token includes the user’s SID, group SIDs, and assigned privileges.) 

Note MSV1_0 does not cache a user’s entire password hash in the registry because that 
would enable someone with physical access to the system to easily compromise a user’s domain 
account and gain access to encrypted files and to network resources the user is authorized to 
access. Instead, it caches half of the hash. The cached half-hash is sufficient to verify that a user’s 
password is correct, but it isn’t sufficient to gain access to EFS keys and to authenticate as the user 
on a domain because these actions require the full hash. 

If MSV1_0 needs to authenticate using a remote system, as when a user logs on to a trusted 
pre–Windows 2000 domain, MSV1_0 uses the Netlogon service to communicate with an instance 
of Netlogon on the remote system. Netlogon on the remote system interacts with the MSV1_0 
authentication package on that system, passing back authentication results to the system on which 
the logon is being performed. 

The basic control flow for Kerberos authentication is the same as the flow for MSV1_0. 
However, in most cases, domain logons are performed from member workstations or servers 
(rather than on a domain controller), so the authentication package must communicate across the 
network as part of the authentication process. The package does so by communicating via the 
Kerberos TCP/IP port (port 88) with the Kerberos service on a domain controller. 

The Kerberos Key Distribution Center service (%SystemRoot%\System32\Kdcsvc.dll), 
which implements the Kerberos authentication protocol, runs in the Lsass process on domain 
controllers. 

After validating hashed user name and password information with Active Directory’s user 
account objects (using the Active Directory server %SystemRoot%\System32\Ntdsa.dll), Kdcsvc 
returns domain credentials to Lsass, which returns the result of the authentication and the user’s 
domain logon credentials (if the logon was successful) across the network to the system where the 
logon is taking place. 

Note This description of Kerberos authentication is highly simplified, but it highlights the 
roles of the various components involved. Although the Kerberos authentication protocol plays a 
key role in distributed domain security in Windows, its details are outside the scope of this book.  

After a logon has been authenticated, Lsass looks in the local policy database for the user’s 
allowed access, including interactive, network, batch, or service process. If the requested logon 
doesn’t match the allowed access, the logon attempt will be terminated. Lsass deletes the newly 
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created logon session by cleaning up any of its data structures and then returns failure to Winlogon, 
which in turn displays an appropriate message to the user. If the requested access is allowed, Lsass 
adds the appropriate additional security IDs (such as Everyone, Interactive, and the like). It then 
checks its policy database for any granted privileges for all the IDs for this user and adds these 
privileges to the user’s access token.  

When Lsass has accumulated all the necessary information, it calls the executive to create the 
access token. The executive creates a primary access token for an interactive or service logon and 
an impersonation token for a network logon. After the access token is successfully created, Lsass 
duplicates the token, creating a handle that can be passed to Winlogon, and closes its own handle. 
If necessary, the logon operation is audited. At this point, Lsass returns success to Winlogon along 
with a handle to the access token, the LUID for the logon session, and the profile information, if 
any, that the authentication package returned.  

EXPERIMENT: listing active logon Sessions 

As long as at least one token exists with a given logon session LUID, Windows considers the 
logon session to be active. You can use the LogonSessions tool from Sysinternals, which uses the 
LsaEnumerateLogonSessions function (documented in the Windows SDK) to list the active logon 
sessions: 

1. C:\>logonsessions   

2. Logonsesions v1.1  

3. Copyright (C) 2004 Bryce Cogswell and Mark Russinovich   

4. Sysinternals - wwww.sysinternals.com   

5. [0] Logon session 00000000:000003e7:  

6. User name: WORKGROUP\ALEX-LAPTOP$   

7. Auth package: NTLM   

8. Logon type: (none)   

9. Session: 0  

10. Sid: S-1-5-18  

11. Logon time: 7/19/2008 10:26:56 PM   

12. Logon server:   

13. DNS Domain:   

14. UPN:   

15. [1] Logon session 00000000:0000dcbd:   

16. User name:   

17. Auth package: NTLM   

18. Logon type: (none)   

19. Session: 0  

20. Sid: (none)   

21. Logon time: 7/19/2008 10:26:57 PM   

22. Logon server:   

23. DNS Domain:   

24. UPN:   

25. [2] Logon session 00000000:000003e5:  
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26. User name: NT AUTHORITY\LOCAL SERVICE   

27. Auth package: Negotiate   

28. Logon type: Service   

29. Session: 0  

30. Sid: S-1-5-19  

31. Logon time: 7/19/2008 10:27:01 PM   

32. Logon server:   

33. DNS Domain:   

34. UPN:   

35. [3] Logon session 00000000:00015cd5:  

36. User name: ALEX-LAPTOP\Administrator   

37. Auth package: NTLM   

38. Logon type: Interactive   

39. Session: 1  

40. Sid: S-1-5-21-2778343003-3541292008-524615573-500  

41. Logon time: 7/19/2008 10:27:05 PM   

42. Logon server: ALEX-LAPTOP   

43. DNS Domain:   

44. UPN:   

Information reported for a session includes the SID and name of the user associated with the 
session, as well as the session’s authentication package and logon time. Note that the Negotiate 
authentication package, seen in logon session 2 in the preceding output, will attempt to 
authenticate via Kerberos or NTLM, depending on which is most appropriate for the 
authentication request.  

The LUID for a session is displayed on the “Logon Session” line of each session block, and 
using the Handle utility also from Sysinternals, you can find the tokens that represent a particular 
logon session. For example, to find the tokens for logon session 3 in the example output just 
shown, you could enter this command: 

1. C:\>handle -a 3bc39  
2. winlogon.exe pid: 580 1FC: \BaseNamedObjects\0000000000015cd5_ 
3. WlballoonKerberosNotificationEventName   
4. winlogon.exe pid: 580 22C: ALEX-LAPTOP\Administrator:15cd5  
5. lsass.exe pid: 628 6A0: ALEX-LAPTOP\Administrator:15cd5  
6. lsm.exe pid: 636 288: ALEX-LAPTOP\Administrator:15cd5  
Winlogon then looks in the registry at the value HKLM\SOFTWARE\Microsoft\Windows 
NT\Current Version\Winlogon\Userinit and creates a process to run whatever the value of that 
string is. (This value can be several .exes separated by commas). The default value is Userinit.exe, 
which loads the user profile and then creates a process to run whatever the value of 
HKCU\SOFTWARE\Microsoft\Windows NT\Current Version\Winlogon\Shell is, if that value 
exists. That value does not exist by default. If it doesn’t exist, Userinit.exe does the same for 
HKLM\SOFTWARE\Microsoft\Windows NT\Current Version\Winlogon\Shell, which defaults to 
Explorer.exe. Userinit then exits (which is why Explorer.exe shows up as having no parent when 
examined in Process Explorer). For more information on the steps followed during the user logon 
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process, see Chapter 13. 

6.7 User account Control 

UAC is meant to enable users to run with standard user rights, as opposed to administrative 
rights. Without administrative rights, users cannot accidentally (or deliberately) modify system 
settings, malware can’t normally alter system security settings or disable antivirus software, and 
users can’t compromise the sensitive information of other users on shared computers. Running 
with standard user rights can thus mitigate the impact of malware and protect sensitive data on 
shared computers.  

UAC had to address several problems to make it practical for a user to run with a standard 
user account. First, because the Windows usage model has been one of assumed administrative 
rights, software developers assumed their programs could access and modify any file, registry key, 
or operating system setting. The second problem UAC had to address was that users sometimes 
need administrative rights to perform such operations as installing software, changing the system 
time, and opening ports in the firewall. 

The UAC solution to these problems is to run most applications with standard user rights, 
obviate the need for administrative rights all the time, and encourage software developers to create 
applications that run with standard user rights. UAC accomplishes these aims by requiring 
administrative rights less frequently, enabling legacy applications to run with standard user rights, 
making it convenient for standard users to access administrative rights when they need them, and 
enabling even administrative users to run as if they were standard users.  

UAC also allows certain tasks that were previously considered reserved for administrators to 
be performed by standard users, enhancing the usability of the standard user account. For example, 
changing the time zone (used only for displaying the time to users) is considered a different action 
than changing the system’s actual time (used for security, such as on Kerberos authentication). 
While the privilege to change the system time is assigned only to the Administrators group, the 
privilege to change the time zone is also assigned to the Users group. Standard users can also 
configure WEP settings when they connect to wireless networks, create VPN connections, change 
power management settings, and install critical Windows updates. In addition, Group Policy 
settings exist that can enable standard users to install printer and other device drivers approved by 
IT administrators and to install ActiveX controls from administrator-approved sites. 

6.7.1 Virtualization 

While some software legitimately requires administrative rights, many programs needlessly 
store user data in system-global locations. When an application executes, it can be running in 
different user accounts, and it should therefore store user-specific data in the peruser %AppData% 
directory and save per-user settings in the user’s registry profile under 
HKEY_CURRENT_USER\ Software. Standard user accounts don’t have write access to the 
%ProgramFiles% directory or HKEY_LOCAL_MACHINE\Software, but because most Windows 



 479

systems are single-user and most users have been administrators until UAC was implemented, 
applications that incorrectly saved user data and settings to these locations worked anyway. 

Windows enables these legacy applications to run in standard user accounts through the help 
of file system and registry namespace virtualization. When an application modifies a 
system-global location in the file system or registry and that operation fails because access is 
denied, Windows redirects the operation to a per-user area; when the application reads from a 
system-global location, Windows first checks for data in the per-user area and, if none is found, 
permits the read attempt from the global location.  

Windows will always enable this type of virtualization unless: 

■ The application is 64-bit. As virtualization is purely an application-compatibility 
technology meant to help legacy applications, it is enabled only for 32-bit applications. The world 
of 64-bit applications is relatively new and should follow the development guidelines for creating 
standard user compatible applications. 

■ The application is already running with administrative rights. In this case, there is no need 
for any virtualization. 

■ The operation came from a kernel-mode caller. 

■ The operation is being performed while the caller is impersonating. For example, any 
operations not originating from a process classified as legacy according to this definition, 
including network file sharing accesses, are not virtualized. 

■ The executable image for the process has a UAC-compatible manifest (specifying a 
requestedExecutionLevel setting). 

■ The administrator does not have write access to the file or registry key. This exception 
exists to enforce backward compatibility, as the legacy application would have failed before UAC 
was implemented even if the application was run with administrative rights. 

You can see the virtualization status (as discussed previously, the process’s virtualization 
status is stored as a flag in its token) of a process by adding the Virtualization column to Task 
Manager’s Processes page, as shown in Figure 6-12. Most Windows components, including the 
Desktop Window Manager (Dwm.exe), the Client Server Run-Time Subsystem (Csrss.exe), and 
Explorer, have virtualization disabled because they have a UAC-compatible manifest or are 
running with administrative rights and so do not allow virtualization. Internet Explorer 
(Iexplore.exe) has virtualization enabled because it can host multiple ActiveX controls and scripts 
and must assume that they were not written to operate correctly with standard user rights. 

In addition to file system and registry virtualization, some applications require additional 
help to run correctly with standard user rights. For example, an application that tests the account in 
which it’s running for membership in the Administrators group might otherwise work, but it won’t 
run if it’s not in that group. Windows defines a number of application-compatibility shims to 
enable such applications to work anyway. The shims most commonly applied  to legacy 
applications for operation with standard user rights are shown in Table 6-9. Note that, if required, 
virtualization can be completely disabled for a system using a local security policy setting. 
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File Virtualization 

The file system locations that are virtualized for legacy processes are %ProgramFiles%, 
%ProgramData%, and %SystemRoot%, excluding some specific subdirectories. However, any file 
with an executable extension, including .exe, .bat, .scr, .vbs, and others, is excluded from 
virtualization. This means that programs that update themselves from a standard user account fail 
instead of creating private versions of their executables that aren’t visible to an administrator 
running a global updater. 

Note To add additional extensions to the exception list, enter them in the HKEY_LOCAL_ 

MACHINE\System\CurrentControlSet\Services\Luafv\Parameters\ExcludedExtensionsAdd 
registry key and reboot. Use a multi-string type to delimit multiple extensions, and do not include 
a leading dot in the extension name. 

Modifications to virtualized directories by legacy processes are redirected to the user’s virtual 
root directory, %LocalAppData%\VirtualStore. The Local component of the path highlights the 
fact that virtualized files don’t roam with the rest of the profile when the account has a roaming 
profile. If you navigate in Explorer to a directory containing virtualized files, Explorer displays a 
button labeled Compatibility Files in its toolbar, as shown in Figure 6-13. Clicking the button 
takes you to the corresponding VirtualStore subdirectory to show you the virtualized files. 
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The UAC File Virtualization Filter Driver (%SystemRoot%\System32\Drivers\Luafv.sys) 
implements file system virtualization. Because this is a file system filter driver, it sees all file 
system operations, but it only implements functionality for operations from legacy processes. As 
shown in Figure 6-14, the filter driver changes the target file path for a legacy process that creates 
a file in a system-global location but does not for a nonvirtualized process with standard user 
rights. Default permissions on the \Windows directory deny access to the application written with 
UAC support, but the legacy process acts as though the operation succeeds, when it really created 
the file in a location fully accessible by the user. 

  

EXPERIMENT: File Virtualization behavior 

In this experiment, we will enable and disable virtualization on the command prompt and see 
several behaviors to demonstrate UAC file virtualization. 

1. Open a nonelevated command prompt (you must have UAC enabled for this to work), and 
enable virtualization for it. You can change the virtualization status of a process by selecting 
Virtualization from the shortcut menu that appears when you right-click the process in Task 
Manager. 
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2. Navigate to the C:\Windows directory, and use the following command to write a file: 

1. echo hello-1 > test.txt  

3. Now list the contents of the directory: 

1. dir test.txt  

You’ll see that the file appears. 

4. Now disable virtualization by using Task Manager, and then list the directory as in step 3. 
Notice that the file is gone. However, a directory listing of the VirtualStore directory will reveal 
the file: 

1. dir %lOCalaPPDaTa%\VirtualStore\Windows\test.txt  

5. To take a look at a more complex scenario, create a new Command Prompt window, but 
elevate it this time, and then repeat steps 2 and 3 using the string “hello-2”. 

6. Take a look at the text inside these files by using the following command in both command 
prompts: 

1. echo test.txt  

The following two screenshots show the expected output. 

  

7. Finally, from your elevated command prompt, delete the test.txt file: 

1. del test.txt  

8. Repeat step 6 of the experiment. Notice that the elevated command prompt cannot find the 
file anymore, while the standard user command prompt shows the old contents of the file again. 
This demonstrates the failover mechanism described earlier—read operations will look in the 
per-user virtual store location first, but if the file doesn’t exist, read access to the system location 
will be granted.  

Registry Virtualization 

Registry virtualization is implemented slightly differently from file system virtualization. 
Virtualized registry keys include most of the HKEY_LOCAL_MACHINE\Software branch, but 
there are numerous exceptions, such as the following: 
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■ HKLM\Software\Microsoft\Windows 

■ HKLM\Software\Microsoft\Windows NT 

■ HKLM\Software\Classes 

Only keys that are commonly modified by legacy applications, but which don’t introduce 
compatibility or interoperability problems, are virtualized. Windows redirects modifications of 
virtualized keys by a legacy application to a user’s registry virtual root at HKEY_ 

CURRENT_USER\Software\Classes\VirtualStore. The key is located in the user’s Classes 
hive, %LocalAppData%\Microsoft\Windows\UsrClass.dat, which, like any other virtualized file 
data, does not roam with a roaming user profile. Instead of maintaining a fixed list of virtualized 
locations as Windows does for the file system, the virtualization status of a key is stored as a 
combination of flags, shown in Table 6-10. 

  

You can use the Reg.exe utility included in Windows, with the flags option, to display the 
current virtualization state for a key or to set it. In Figure 6-15, note that the HKLM\Software key 
is fully virtualized, but the Windows subkey (and all its children) have only silent failure enabled. 

  

Unlike file virtualization, which uses a filter driver, registry virtualization is implemented in 
the configuration manager. (See Chapter 4 for more information on the registry and the 
configuration manager.) As with file system virtualization, a legacy process creating a subkey of a 
virtualized key is redirected to the user’s registry virtual root, but a UAC-compatible process is 
denied access by default permissions. This is shown in Figure 6-16. 
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6.7.2 Elevation 

Even if users run only programs that are compatible with standard user rights, some operations 
still require administrative rights. The vast majority of software installations require administrative 
rights to create directories and registry keys in system-global locations or to install services or 
device drivers. Modifying system-global Windows and application settings also requires 
administrative rights, as does the Windows Vista parental controls feature. It would be possible to 
perform most of these operations by switching to a dedicated administrator account, but the 
inconvenience of doing so would likely result in most users remaining in the administrator account 
to perform their daily tasks. 

It’s important to be aware that UAC elevations are conveniences and not security boundaries. A 
security boundary requires that security policy dictate what can pass through the boundary. User 
accounts are an example of a security boundary in Windows, because one user can’t access the 
data belonging to another user without having that user’s permission.  

Because elevations aren’t security boundaries, there’s no guarantee that malware running on a 
system with standard user rights can’t compromise an elevated process to gain administrative 
rights. For example, elevation dialog boxes only identify the executable that will be elevated; they 
say nothing about what it will do when it executes. 

Running with Administrator Rights 

Windows includes enhanced “run as” functionality so that standard users can conveniently launch 
processes with administrative rights. This functionality required giving applications a way to 
identify operations for which the system can obtain administrative rights on behalf of the 
application, as necessary. (More on this topic shortly.) 

To enable users acting as system administrators to run with standard user rights but not have to 
enter user names and passwords every time they want to access administrative rights, Windows 
makes use of a mechanism called Admin Approval Mode (AAM). This feature creates two 
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identities for the user at logon: one with standard user rights and another with administrative rights. 
Since every user on a Windows system is either a standard user or acting for the most part as a 
standard user in AAM, developers must assume that all Windows users are standard users, which 
will result in more programs working with standard user rights without virtualization or shims. 

Granting administrative rights to a process is called elevation. When elevation is performed by a 
standard user account (or by a user who is part of an administrative group but not the actual 
Administrators group), it’s referred to as an over-the-shoulder (OTS) elevation because it requires 
the entry of credentials for an account that’s a member of the Administrators group, something 
that’s usually completed by a user typing over the shoulder of a standard user. An elevation 
performed by an AAM user is called a consent elevation because the user simply has to approve 
the assignment of his administrative rights.  

Stand-alone systems, which are typically home computers, and domain-joined systems treat AAM 
access by remote users differently because domain-connected computers can use domain 
administrative groups in their resource permissions. When a user accesses a standalone 
computer’s file share, Windows requests the remote user’s standard user identity, but on 
domain-joined systems, Windows honors all the user’s domain group memberships by requesting 
the user’s administrative identity. 

Executing an image that requests administrative rights causes the application information service 
(AIS, contained in %SystemRoot%\System32\Appinfo.dll), which runs inside a service host 
process (%SystemRoot%\System32\Svchost.exe), to launch Consent.exe 
(%SystemRoot%\System32\Consent.exe). Consent captures a bitmap of the screen, applies a fade 
effect to it, switches to a desktop that’s only accessible to the local system account, paints the 
bitmap as the background, and displays an elevation dialog box that contains information about 
the executable. Displaying this dialog box on a separate desktop prevents any application present 
in the user’s account from modifying the appearance of the dialog box. 

If an image is a Windows component digitally signed by Microsoft and the image is in the 
Windows system directory, the dialog box displays a blue stripe across the top, as shown at the top 
of Figure 6-17. The gray stripe (the dialog box in the middle of the figure) is for images that are 
digitally signed by someone other than Microsoft, and the orange stripe (bottom dialog box) is for 
unsigned images. The elevation dialog box shows the image’s icon, description, and publisher for 
digitally signed images, but it shows only a generic icon, the file name, and Unidentified Publisher 
for unsigned images. This difference makes it harder for malware to mimic the appearance of 
legitimate software. The Details button at the bottom of the dialog box expands it to show the 
command line that will be passed to the executable if it launches. 
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The AAM consent dialog box, shown in Figure 6-18, is similar, but instead of prompting for 
administrator credentials, this dialog box provides Continue and Cancel buttons. 

  

If a user declines an elevation, Windows returns an access-denied error to the process that initiated 
the launch. When a user agrees to an elevation by either entering administrator credentials or 
clicking Continue, AIS calls CreateProcessAsUser to launch the process with the appropriate 
administrative identity. Although AIS is technically the parent of the elevated process, AIS uses 
new support in the CreateProcessAsUser API that sets the process’s parent process ID to that of 
the process that originally launched it. (See Chapter 5 for more information on processes and this 
mechanism.) That’s why elevated processes don’t appear as children of the AIS service-hosting 
process in tools such as Process Explorer that show process trees. Figure 6-19 shows the 
operations involved in launching an elevated process from a standard user account. 



 487

  

Requesting Administrative Rights 

There are a number of ways the system and applications identify a need for administrative rights. 
One that shows up in the Explorer user interface is the Run As Administrator context menu 
command and shortcut option. These items also include a colored shield icon that should be placed 
on any button or menu item that will result in an elevation of rights when it is selected. Choosing 
the Run As Administrator command causes Explorer to call the ShellExecute API with the “runas” 
verb. 

The vast majority of installation programs require administrative rights, so the image loader, 
which initiates the launch of an executable, includes installer detection code to identify likely 
legacy installers. Some of the heuristics it uses are as simple as detecting internal version 
information or whether the image has the words setup, install, or update in its file name. More 
sophisticated means of detection involve scanning for byte sequences in the executable that are 
common to third-party installation wrapper utilities. The image loader also calls the application 
compatibility library to see if the target executable requires administrator rights. The library looks 
in the application compatibility database to see whether the executable has the 
RequireAdministrator or RunAsInvoker compatibility flags associated with it.  

The most common way for an executable to request administrative rights is for it to include a 
requestedElevationLevel tag in its application manifest file. The element’s level attribute can have 
one of the three values shown in Table 6-11. 
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The presence of the trustInfo element in a manifest (which you can see in the excerpted string 
dump of FirewallSettings.exe below), denotes an executable that was written with support for 
UAC and the requestedElevationLevel element nests within it. The uiAccess attribute is where 
accessibility applications can use the UIPI bypass functionality mentioned earlier. 

1. C:\>strings c:\Windows\System32\FirewallSettings.exe   
2. ...   
3. <> 
4. xmlns="urn:schema-microsoft-com:asm.v3">   
5.    
6.    
7. <> 
8. Level="requireAdministrator"  
9. uiAccess="false"/>   
10.    
11.    
12.    

An easier way to determine the values specified by an executable is to view its manifest with the 
Sysinternals Sigcheck utility, like this: 

1. sigcheck –m   

EXPERIMENT: using application Compatibility Flags 

In this experiment, we will use an application compatibility flag to run the Registry Editor as a 
standard user process. This will bypass the RequireAdministrator manifest flag and force 
virtualization on Regedit.exe, allowing you to make changes to the virtualized registry directly. 

1. Navigate to your %SystemRoot%\System32 directory, and copy the Regedt32.exe file to 
another path on your system (such as C:\ or your Desktop folder).  
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2. Go to the HKLM\Software\Microsoft\WindowsNT\CurrentVersion \AppCompatFlags\Layers 
registry key, and create a new string value whose name is the path where you copied Regedt32.exe, 
such as c:\regedt32.exe 

3. Set the value of this key to RUNASINVOKER.  

4. Now start Regedt32.exe from its location (be sure to close any running copies of the Registry 
Editor first). You will not see the typical AAM dialog box, and Regedit.exe will now run with 
standard user rights. You will also be subject to the virtualized view of the registry, meaning you 
can now see what legacy applications see when accessing the registry. 

6.8 Software Restriction Policies 

Windows also contains a user-mode mechanism called Software Restriction Policies that 
enables administrators to control what images and scripts execute on their systems. The Software 
Restriction Policies node of the Local Security Policy Editor, shown in Figure 6-20, serves as the 
management interface for a machine’s code execution policies, although peruser policies are also 
possible using domain group policies. 
Several global policy settings appear beneath the Software Restriction Policies node.  
■ The Enforcement policy configures whether restriction policies apply to libraries, such as DLLs, 
and whether policies apply to users only or to administrators as well. 
■ The Designated File Types policy records the extensions for files that are considered executable 
code. 
■ Trusted Publishers control who can select which certificate publishers are trusted. 

  

When configuring a policy for a particular script or image, an administrator can direct the 
system to recognize it using its path, its hash, its Internet Zone (as defined by Internet Explorer), 
or its cryptographic certificate, and she can specify whether it is associated with the Disallowed or 
Unrestricted security policy. 
Enforcement of Software Restriction Policies takes place within various components where files 
are treated as containing executable code. Some of these components are listed here: 
■ The user-mode Windows CreateProcess function in %SystemRoot%\System32\Kernel32.dll 
enforces it for executable images. 
■ The DLL loading code of Ntdll (%SystemRoot%\System32\Ntdll.dll) enforces it for DLLs. 
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■ The Windows command prompt (%SystemRoot%\System32\Cmd.exe) enforces it for batch file 
execution. 
■ Windows Scripting Host components that start scripts—%SystemRoot%\System32\Cscript.exe 
(for command-line scripts), %SystemRoot%\System32\Wscript.exe (for UI scripts), and 
%SystemRoot%\System32\Scrobj.dll (for script objects)—enforce it for script execution. 
Each of these components determines whether the restriction policies are enabled by reading the 
registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Policies\Windows\Safer 
\CodeIdentifiers\TransparentEnabled, which if set to 1 indicates that policies are in effect. Then it 
determines whether the code it’s about to execute matches one of the rules specified in a subkey of 
the CodeIdentifiers key and, if so, whether or not the execution should be allowed. If there is no 
match, the default policy, as specified in the DefaultLevel value of the CodeIdentifiers key, 
determines whether the execution is allowed.  

Software Restriction Policies are a powerful tool for preventing the unauthorized access of 
code and scripts, but only if properly applied. Unless the default policy is set to disallow execution, 
a user can make minor changes to an image that’s been marked as disallowed so that he can 
bypass the rule and execute it. For example, a user can change an innocuous byte of a process 
image so that a hash rule fails to recognize it, or copy a file to a different location to avoid a 
path-based rule. 
EXPERIMENT: Watching Software Restriction Policy enforcement 

You can indirectly see Software Restriction Policies being enforced by watching accesses to 
the registry when you attempt to execute an image that you’ve disallowed. 
1. Run secpol.msc to open the Local Security Policy Editor, and navigate to the Software 
Restriction Policies node. 
2. Choose Create New Policies from the context menu if no policies are defined. 
3. Create a path-based disallow restriction policy for %SystemRoot%\System32\Notepad.exe. 
4. Run Process Monitor, and set an include filter for Safer. (See Chapter 4 for a description of 
Process Monitor.) 
5. Open a command prompt, and run Notepad from the prompt. 
Your attempt to run Notepad should result in a message telling you that you cannot execute the 
specified program, and Process Monitor should show the command prompt (cmd.exe) querying 
the local machine restriction policies. 

6.9 Conclusion 

Windows provides an extensive array of security functions that meet the key requirements of 
both government agencies and commercial installations. In this chapter, we’ve taken a brief tour 
of the internal components that are the basis of these security features. In the next chapter, we’ll 
look at the I/O system. 
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7. I/O System 

The Windows I/O system consists of several executive components that together manage 
hardware devices and provide interfaces to hardware devices for applications and the system. In 
this chapter, we’ll first list the design goals of the I/O system, which have influenced its 
implementation. We’ll then cover the components that make up the I/O system, including the I/O 
manager, Plug and Play (PnP) manager, and power manager. Then we’ll examine the structure and 
components of the I/O system and the various types of device drivers. We’ll look at the key data 
structures that describe devices, device drivers, and I/O requests, after which we’ll describe the 
steps necessary to complete I/O requests as they move through the system. Finally, we’ll present 
the way device detection, driver installation, and power management work. 

7.1 I/O System Components 

The design goals for the Windows I/O system are to provide an abstraction of devices, both 
hardware (physical) and software (virtual or logical), to applications with the following features: 

■ Uniform security and naming across devices to protect shareable resources. (See Chapter 6 for a 
description of the Windows security model.) 

■ High-performance asynchronous packet-based I/O to allow for the implementation of scalable 
applications. 

■ Services that allow drivers to be written in a high-level language and easily ported between 
different machine architectures. 

■ Layering and extensibility to allow for the addition of drivers that transparently modify the 
behavior of other drivers or devices, without requiring any changes to the driver whose behavior 
or device is modified. 

■ Dynamic loading and unloading of device drivers so that drivers can be loaded on-demand and 
not consume system resources when unneeded. 

■ Support for Plug and Play, where the system locates and installs drivers for newly detected 
hardware, assigns them hardware resources they require, and also allows applications to discover 
and activate device interfaces. 

■ Support for power management so that the system or individual devices can enter low power 
states. 

■ Support for multiple installable file systems, including FAT, the CD-ROM file system (CDFS), 
the Universal Disk Format (UDF) file system, and the Windows file system (NTFS). (See Chapter 
11 for more specific information on file system types and architecture.) 
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■ Windows Management Instrumentation (WMI) support and diagnosability so that drivers can be 
managed and monitored through WMI applications and scripts. (WMI is described in Chapter 4.) 

To implement these features the Windows I/O system consists of several executive 
components as well as device drivers, which are shown in Figure 7-1. 

■ The I/O manager is the heart of the I/O system. It connects applications and system components 
to virtual, logical, and physical devices, and it defines the infrastructure that supports device 
drivers. 

■ A device driver typically provides an I/O interface for a particular type of device. Device drivers 
receive commands routed to them by the I/O manager that are directed at devices they manage, 
and they inform the I/O manager when those commands complete. Device drivers often use the 
I/O manager to forward I/O commands to other device drivers that share in the implementation of 
a device’s interface or control. 

■ The PnP manager works closely with the I/O manager and a type of device driver called a bus 
driver to guide the allocation of hardware resources as well as to detect and respond to the arrival 
and removal of hardware devices. The PnP manager and bus drivers are responsible for loading a 
device’s driver when the device is detected. When a device is added to a system that doesn’t have 
an appropriate device driver, the executive Plug and Play component calls on the device 
installation services of a user-mode PnP manager. 

■ The power manager also works closely with the I/O manager to guide the system, as well as 
individual device drivers, through power-state transitions. 

■ Windows Management Instrumentation support routines, called the Windows Driver Model 
(WDM) WMI provider, allow device drivers to indirectly act as providers, using the WDM WMI 
provider as an intermediary to communicate with the WMI service in user mode. (For more 
information on WMI, see the section “Windows Management Instrumentation” in Chapter 4.) 

■ The registry serves as a database that stores a description of basic hardware devices attached to 
the system as well as driver initialization and configuration settings. (See the section “The 
Registry” in Chapter 4 for more information.) 

■ INF files, which are designated by the .inf extension, are driver installation files. INF files are 
the link between a particular hardware device and the driver that assumes primary control of the 
device. They are made up of scriptlike instructions describing the device they correspond to, the 
source and target locations of driver files, required driver-installation registry modifications, and 
driver dependency information. Digital signatures that Windows uses to verify that a driver file 
has passed testing by the Microsoft Windows Hardware Quality Labs (WHQL) are stored in .cat 
files. 

■ The hardware abstraction layer (HAL) insulates drivers from the specifics of the processor and 
interrupt controller by providing APIs that hide differences between platforms. In essence, the 
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HAL is the bus driver for all the devices on the computer’s motherboard that aren’t controlled by 
other drivers. 

  

The I/O Manager 

The I/O manager is the core of the I/O system because it defines the orderly framework, or model, 
within which I/O requests are delivered to device drivers. The I/O system is packet driven. Most 
I/O requests are represented by an I/O request packet (IRP), which travels from one I/O system 
component to another. (As you’ll discover in the section “Fast I/O,” fast I/O is the exception; it 
doesn’t use IRPs.) The design allows an individual application thread to manage multiple I/O 
requests concurrently. An IRP is a data structure that contains information completely describing 
an I/O request. (You’ll find more information about IRPs in the section “I/O Request Packets.”) 

The I/O manager creates an IRP that represents an I/O operation, passing a pointer to the IRP to 
the correct driver and disposing of the packet when the I/O operation is complete. In contrast, a 
driver receives an IRP, performs the operation the IRP specifies, and passes the IRP back to the 
I/O manager, either for completion or to be passed on to another driver for further processing. 

In addition to creating and disposing of IRPs, the I/O manager supplies code that is common to 
different drivers and that the drivers call to carry out their I/O processing. By consolidating 
common tasks in the I/O manager, individual drivers become simpler and more compact. For 
example, the I/O manager provides a function that allows one driver to call other drivers. It also 
manages buffers for I/O requests, provides timeout support for drivers, and records which 
installable file systems are loaded into the operating system. There are close to a hundred different 
routines in the I/O manager that can be called by device drivers. 
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The I/O manager also provides flexible I/O services that allow environment subsystems, such as 
Windows and POSIX, to implement their respective I/O functions. These services include 
sophisticated services for asynchronous I/O that allow developers to build scalable 
highperformance server applications. 

The uniform, modular interface that drivers present allows the I/O manager to call any driver 
without requiring any special knowledge of its structure or internal details. The operating system 
treats all I/O requests as if they were directed at a file; the driver converts the requests from 
requests made to a virtual file to hardware-specific requests. Drivers can also call each other 
(using the I/O manager) to achieve layered, independent processing of an I/O request.  

Besides providing the normal open, close, read, and write functions, the Windows I/O system 
provides several advanced features, such as asynchronous, direct, buffered, and scatter/gather I/O, 
which are described in the “Types of I/O” section later in this chapter.  

Typical I/O Processing 

Most I/O operations don’t involve all the components of the I/O system. A typical I/O request 
starts with an application executing an I/O-related function (for example, reading data from a 
device) that is processed by the I/O manager, one or more device drivers, and the HAL.  

As just mentioned, in Windows, threads perform I/O on virtual files. The operating system 
abstracts all I/O requests as operations on a virtual file, hiding the fact that the target of an I/O 
operation might not be a file-structured device. This abstraction generalizes an application’s 
interface to devices. A virtual file refers to any source or destination for I/O that is treated as if it 
were a file (such as files, directories, pipes, and mailslots). All data that is read or written is 
regarded as a simple stream of bytes directed to these virtual files. User-mode applications 
(whether Windows or POSIX) call documented functions, which in turn call internal I/O system 
functions to read from a file, write to a file, and perform other operations. The I/O manager 
dynamically directs these virtual file requests to the appropriate device driver. Figure 7-2 
illustrates the basic structure of a typical I/O request flow. 
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In the following sections, we’ll be looking at these components more closely, covering the various 
types of device drivers, how they are structured, how they load and initialize, and how they 
process I/O requests. Then we’ll cover the operation and roles of the PnP manager and the power 
manager. 

7.2 Device Drivers 

To integrate with the I/O manager and other I/O system components, a device driver must 
conform to implementation guidelines specific to the type of device it manages and the role it 
plays in managing the device. In this section, we’ll look at the types of device drivers Windows 
supports as well as the internal structure of a device driver. 

7.2.1 Types of Device Drivers 

Windows supports a wide range of device driver types and programming environments. Even 
within a type of device driver, programming environments can differ, depending on the specific 
type of device for which a driver is intended. The broadest classification of a driver is whether it is 
a user-mode or kernel-mode driver. Windows supports several types of usermode drivers: 

■ Virtual device drivers (VDDs) are used to emulate 16-bit MS-DOS applications. They trap what 
an MS-DOS application thinks are references to I/O ports and translate them into native Windows 
I/O functions, which are then passed to the actual device driver. Because Windows is a fully 
protected operating system, user-mode MS-DOS applications can’t access hardware directly and 
thus must go through a real kernel-mode device driver. Because 64-bit editions of Windows do not 
support 16-bit applications anymore, these types of drivers are not present on that architecture. 
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■ Windows subsystem printer drivers translate device-independent graphics requests to 
printer-specific commands. These commands are then typically forwarded to a kernelmode port 
driver such as the parallel port driver (Parport.sys) or the universal serial bus (USB) printer port 
driver (Usbprint.sys). 

■ User-Mode Driver Framework (UMDF) drivers are hardware device drivers that run in user 
mode. They communicate to the kernel-mode UMDF support library through ALPC. See the 
“User-Mode Driver Framework (UMDF)” section later in this chapter for more information. In 
this chapter, the focus is on kernel-mode device drivers. There are many types of kernelmode 
drivers, which can be divided into the following basic categories: 

■ File system drivers accept I/O requests to files and satisfy the requests by issuing their own, 
more explicit, requests to mass storage or network device drivers. 

■ Plug and Play drivers work with hardware and integrate with the Windows power manager and 
PnP manager. They include drivers for mass storage devices, video adapters, input devices, and 
network adapters. 

■ Non–Plug and Play drivers, which also include kernel extensions, are drivers or modules that 
extend the functionality of the system. They do not integrate with the PnP or power managers 
because they typically do not manage an actual piece of hardware. Examples include network API 
and protocol drivers. Process Monitor’s driver, described in Chapter 4, is also an example. 

Within the category of kernel-mode drivers are further classifications based on the driver model 
that the driver adheres to and its role in servicing device requests.  

WDM Drivers 

WDM drivers are device drivers that adhere to the Windows Driver Model (WDM). WDM 
includes support for Windows power management, Plug and Play, and WMI, and most Plug and 
Play drivers adhere to WDM. There are three types of WDM drivers: 

■ Bus drivers manage a logical or physical bus. Examples of buses include PCMCIA, PCI, USB, 
IEEE 1394, and ISA. A bus driver is responsible for detecting and informing the PnP manager of 
devices attached to the bus it controls as well as managing the power setting of the bus. 

■ Function drivers manage a particular type of device. Bus drivers present devices to function 
drivers via the PnP manager. The function driver is the driver that exports the operational interface 
of the device to the operating system. In general, it’s the driver with the most knowledge about the 
operation of the device. 

■ Filter drivers logically layer above or below function drivers, augmenting or changing the 
behavior of a device or another driver. For example, a keyboard capture utility could be 
implemented with a keyboard filter driver that layers above the keyboard function driver. 
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In WDM, no one driver is responsible for controlling all aspects of a particular device. The bus 
driver is responsible for detecting bus membership changes (device addition or removal), assisting 
the PnP manager in enumerating the devices on the bus, accessing bus-specific configuration 
registers, and, in some cases, controlling power to devices on the bus. The function driver is 
generally the only driver that accesses the device’s hardware. 

Layered Drivers 

Support for an individual piece of hardware is often divided among several drivers, each providing 
a part of the functionality required to make the device work properly. In addition to WDM bus 
drivers, function drivers, and filter drivers, hardware support might be split between the following 
components: 

■ Class drivers implement the I/O processing for a particular class of devices, such as disk, tape, 
or CD-ROM, where the hardware interfaces have been standardized, so one driver can serve 
devices from a wide variety of manufacturers. 

■ Port drivers implement the processing of an I/O request specific to a type of I/O port, such as 
SCSI, and are implemented as kernel-mode libraries of functions rather than actual device drivers. 
Port drivers are always written by Microsoft because the interfaces to write for are not 
documented. 

■ Miniport drivers map a generic I/O request to a type of port into an adapter type, such as a 
specific SCSI adapter. Miniport drivers are actual device drivers that import the functions supplied 
by a port driver. Miniport drivers are written by third parties, and they provide the interface for the 
port driver. 

An example will help demonstrate how device drivers work. A file system driver accepts a request 
to write data to a certain location within a particular file. It translates the request into a request to 
write a certain number of bytes to the disk at a particular “logical” location. It then passes this 
request (via the I/O manager) to a simple disk driver. The disk driver, in turn, translates the 
request into a physical location on the disk and communicates with the disk to write the data. This 
layering is illustrated in Figure 7-3. 
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This figure illustrates the division of labor between two layered drivers. The I/O manager receives 
a write request that is relative to the beginning of a particular file. The I/O manager passes the 
request to the file system driver, which translates the write operation from a file-relative operation 
to a starting location (a sector boundary on the disk) and a number of bytes to read. The file 
system driver calls the I/O manager to pass the request to the disk driver, which translates the 
request to a physical disk location and transfers the data.  

Because all drivers—both device drivers and file system drivers—present the same framework to 
the operating system, another driver can easily be inserted into the hierarchy without altering the 
existing drivers or the I/O system. For example, several disks can be made to seem like a very 
large single disk by adding a driver. This logical, volume manager driver is located between the 
file system and the disk drivers, as shown in Figure 7-4. Volume manager drivers are described in 
more detail in Chapter 8. 
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EXPERIMENT: Viewing the Loaded Driver List 

You can see a list of registered drivers by executing the Msinfo32.exe utility from the Run dialog 
box of the Start menu. Select the System Drivers entry under Software Environment to see the list 
of drivers configured on the system. Those that are loaded have the text “Yes” in the Started 
column, as shown here: 
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You can also view the list of loaded kernel-mode drivers with Process Explorer from Windows 
Sysinternals (www.microsoft.com/technet/sysinternals.) Run Process Explorer, select the System 
process, and select DLLs from the Lower Pane menu entry in the View menu. Process Explorer 
lists the loaded drivers, their names, version information (including company and description), and 
load address (assuming you have configured Process Explorer to display the corresponding 
columns): 

  

Finally, if you’re looking at a crash dump (or live system) with the kernel debugger, you can get a 
similar display with the kernel debugger lm kv command: 

1. lkd> lm kv   
2. start end module name   
3. 82007000 823c0000 nt (pdb symbols)   
4. c:\programming\symbols\ntkrpamp.pdb\37D328E3BAE5460F8E662756ED80951D2 

\ntkrpamp.pdb   
5. Loaded symbol image file: ntkrpamp.exe   
6. Image path: ntkrpamp.exe   
7. Image name: ntkrpamp.exe   
8. Timestamp: Fri Jan 18 21:30:58 2008 (47918B12)   
9. CheckSum: 00372038  
10. ImageSize: 003B9000  
11. File version: 6.0.6001.18000  
12. Product version: 6.0.6001.18000  
13. File flags: 0 (Mask 3F)   
14. File OS: 40004 NT Win32  
15. File type: 1.0 App   
16. File date: 00000000.00000000  
17. Translations: 0409.04b0  
18. CompanyName: Microsoft Corporation   
19. ProductName: Microsoft® Windows® Operating System   
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20. InternalName: ntkrpamp.exe   
21. OriginalFilename: ntkrpamp.exe   
22. ProductVersion: 6.0.6001.18000  
23. FileVersion: 6.0.6001.18000 (longhorn_rtm.080118-1840)   
24. FileDescription: NT Kernel & System   
25. LegalCopyright: © Microsoft Corporation. All rights reserved.   
26. 823c0000 823f3000 hal (deferred)   
27. Image path: halmacpi.dll   
28. Image name: halmacpi.dll   
29. Timestamp: Fri Jan 18 21:27:20 2008 (47918A38)   
30. CheckSum: 0003859F   
31. ImageSize: 00033000  
32. Translations: 0000.04b0 0000.04e0 0409.04b0 0409.04e0  
33. 82600000 82671000 ksecdd (deferred)   
34. Image path: \SystemRoot\System32\Drivers\ksecdd.sys   
35. Image name: ksecdd.sys   
36. Timestamp: Fri Jan 18 21:41:20 2008 (47918D80)   
37. CheckSum: 0006E742  
38. ImageSize: 00071000  
39. Translations: 0000.04b0 0000.04e0 0409.04b0 0409.04e0  

7.2.2 Structure of a Driver 

The I/O system drives the execution of device drivers. Device drivers consist of a set of routines 
that are called to process the various stages of an I/O request. Figure 7-5 illustrates the key 
driver-function routines. 

  

■ An initialization routine The I/O manager executes a driver’s initialization routine, which is 
typically named DriverEntry, when it loads the driver into the operating system. The routine fills 
in system data structures to register the rest of the driver’s routines with the I/O manager and 
performs any global driver initialization that’s necessary. 
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■ An add-device routine A driver that supports Plug and Play implements an adddevice routine. 
The PnP manager sends a driver notification via this routine whenever a device for which the 
driver is responsible is detected. In this routine, a driver typically allocates a device object 
(described later in this chapter) to represent the device. 

■ A set of dispatch routines Dispatch routines are the main functions that a device driver provides. 
Some examples are open, close, read, and write and any other capabilities the device, file system, 
or network supports. When called on to perform an I/O operation, the I/O manager generates an 
IRP and calls a driver through one of the driver’s dispatch routines. 

■ A start I/O routine A driver can use a start I/O routine to initiate a data transfer to or from a 
device. This routine is defined only in drivers that rely on the I/O manager to queue their incoming 
I/O requests. The I/O manager serializes IRPs for a driver by ensuring that the driver processes 
only one IRP at a time. Most drivers process multiple IRPs concurrently, but serialization makes 
sense for some drivers, such as a keyboard driver. 

■ An interrupt service routine (ISR) When a device interrupts, the kernel’s interrupt dispatcher 
transfers control to this routine. In the Windows I/O model, ISRs run at device interrupt request 
level (DIRQL), so they perform as little work as possible to avoid blocking lower-level interrupts 
unnecessarily. (See Chapter 3 for more information on IRQLs.) An ISR usually queues a deferred 
procedure call (DPC), which runs at a lower IRQL (DPC/dispatch level), to execute the remainder 
of interrupt processing. (Only drivers for interrupt-driven devices have ISRs; a file system driver, 
for example, doesn’t have one.) 

■ An interrupt-servicing DPC routine A DPC routine performs most of the work involved in 
handling a device interrupt after the ISR executes. The DPC routine executes at a lower IRQL 
(DPC/dispatch level) than that of the ISR, which runs at device level, to avoid blocking other 
interrupts unnecessarily. A DPC routine initiates I/O completion and starts the next queued I/O 
operation on a device. Although the following routines aren’t shown in Figure 7-5, they’re found 
in many types of device drivers: 

■ One or more I/O completion routines A layered driver might have I/O completion routines that 
will notify it when a lower-level driver finishes processing an IRP. For example, the I/O manager 
calls a file system driver’s I/O completion routine after a device driver finishes transferring data to 
or from a file. The completion routine notifies the file system driver about the operation’s success, 
failure, or cancellation, and it allows the file system driver to perform cleanup operations. 

■ A cancel I/O routine If an I/O operation can be canceled, a driver can define one or more cancel 
I/O routines. When the driver receives an IRP for an I/O request that can be canceled, it assigns a 
cancel routine to the IRP. If a thread that issues an I/O request exits before the request is 
completed or cancels the operation (with the CancelIo Windows function, for example), the I/O 
manager executes the IRP’s cancel routine if one is assigned to it. A cancel routine is responsible 
for performing whatever steps are necessary to release any resources acquired during the 
processing that has already taken place for the IRP as well as completing the IRP with a canceled 
status. 
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■ Fast dispatch routines Drivers that make use of the cache manager in Windows (see Chapter 10 
for more information on the cache manager), such as file system drivers, typically provide these 
routines to allow the kernel to bypass typical I/O processing when accessing the driver. For 
example, operations such as reading or writing can be quickly performed by accessing the cached 
data directly, instead of taking the I/O manager’s usual path that generates discrete I/O operations. 
Fast dispatch routines are also used as a mechanism for callbacks from the memory manager and 
cache manager to file system drivers. For instance, when creating a section, the memory manager 
calls back into the file system driver to acquire the file exclusively. 

■ An unload routine An unload routine releases any system resources a driver is using so that the 
I/O manager can remove them from memory. Any resources acquired in the initialization routine 
are usually released in the unload routine. A driver can be loaded and unloaded while the system is 
running if the driver supports it, but the unload routine will be called only after all file handles to 
the device are closed. 

■ A system shutdown notification routine This routine allows driver cleanup on system shutdown. 

■ Error-logging routines When unexpected errors occur (for example, when a disk block goes 
bad), a driver’s error-logging routines note the occurrence and notify the I/O manager. The I/O 
manager writes this information to an error log file. 

Note Most kernel-mode device drivers are written in C. Some drivers are written in C++, but 
there’s no specific support for C++ in the Windows Driver Kit (WDK). Use of assembly language 
is highly discouraged because of the complexity it introduces and its effect of making a driver 
difficult to port between hardware architectures such as the x86, x64, and IA64. 

7.2.3 Driver Objects and Device Objects 

When a thread opens a handle to a file object (described in the “I/O Processing” section later in 
this chapter), the I/O manager must determine from the file object’s name which driver (or drivers) 
it should call to process the request. Furthermore, the I/O manager must be able to locate this 
information the next time a thread uses the same file handle. The following system objects fill this 
need: 

■ A driver object represents an individual driver in the system. The I/O manager obtains the 
address of each of the driver’s dispatch routines (entry points) from the driver object. 

■ A device object represents a physical or logical device on the system and describes its 
characteristics, such as the alignment it requires for buffers and the location of its device queue to 
hold incoming IRPs. 

The I/O manager creates a driver object when a driver is loaded into the system, and it then calls 
the driver’s initialization routine (for example, DriverEntry), which fills in the object attributes 
with the driver’s entry points. 
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After loading, a driver can create device objects to represent devices, or even an interface to the 
driver, at any time by calling IoCreateDevice or IoCreateDeviceSecure. However, most Plug and 
Play drivers create devices with their add-device routine when the PnP manager informs them of 
the presence of a device for them to manage. Non–Plug and Play drivers, on the other hand, 
usually create device objects when the I/O manager invokes their initialization routine. The I/O 
manager unloads a driver when its last device object has been deleted and no references to the 
driver remain. 

When a driver creates a device object, the driver can optionally assign the device a name. A name 
places the device object in the object manager namespace, and a driver can either explicitly define 
a name or let the I/O manager autogenerate one. (The object manager namespace is described in 
Chapter 3.) By convention, device objects are placed in the \Device directory in the namespace, 
which is inaccessible by applications using the Windows API. 

Note Some drivers place device objects in directories other than \Device. For example, the IDE 
driver creates the device objects that represent IDE ports and channels in the \Device\Ide directory. 
See Chapter 8 for a description of storage architecture, including the way storage drivers use 
device objects. 

If a driver needs to make it possible for applications to open the device object, it must create a 
symbolic link in the \Global?? directory to the device object’s name in the \Device directory. (See 
Chapter 3 for more information on \??.) Non–Plug and Play and file system drivers typically 
create a symbolic link with a well-known name (for example, \Device\Hardware2). Because 
well-known names don’t work well in an environment in which hardware appears and disappears 
dynamically, PnP drivers expose one or more interfaces by calling the IoRegisterDeviceInterface 
function, specifying a GUID (globally unique identifier) that represents the type of functionality 
exposed. GUIDs are 128-bit values that you can generate by using a tool called Guidgen that is 
included with the WDK and the Windows SDK. Given the range of values that 128 bits represents, 
it’s statistically almost certain that each GUID that Guidgen creates will be forever and globally 
unique. 

IoRegisterDeviceInterface determines the symbolic link that is associated with a device instance; 
however, a driver must call IoSetDeviceInterfaceState to enable the interface to the device before 
the I/O manager actually creates the link. Drivers usually do this when the PnP manager starts the 
device by sending the driver a start-device command. 

An application wanting to open a device object represented with a GUID can call Plug and 
Play setup functions in user space, such as SetupDiEnumDeviceInterfaces, to enumerate the 
interfaces present for a particular GUID and to obtain the names of the symbolic links it can use to 
open the device objects. For each device reported by SetupDiEnumDeviceInterfaces, an 
application executes SetupDiGetDeviceInterfaceDetail to obtain additional information about the 
device, such as its autogenerated name. After obtaining a device’s name from SetupDiGetDevice- 
InterfaceDetail, the application can execute the Windows function CreateFile to open the device 
and obtain a handle. 
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EXPERIMENT: Looking at the \Device Directory 

You can use the WinObj tool from Sysinternals or the !object kernel debugger command to view 
the device names under \Device in the object manager namespace. The following screen shot 
shows an I/O manager–assigned symbolic link that points to a device object in \Device with an 
autogenerated name: 

  

When you run the !object kernel debugger command and specify the \Device directory, you 
should see output similar to the following: 

1. lkd> !object \Device   
2. Object: 8b611b88 Type: (84d10d40) Directory   
3. ObjectHeader: 8b611b70 (old version)   
4. HandleCount: 0 PointerCount: 365  
5. Directory Object: 8b602470 Name: Device   
6. Hash Address Type Name   
7. ---- ------- ---- ----   
8. 00 85557a00 Device KsecDD   
9. 855589d8 Device Ndis   
10. 8b6151b0 SymbolicLink {941D252A-0BDA-4772-B3CB-30697579BD4A}   
11. 86859030 Device 0000009b   
12. 88c92da8 Device SrvNet   
13. 886723f0 Device Beep   
14. 8b71fb90 SymbolicLink ScsiPort2  
15. 84d17a98 Device 00000032  
16. 84d15f00 Device 00000025  
17. 84d13030 Device 00000019  
18. 01 86d44030 Device NDMP10  
19. 8d291eb0 SymbolicLink {E85EEE75-32E3-4A94-8905-52709C2C9BCC}   
20. 886da3c8 Device Netbios   
21. 86862030 Device 0000009c   
22. 84d177c8 Device 00000033  
23. 84d15c70 Device 00000026  
24. 02 86de9030 Device NDMP11  
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25. 84d19320 Device 00000040  
26. 88633ca0 Device NetBT_Tcpip_{033C65A4-C1D6-4824-B420-DDAEADFF873E}   
27. 8b7dcdd0 SymbolicLink Ip   
28. 84d17500 Device 00000034  
29. 84d159a8 Device 00000027  
30. 03 86df3380 Device NDMP12  
31. 8515ede0 Device WMIAdminDevice   
32. 84d1a030 Device 00000041  
33. 8862e040 Device Video0  
34. 86eaec28 Device KeyboardClass0  
35. 84d03b00 Device KMDF0  
36. 84d17230 Device 00000035  
37. 84d156e0 Device 00000028  
38. 04 86e0d030 Device NDMP13  
39. 86e65030 Device NDMP20  
40. 85541030 Device VolMgrControl   
41. 86e6c358 Device Tun0  
42. 84d1ad68 Device 00000042  
43. 8862ec48 Device Video1  
44. 88e15158 Device 0000009f   
45. 9badd848 SymbolicLink MailslotRedirector   
46. 86e1d488 Device KeyboardClass1  
47. §   

When you execute !object and specify an object manager directory object, the kernel debugger 
dumps the contents of the directory according to the way the object manager organizes it 
internally. For fast lookups, a directory stores objects in a hash table based on a hash of the object 
names, so the output shows the objects stored in each bucket of the directory’s hash table. 

As Figure 7-6 illustrates, a device object points back to its driver object, which is how the I/O 
manager knows which driver routine to call when it receives an I/O request. It uses the device 
object to find the driver object representing the driver that services the device. It then indexes into 
the driver object by using the function code supplied in the original request; each function code 
corresponds to a driver entry point. (The function codes shown in Figure 7-6 are described in the 
section “IRP Stack Locations” later in this chapter.) 

A driver object often has multiple device objects associated with it. The list of device objects 
represents the physical and logical devices that the driver controls. For example, each partition of 
a hard disk has a separate device object that contains partition-specific information. However, the 
same hard disk driver is used to access all partitions. When a driver is unloaded from the system, 
the I/O manager uses the queue of device objects to determine which devices will be affected by 
the removal of the driver. 
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EXPERIMENT: Displaying Driver and Device Objects 

You can display driver and device objects with the kernel debugger !drvobj and !devobj 
commands, respectively. In the following example, the driver object for the keyboard class driver 
is examined, and its lone device object viewed: 

1. lkd> !drvobj kbdclass   
2. Driver object (86e379a0) is for:   
3. \Driver\kbdclass   
4. Driver Extension List: (id , addr)   
5. Device Object list:   
6. 86e1d488 86eaec28  
7. lkd> !devobj 86eaec28  
8. Device object (86eaec28) is for:   
9. KeyboardClass0 \Driver\kbdclass DriverObject 86e379a0  
10. Current Irp 00000000 RefCount 0 Type 0000000b Flags 00002044  
11. DevExt 86eaece0 DevObjExt 86eaedc0  
12. ExtensionFlags (0x00000800)   
13. Unknown flags 0x00000800  
14. AttachedDevice (Upper) 86e15a40 \Driver\ctrl2cap   
15. AttachedTo (Lower) 86e15020 \Driver\i8042prt   
16. Device queue is not busy   

Notice that the !devobj command also shows you the addresses and names of any device objects 
that the object you’re viewing is layered over (the AttachedTo line) as well as the device objects 
layered on top of the object specified (the AttachedDevice line). Using objects to record 
information about drivers means that the I/O manager doesn’t need to know details about 
individual drivers. The I/O manager merely follows a pointer to locate a driver, thereby providing 
a layer of portability and allowing new drivers to be loaded easily. Representing devices and 
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drivers with different objects also makes it easy for the I/O system to assign drivers to control 
additional or different devices if the system configuration changes. 

7.2.4 Opening Devices 

File objects are the kernel-mode constructs for handles to files or devices. File objects clearly fit 
the criteria for objects in Windows: they are system resources that two or more user-mode 
processes can share, they can have names, they are protected by object-based security, and they 
support synchronization. Although most shared resources in Windows are memorybased resources, 
most of those that the I/O system manages are located on physical devices or represent actual 
physical devices. Despite this difference, shared resources in the I/O system, like those in other 
components of the Windows executive, are manipulated as objects. (See Chapter 3 for a 
description of the object manager and Chapter 6 for information on object security.) 

File objects provide a memory-based representation of resources that conform to an I/Ocentric 
interface, in which they can be read from or written to. Table 7-1 lists some of the file object’s 
attributes. For specific field declarations and sizes, see the structure definition for FILE_OBJECT 
in Ntddk.h. 
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In order to maintain some level of opacity toward non-kernel code that uses the file object, as well 
as to enable extending the file object functionality without enlarging the structure, the file object 
also contains an extension field, which allows for up to six different kinds of additional parameters. 
These are described in Table 7-2. 

  

EXPERIMENT: Viewing the File Object Data Structure 

You can view the contents of the kernel-mode file object data structure with the kernel debugger’s 
dt command: 

1. lkd> dt nt!_FILE_OBJECT   
2. +0x000 Type : Int2B   
3. +0x002 Size : Int2B   
4. +0x004 DeviceObject : Ptr32 _DEVICE_OBJECT   
5. +0x008 Vpb : Ptr32 _VPB   
6. +0x00c FsContext : Ptr32 Void   
7. +0x010 FsContext2 : Ptr32 Void   
8. +0x014 SectionObjectPointer : Ptr32 _SECTION_OBJECT_POINTERS   
9. +0x018 PrivateCacheMap : Ptr32 Void   
10. +0x01c FinalStatus : Int4B   
11. +0x020 RelatedFileObject : Ptr32 _FILE_OBJECT   
12. +0x024 LockOperation : UChar   
13. +0x025 DeletePending : UChar   
14. +0x026 ReadAccess : UChar   
15. +0x027 WriteAccess : UChar   
16. +0x028 DeleteAccess : UChar   
17. +0x029 SharedRead : UChar   
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18. +0x02a SharedWrite : UChar   
19. +0x02b SharedDelete : UChar   
20. +0x02c Flags : Uint4B   
21. +0x030 FileName : _UNICODE_STRING   
22. +0x038 CurrentByteOffset : _LARGE_INTEGER   
23. +0x040 Waiters : Uint4B   
24. +0x044 Busy : Uint4B   
25. +0x048 LastLock : Ptr32 Void   
26. +0x04c Lock : _KEVENT   
27. +0x05c Event : _KEVENT   
28. +0x06c CompletionContext : Ptr32 _IO_COMPLETION_CONTEXT   
29. +0x070 IrpListLock : Uint4B   
30. +0x074 IrpList : _LIST_ENTRY   
31. +0x07c FileObjectExtension : Ptr32 Void   

When a caller opens a file or a simple device, the I/O manager returns a handle to a file object. 
Figure 7-7 illustrates what occurs when a file is opened. 

In this example, (1) a C program calls the run-time library function fopen, which in turn (2) calls 
the Windows CreateFile function. The Windows subsystem DLL (in this case, Kernel32.dll) then 
(3) calls the native NtCreateFile function in Ntdll.dll. The routine in Ntdll.dll contains the 
appropriate instruction to cause a transition into kernel mode to the system service dispatcher, 
which then (4) calls the real NtCreateFile routine in Ntoskrnl.exe. (See Chapter 3 for more 
information about system service dispatching.) Finally, this routine wraps the parameters and flags 
in such a way that the I/O manager function IoCreateFile can actually perform the operation. 
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Note File objects represent open instances of files, not files themselves. Unlike UNIX systems, 
which use vnodes, Windows does not define the representation of a file; Windows system drivers 
define their own representations. 

Like other executive objects, files are protected by a security descriptor that contains an 
access-control list (ACL). The I/O manager consults the security subsystem to determine whether 
a file’s ACL allows the process to access the file in the way its thread is requesting. If it does, (5, 6) 
the object manager grants the access and associates the granted access rights with the file handle 
that it returns. If this thread or another thread in the process needs to perform additional operations 
not specified in the original request, the thread must open the same file again with a different 
request to get another handle, which prompts another security check. (See Chapter 6 for more 
information about object protection.) 

EXPERIMENT: Viewing Device Handles 

Any process that has an open handle to a device will have a file object in its handle table 
corresponding to the open instance. You can view these handles with Process Explorer by 
selecting a process, checking Show Lower Pane in the View menu and Handles in the Lower Pane 
View submenu of the View menu. Sort by the Type column and scroll to where you see the 
handles that represent file objects, which are labeled as File: 
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In this example the Csrss process has a handle open to a device created by the kernel security 
device driver (Ksecdd.sys). You can look at the specific file object in the kernel debugger by first 
identifying the address of the object. The following command reports information on the 
highlighted handle (handle value 0xF8) in the preceding screen shot, which is in the Csrss.exe 
process that has a process ID of 504 (0x1f8): 

1. lkd> !handle f8 f 1f8  
2. processor number 0, process 000001f8  
3. Searching for Process with Cid == 1f8  
4. PROCESS 88a4a4f0 SessionId: 0 Cid: 01f8 Peb: 7ffdf000 ParentCid: 01ec   
5. DirBase: cc530060 ObjectTable: 915f8418 HandleCount: 403.   
6. Image: csrss.exe   
7. Handle table at 98177000 with 403 Entries in use   
8. 00f8: Object: 88b99930 GrantedAccess: 193b0022 (Protected) Entry:    915fd1f0  
9. Object: 88b99930 Type: (8515a040) File   
10. ObjectHeader: 88b99918 (old version)   
11. HandleCount: 1 PointerCount: 1  

Because the object is a file object, you can get information about it with the !fileobj 
command: 

1. lkd> !fileobj 88b99930  
2. Device Object: 0x85557a00 \Driver\KSecDD   
3. Vpb is NULL   
4. Event signalled   
5. Flags: 0x40002  
6. Synchronous IO   
7. Handle Created   
8. CurrentByteOffset: 0  
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Because a file object is a memory-based representation of a shareable resource and not the 
resource itself, it’s different from other executive objects. A file object contains only data that is 
unique to an object handle, whereas the file itself contains the data or text to be shared. Each time 
a thread opens a file, a new file object is created with a new set of handle-specific attributes. For 
example, the current byte offset attribute refers to the location in the file at which the next read or 
write operation using that handle will occur. Each handle to a file has a private byte offset even 
though the underlying file is shared. A file object is also unique to a process, except when a 
process duplicates a file handle to another process (by using the Windows DuplicateHandle 
function) or when a child process inherits a file handle from a parent process. In these situations, 
the two processes have separate handles that refer to the same file object. 

Although a file handle might be unique to a process, the underlying physical resource is not. 
Therefore, as with any shared resource, threads must synchronize their access to shareable files, 
file directories, and devices. If a thread is writing to a file, for example, it should specify exclusive 
write access when opening the file to prevent other threads from writing to the file at the same 
time. Alternatively, by using the Windows LockFile function, the thread could lock a portion of 
the file while writing to it.. 

When a file is opened, the file name includes the name of the device object on which the file 
resides. For example, the name \Device\HarddiskVolume1\Myfile.dat refers to the file Myfile.dat 
on the C: volume. The substring \Device\HarddiskVolume1 is the name of the internal Windows 
device object representing that volume. When opening Myfile.dat, the I/O manager creates a file 
object and stores a pointer to the Floppy0 device object in the file object and then returns a file 
handle to the caller. Thereafter, when the caller uses the file handle, the I/O manager can find the 
HarddiskVolume1 device object directly. Keep in mind that internal Windows device names can’t 
be used in Windows applications—instead, the device name must appear in a special directory in 
the object manager’s namespace, which is \Global??. This directory contains symbolic links to the 
real, internal Windows device names. Device drivers are responsible for creating links in this 
directory so that their devices will be accessible to Windows applications. You can examine or 
even change these links programmatically with the Windows QueryDosDevice and 
DefineDosDevice functions. 

EXPERIMENT: Viewing Windows Device Name to Windows Device Name 
Mappings 

You can examine the symbolic links that define the Windows device namespace with the 
WinObj utility from Sysinternals. Run WinObj, and click on the \Global?? directory, as shown 
here:  
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Notice the symbolic links on the right. Try double-clicking on the device C:. You should see 
something like this: 

 

C: is a symbolic link to the internal device named \Device\HarddiskVolume3, or the first 
volume on the first hard drive in the system. The COM1 entry in WinObj is a symbolic link to 
\Device\Serial0, and so forth. Try creating your own links with the subst command at a command 
prompt. 

7.3 I/O Processing 

Now that we’ve covered the structure and types of drivers and the data structures that support 
them, let’s look at how I/O requests flow through the system. I/O requests pass through several 
predictable stages of processing. The stages vary depending on whether the request is destined for 
a device operated by a single-layered driver or for a device reached through a multilayered driver. 
Processing varies further depending on whether the caller specified synchronous or asynchronous 
I/O, so we’ll begin our discussion of I/O types with these two and then move on to others.  

7.3.1 Types of I/O 



 515

Applications have several options for the I/O requests they issue. For example, they can specify 
synchronous or asynchronous I/O, I/O that maps a device’s data into the application’s address 
space for access via application virtual memory rather than I/O APIs, and I/O that transfers data 
between a device and noncontiguous application buffers in a single request. Furthermore, the I/O 
manager gives the drivers the choice of implementing a shortcut I/O interface that can often 
mitigate IRP allocation for I/O processing. In this section, we’ll explain each of these I/O 
variations. 

Synchronous and Asynchronous I/O 

Most I/O operations that applications issue are synchronous; that is, the application thread waits 
while the device performs the data transfer and returns a status code when the I/O is complete. The 
program can then continue and access the transferred data immediately. When used in their 
simplest form, the Windows ReadFile and WriteFile functions are executed synchronously. They 
complete an I/O operation before returning control to the caller. Asynchronous I/O allows an 
application to issue an I/O request and then continue executing while the device transfers the data. 
This type of I/O can improve an application’s throughput because it allows the application thread 
to continue with other work while an I/O operation is in progress. To use asynchronous I/O, you 
must specify the FILE_FLAG_OVERLAPPED flag when you call the Windows CreateFile 
function. Of course, after issuing an asynchronous I/O operation, the thread must be careful not to 
access any data from the I/O operation until the device driver has finished the data transfer. The 
thread must synchronize its execution with the completion of the I/O request by monitoring a 
handle of a synchronization object (whether that’s an event object, an I/O completion port, or the 
file object itself) that will be signaled when the I/O is complete. 

Regardless of the type of I/O request, internally I/O operations issued to a driver on behalf of the 
application are performed asynchronously; that is, once an I/O request has been initiated, the 
device driver returns to the I/O system. Whether or not the I/O system returns immediately to the 
caller depends on whether the file was opened for synchronous or asynchronous I/O. Figure 7-8 
illustrates the flow of control when a read operation is initiated. Notice that if a wait is done, 
which depends on the overlapped flag in the file object, it is done in kernel mode by the 
NtReadFile function. 

You can test the status of a pending asynchronous I/O with the Windows HasOverlappedIo- 
Completed function. If you’re using I/O completion ports (described in the “I/O Completion 
Ports” section later in this chapter), you can use the GetQueuedCompletionStatus function. 
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Fast I/O 

Fast I/O is a special mechanism that allows the I/O system to bypass generating an IRP and 
instead go directly to the file system driver stack to complete an I/O request. (Fast I/O is described 
in detail in Chapters 10 and 11.) A driver registers its fast I/O entry points by entering them in a 
structure pointed to by the PFAST_IO_DISPATCH pointer in its driver object.  

EXPERIMENT: Looking at a Driver’s registered Fast I/O routines 

The !drvobj kernel debugger command can list the fast I/O routines that a driver registers in its 
driver object. However, typically only file system drivers have any use for fast I/O routines. The 
following output shows the fast I/O table for the NTFS file system driver object: 

1. lkd> !drvobj \FileSystem\Ntfs 2  
2. Driver object (849f27c0) is for:   
3. \FileSystem\Ntfs   
4. DriverEntry: 82af3b75 Ntfs!GsDriverEntry   
5. DriverStartIo: 00000000  
6. DriverUnload: 00000000  
7. AddDevice: 00000000  
8. Dispatch routines:   
9. [00] IRP_MJ_CREATE 82a9200a Ntfs!NtfsFsdCreate   
10. Fast I/O routines:   
11. FastIoCheckIfPossible 82a7f87b Ntfs!NtfsFastIoCheckIfPossible   
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12. FastIoRead 82a7ec38 Ntfs!NtfsCopyReadA   
13. FastIoWrite 82a7ff53 Ntfs!NtfsCopyWriteA   
14. FastIoQueryBasicInfo 82a86c3a Ntfs!NtfsFastQueryBasicInfo   
15. FastIoQueryStandardInfo 82a86aa6 Ntfs!NtfsFastQueryStdInfo   
16. FastIoLock 82a79f41 Ntfs!NtfsFastLock   
17. FastIoUnlockSingle 82a79d75 Ntfs!NtfsFastUnlockSingle   
18. FastIoUnlockAll 82acb7b3 Ntfs!NtfsFastUnlockAll   
19. FastIoUnlockAllByKey 82acb958 Ntfs!NtfsFastUnlockAllByKey   
20. ReleaseFileForNtCreateSection 82a1c904 Ntfs!NtfsReleaseForCreateSection   
21. FastIoQueryNetworkOpenInfo 82a78d84 Ntfs!NtfsFastQueryNetworkOpenInfo   
22. AcquireForModWrite 82a0a892 Ntfs!NtfsAcquireFileForModWrite   
23. MdlRead 82acb0d8 Ntfs!NtfsMdlReadA   
24. MdlReadComplete 81c5aad6 nt!FsRtlMdlReadCompleteDev   
25. PrepareMdlWrite 82acb31f Ntfs!NtfsPrepareMdlWriteA   
26. MdlWriteComplete 81dffa72 nt!FsRtlMdlWriteCompleteDev   
27. FastIoQueryOpen 82a72d03 Ntfs!NtfsNetworkOpenCreate   
28. AcquireForCcFlush 82a18b35 Ntfs!NtfsAcquireFileForCcFlush   
29. ReleaseForCcFlush 82a18a9c Ntfs!NtfsReleaseFileForCcFlush   

The output shows that NTFS has registered its NtfsCopyReadA routine as the fast I/O table’s 
FastIoRead entry. As the name of this fast I/O entry implies, the I/O manager calls this function 
when issuing a read I/O request if the file is cached. If the call doesn’t succeed, the standard IRP 
path is selected. 

Mapped File I/O and File Caching 

Mapped file I/O is an important feature of the I/O system, one that the I/O system and the memory 
manager produce jointly. (See Chapter 9 for details on how mapped files are implemented.) 
Mapped file I/O refers to the ability to view a file residing on disk as part of a process’s virtual 
memory. A program can access the file as a large array without buffering data or performing disk 
I/O. The program accesses memory, and the memory manager uses its paging mechanism to load 
the correct page from the disk file. If the application writes to its virtual address space, the 
memory manager writes the changes back to the file as part of normal paging. 

Mapped file I/O is available in user mode through the Windows CreateFileMapping and 
MapViewOfFile functions. Within the operating system, mapped file I/O is used for important 
operations such as file caching and image activation (loading and running executable programs). 
The other major consumer of mapped file I/O is the cache manager. File systems use the cache 
manager to map file data in virtual memory to provide better response time for I/O-bound 
programs. As the caller uses the file, the memory manager brings accessed pages into memory. 
Whereas most caching systems allocate a fixed number of bytes for caching files in memory, the 
Windows cache grows or shrinks depending on how much memory is available. This size 
variability is possible because the cache manager relies on the memory manager to automatically 
expand (or shrink) the size of the cache, using the normal working set mechanisms explained in 
Chapter 9. By taking advantage of the memory manager’s paging system, the cache manager 
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avoids duplicating the work that the memory manager already performs. (The workings of the 
cache manager are explained in detail in Chapter 10.) 

Scatter/Gather I/O 

Windows also supports a special kind of high-performance I/O that is called scatter/gather, 
available via the Windows ReadFileScatter and WriteFileGather functions. These functions allow 
an application to issue a single read or write from more than one buffer in virtual memory to a 
contiguous area of a file on disk instead of issuing a separate I/O request for each buffer. To use 
scatter/gather I/O, the file must be opened for noncached I/O, the user buffers being used have to 
be page-aligned, and the I/Os must be asynchronous (overlapped). Furthermore, if the I/O is 
directed at a mass storage device, the I/O must be aligned on a device sector boundary and have a 
length that is a multiple of the sector size. 

I/O Request Packets 

The I/O request packet (IRP) is where the I/O system stores information it needs to process an I/O 
request. When a thread calls an I/O service, the I/O manager constructs an IRP to represent the 
operation as it progresses through the I/O system. If possible, the I/O manager allocates IRPs from 
one of two per-processor IRP nonpaged look-aside lists: the small-IRP look-aside list stores IRPs 
with one stack location (IRP stack locations are described shortly), and the large-IRP look-aside 
list contains IRPs with multiple stack locations. These lists are backed by global look-aside lists as 
well, allowing efficient cross-CPU IRP flow. By default, the system stores IRPs with 10 stack 
locations on the large-IRP look-aside list, but once per minute the system adjusts the number of 
stack locations allocated between the default and a maximum of 20, based on how many stack 
locations have been required. If an IRP requires more stack locations than are contained in the 
IRPs on the large-IRP look-aside list, the I/O manager allocates IRPs from nonpaged pool. After 
allocating and initializing an IRP, the I/O manager stores a pointer to the caller’s file object in the 
IRP. 

Note If defined, the DWORD registry value HKLM\System\CurrentControlSet 
\Session Manager\I/O System\LargIrpStackLocations specifies how many stack 
locations are contained in IRPs stored on the large-IRP look-aside list. 

Figure 7-9 shows a sample I/O request that demonstrates the relationship between an 
IRP and the file, device, and driver objects described in the preceding sections. 
Although this example shows an I/O request to a single-layered device driver, most 
I/O operations aren’t this direct; they involve one or more layered drivers. (This case 
will be shown later in this section.) 
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IRP Stack Locations  

An IRP consists of two parts: a fixed header (often referred to as the IRP’s body) and one or more 
stack locations. The fixed portion contains information such as the type and size of the request, 
whether the request is synchronous or asynchronous, a pointer to a buffer for buffered I/O, and 
state information that changes as the request progresses. An IRP stack location contains a function 
code (consisting of a major code and a minor code), function-specific parameters, and a pointer to 
the caller’s file object. The major function code identifies which of a driver’s dispatch routines the 
I/O manager invokes when passing an IRP to a driver. An optional minor function code sometimes 
serves as a modifier of the major function code.  Power and Plug and Play commands always 
have minor function codes. 

Most drivers specify dispatch routines to handle only a subset of possible major function codes, 
including create (open), read, write, device I/O control, power, Plug and Play, System (for WMI 
commands), and close. (See the following experiment for a complete listing of major function 
codes.) File system drivers are an example of a driver type that often fills in most or all of its 
dispatch entry points with functions. The I/O manager sets any dispatch entry points that a driver 
doesn’t fill to point to its own IopInvalidDeviceRequest, which returns an error code to the caller 
indicating that the function specified for the device is invalid. 

EXPERIMENT: Looking at Driver Dispatch routines 

You can obtain a listing of the functions a driver has defined for its dispatch routines by entering a 
7 after the driver object’s name (or address) in the !drvobj kernel debugger command. The 
following output shows that drivers support 28 IRP types. 
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1. lkd> !drvobj Kbdclass 7  
2. Driver object (84b706b8) is for:   
3. \Driver\kbdclass   
4. Driver Extension List: (id , addr)   
5. Device Object list:   
6. 84abfd68 84baf030 84b84880  
7. DriverEntry: 8ed1c802 kbdclass!GsDriverEntry   
8. DriverStartIo: 00000000  
9. DriverUnload: 00000000  
10. AddDevice: 8ed1b7a0 kbdclass!KeyboardAddDevice   
11. Dispatch routines:   
12. [00] IRP_MJ_CREATE 8ed168f4 kbdclass!KeyboardClassCreate   
13. [01] IRP_MJ_CREATE_NAMED_PIPE 81c63fef nt!IopInvalidDeviceRequest   
14. [02] IRP_MJ_CLOSE 8ed16b00 kbdclass!KeyboardClassClose   
15. [03] IRP_MJ_READ 8ed175bc kbdclass!KeyboardClassRead   
16. [04] IRP_MJ_WRITE 81c63fef nt!IopInvalidDeviceRequest   
17. [05] IRP_MJ_QUERY_INFORMATION 81c63fef nt!IopInvalidDeviceRequest   
18. [06] IRP_MJ_SET_INFORMATION 81c63fef nt!IopInvalidDeviceRequest   
19. [07] IRP_MJ_QUERY_EA 81c63fef nt!IopInvalidDeviceRequest   
20. [08] IRP_MJ_SET_EA 81c63fef nt!IopInvalidDeviceRequest   
21. [09] IRP_MJ_FLUSH_BUFFERS 8ed1689a kbdclass!KeyboardClassFlush   
22. [0a] IRP_MJ_QUERY_VOLUME_INFORMATION 81c63fef nt!IopInvalidDeviceRequest   
23. [0b] IRP_MJ_SET_VOLUME_INFORMATION 81c63fef nt!IopInvalidDeviceRequest   
24. [0c] IRP_MJ_DIRECTORY_CONTROL 81c63fef nt!IopInvalidDeviceRequest   
25. [0d] IRP_MJ_FILE_SYSTEM_CONTROL 81c63fef nt!IopInvalidDeviceRequest   
26. [0e] IRP_MJ_DEVICE_CONTROL 8ed1a7f8 kbdclass!KeyboardClassDeviceControl   
27. [0f] IRP_MJ_INTERNAL_DEVICE_CONTROL 8ed1a006 kbdclass                    

!KeyboardClassPassThrough   
28. [10] IRP_MJ_SHUTDOWN 81c63fef nt!IopInvalidDeviceRequest   
29. [11] IRP_MJ_LOCK_CONTROL 81c63fef nt!IopInvalidDeviceRequest   
30. [12] IRP_MJ_CLEANUP 8ed16162 kbdclass!KeyboardClassCleanup   
31. [13] IRP_MJ_CREATE_MAILSLOT 81c63fef nt!IopInvalidDeviceRequest   
32. [14] IRP_MJ_QUERY_SECURITY 81c63fef nt!IopInvalidDeviceRequest   
33. [15] IRP_MJ_SET_SECURITY 81c63fef nt!IopInvalidDeviceRequest   
34. [16] IRP_MJ_POWER 8ed1aeac kbdclass!KeyboardClassPower   
35. [17] IRP_MJ_SYSTEM_CONTROL 8ed1a688 kbdclass!KeyboardClassSystemControl   
36. [18] IRP_MJ_DEVICE_CHANGE 81c63fef nt!IopInvalidDeviceRequest   
37. [19] IRP_MJ_QUERY_QUOTA 81c63fef nt!IopInvalidDeviceRequest   
38. [1a] IRP_MJ_SET_QUOTA 81c63fef nt!IopInvalidDeviceRequest   
39. [1b] IRP_MJ_PNP 8ed1710e kbdclass!KeyboardPnP   

While active, each IRP is usually stored in an IRP list associated with the thread that requested the 
I/O. This arrangement allows the I/O system to find and cancel any outstanding IRPs if a thread 
terminates or is terminated with outstanding I/O requests.  
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EXPERIMENT: Looking at a Thread’s Outstanding IrPs 

When you use the !thread command, it prints any IRPs associated with the thread. Run the kernel 
debugger with live debugging, and locate the service control manager process (Services.exe) in 
the output generated by the !process command: 

1. lkd> !process 0 0  
2. **** NT ACTIVE PROCESS DUMP ****   
3. ...   
4. PROCESS 8623b840 SessionId: 0 Cid: 0270 Peb: 7ffd6000 ParentCid: 0210  
5. DirBase: ce21e080 ObjectTable: 964c06a0 HandleCount: 198.   
6. Image: services.exe   
7. ...   

Then dump the threads for the process by executing the !process command on the process object. 
You should see many threads, with most of them having IRPs reported in the IRP List area of the 
thread information (note that the debugger will show only the first 17 IRPs for a thread that has 
more than 17 outstanding I/O requests):  

1. lkd> !process 8623b840  
2. PROCESS 8623b840 SessionId: 0 Cid: 0270 Peb: 7ffd6000 ParentCid: 0210  
3. DirBase: ce21e080 ObjectTable: 964c06a0 HandleCount: 198.   
4. Image: services.exe   
5. VadRoot 862b1358 Vads 71 Clone 0 Private 466. Modified 14. Locked 2.   
6. DeviceMap 8b0087d8  
7. ...   
8. THREAD 86a1d248 Cid 0270.053c Teb: 7ffdc000 Win32Thread: 00000000 WAIT:   
9. (UserRequest) UserMode Alertable   
10. 86a40ca0 NotificationEvent   
11. 86a40490 NotificationEvent   
12. IRP List:   
13. 86a81190: (0006,0094) Flags: 00060900 Mdl: 00000000  
14. ...   

Choose an IRP, and examine it with the !irp command:  

1. lkd> !irp 86a81190  
2. Irp is active with 1 stacks 1 is current (= 0x86a81200)   
3. No Mdl: No System Buffer: Thread 86a1d248: Irp stack trace.   
4. cmd flg cl Device File Completion-Context   
5. >[ 3, 0] 0 1 86156328 86a4e7a0 00000000-00000000 pending   
6. \FileSystem\Npfs   
7. Args: 00000800 00000000 00000000 00000000  
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This IRP has a major function of 3, which corresponds to IRP_MJ_READ. It has one stack 
location and is targeted at a device owned by the Npfs driver (the Named Pipe File System driver). 
(Npfs is described in Chapter 12.)  

IRP Buffer Management 

When an application or a device driver indirectly creates an IRP by using the NtReadFile, 
NtWriteFile, or NtDeviceIoControlFile system services (or the Windows API functions 
corresponding to these services, which are ReadFile, WriteFile, and DeviceIoControl), the I/O 
manager determines whether it needs to participate in the management of the caller’s input or 
output buffers. The I/O manager performs three types of buffer management: 

■ Buffered I/O The I/O manager allocates a buffer in nonpaged pool of equal size to the caller’s 
buffer. For write operations, the I/O manager copies the caller’s buffer data into the allocated 
buffer when creating the IRP. For read operations, the I/O manager copies data from the allocated 
buffer to the user’s buffer when the IRP completes and then frees the allocated buffer. 

■ Direct I/O When the I/O manager creates the IRP, it locks the user’s buffer into memory (makes 
it nonpaged). When the I/O manager has finished using the IRP, it unlocks the buffer. The I/O 
manager stores a description of the memory in the form of a memory descriptor list (MDL). An 
MDL specifies the physical memory occupied by a buffer. (See the WDK for more information on 
MDLs.) Devices that perform direct memory access (DMA) require only physical descriptions of 
buffers, so an MDL is sufficient for the operation of such devices. (Devices that support DMA 
transfer data directly between the device and the computer’s memory, without using the CPU.) If a 
driver must access the contents of a buffer, however, it can map the buffer into the system’s 
address space. 

■ Neither I/O The I/O manager doesn’t perform any buffer management. Instead, buffer 
management is left to the discretion of the device driver, which can choose to manually perform 
the steps the I/O manager performs with the other buffer management types. 

For each type of buffer management, the I/O manager places applicable references in the IRP to 
the locations of the input and output buffers. The type of buffer management the I/O manager 
performs depends on the type of buffer management a driver requests for each type of operation. 
A driver registers the type of buffer management it desires for read and write operations in the 
device object that represents the device. Device I/O control operations (those performed by 
NtDeviceIoControlFile) are specified with driver-defined I/O control codes, and a control code 
includes a description of the buffer management the I/O manager should use when issuing IRPs 
that contain that code. 

Drivers commonly use buffered I/O when callers transfer requests smaller than one page (4 KB on 
x86 processors) and use direct I/O for larger requests. A page is approximately the buffer size at 
which the trade-off between the copy operation of buffered I/O matches the overhead of the 
memory lock performed by direct I/O. File system drivers commonly use neither I/O because no 
buffer management overhead is incurred when data can be copied from the file system cache into 
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the caller’s original buffer. The reason that most drivers don’t use neither I/O is that a pointer to a 
caller’s buffer is valid only while a thread of the caller’s process is executing. If a driver must 
transfer data from or to a device in an ISR or a DPC routine, it must ensure that the caller’s data is 
accessible from any process context, which means that the buffer must have a system virtual 
address. 

Drivers that use neither I/O to access buffers that might be located in user space must take special 
care to ensure that buffer addresses are both valid and do not reference kernelmode memory. 
Failure to do so could result in crashes or in security vulnerabilities, where applications have 
access to kernel-mode memory or can inject code into the kernel. The ProbeForRead and 
ProbeForWrite functions that the kernel makes available to drivers verify that a buffer resides 
entirely in the user-mode portion of the address space. To avoid a crash from referencing an 
invalid user-mode address, drivers can access user-mode buffers from within exception-handling 
code (called try/except blocks) that catch any invalid memory faults and translate them into error 
codes to return to the application. Additionally, drivers should also capture all input data into a 
kernel buffer instead of relying on user-mode addresses, since the caller could always modify the 
data behind the driver’s back, even if the memory address itself is still valid. 

7.3.2 I/O Request to a Single-Layered Driver 

This section traces a synchronous I/O request to a single-layered kernel-mode device driver. 
Handling a synchronous I/O to a single-layered driver consists of seven steps: 

1. The I/O request passes through a subsystem DLL. 

2. The subsystem DLL calls the I/O manager’s NtWriteFile service. 

3. The I/O manager allocates an IRP describing the request and sends it to the driver (a device 
driver in this case) by calling its own IoCallDriver function. 

4. The driver transfers the data in the IRP to the device and starts the I/O operation. 

5. The device signals I/O completion by interrupting the CPU. 

6. The device driver services the interrupt. 

7. The driver calls the I/O manager’s IoCompleteRequest function to inform it that it has finished 
processing the IRP’s request, and the I/O manager completes the I/O request.  

These seven steps are illustrated in Figure 7-10. 
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Now that we’ve seen how an I/O is initiated, let’s take a closer look at interrupt processing and 
I/O completion. 

Servicing an Interrupt 

After an I/O device completes a data transfer, it interrupts for service and the Windows kernel, I/O 
manager, and device driver are called into action. Figure 7-11 illustrates the first phase of the 
process. (Chapter 3 describes the interrupt dispatching mechanism, including DPCs. We’ve 
included a brief recap here because DPCs are key to I/O processing.) 
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When a device interrupt occurs, the processor transfers control to the kernel trap handler, which 
indexes into its interrupt dispatch table to locate the ISR for the device. ISRs in Windows typically 
handle device interrupts in two steps. When an ISR is first invoked, it usually remains at device 
IRQL only long enough to capture the device status and then stop the device’s interrupt. It then 
queues a DPC and exits, dismissing the interrupt. Later, when the DPC routine is called, the 
device finishes processing the interrupt. When that’s done, the device calls the I/O manager to 
complete the I/O and dispose of the IRP. It might also start the next I/O request that is waiting in 
the device queue. 

The advantage of using a DPC to perform most of the device servicing is that any blocked 
interrupt whose priority lies between the device IRQL and the DPC/dispatch IRQL is allowed to 
occur before the lower-priority DPC processing occurs. Intermediate-level interrupts are thus 
serviced more promptly than they otherwise would be. This second phase of an I/O (the DPC 
processing) is illustrated in Figure 7-12. 
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Completing an I/O Request 

After a device driver’s DPC routine has executed, some work still remains before the I/O request 
can be considered finished. This third stage of I/O processing is called I/O completion and is 
initiated when a driver calls IoCompleteRequest to inform the I/O manager that it has completed 
processing the request specified in the IRP (and the stack location that it owns). The steps I/O 
completion entails vary with different I/O operations. For example, all the I/O services record the 
outcome of the operation in an I/O status block, a data structure the caller supplies. Similarly, 
some services that perform buffered I/O require the I/O system to return data to the calling thread. 

In both cases, the I/O system must copy some data that is stored in system memory into the 
caller’s virtual address space. If the IRP completed synchronously, the caller’s address space is 
current and directly accessible, but if the IRP completed asynchronously, the I/O manager must 
delay IRP completion until it can access the caller’s address space. To gain access to the caller’s 
virtual address space, the I/O manager must transfer the data “in the context of the caller’s 
thread”—that is, while the caller’s thread is executing (which means that caller’s process is the 
current process and has its address space active on the processor). It does so by queuing a 
kernel-mode asynchronous procedure call (APC) to the thread. This process is illustrated in Figure 
7-13.  
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As explained in Chapter 3, APCs execute in the context of a particular thread, whereas a DPC 
executes in arbitrary thread context, meaning that the DPC routine can’t touch the usermode 
process address space. Remember too that DPCs have a higher software interrupt priority than 
APCs. 

The next time that thread begins to execute at low IRQL (below DISPATCH_LEVEL), the 
pending APC is delivered. The kernel transfers control to the I/O manager’s APC routine, which 
copies the data (if any) and the return status into the original caller’s address space, frees the IRP 
representing the I/O operation, and either sets the caller’s file handle (and any callersupplied event) 
to the signaled state for synchronous I/O, or queues an entry to the caller’s I/O completion port. 
The I/O is now considered complete. The original caller or any other threads that are waiting on 
the file (or other object) handle are released from their waiting state and readied for execution. 
Figure 7-14 illustrates the second stage of I/O completion. 
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A final note about I/O completion: the asynchronous I/O functions ReadFileEx and WriteFileEx 
allow a caller to supply a user-mode APC as a parameter. If the caller does so, the I/O manager 
queues this APC to the caller’s thread APC queue as the last step of I/O completion. This feature 
allows a caller to specify a subroutine to be called when an I/O request is completed or canceled. 
User-mode APC completion routines execute in the context of the requesting thread and are 
delivered only when the thread enters an alertable wait state (such as calling the Windows 
SleepEx, WaitForSingleObjectEx, or WaitForMultipleObjectsEx function).  

Synchronization 

Drivers must synchronize their access to global driver data and hardware registers for two reasons: 

■ The execution of a driver can be preempted by higher-priority threads and time-slice (or 
quantum) expiration or can be interrupted by interrupts. 

■ On multiprocessor systems, Windows can run driver code simultaneously on more than one 
processor. 

Without synchronization, corruption could occur—for example, because device driver code 
running at a passive IRQL when a caller initiates an I/O operation can be interrupted by a device 
interrupt, causing the device driver’s ISR to execute while its own device driver is already running. 
If the device driver was modifying data that its ISR also modifies, such as device registers, heap 
storage, or static data, the data can become corrupted when the ISR executes. Figure 7-15 
illustrates this problem. 
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To avoid this situation, a device driver written for Windows must synchronize its access to any 
data that the device driver shares with its ISR. Before attempting to update shared data, the device 
driver must lock out all other threads (or CPUs, in the case of a multiprocessor system) to prevent 
them from updating the same data structure. 

The Windows kernel provides a special synchronization routine called KeSynchronize-Execution 
that device drivers call when they access data that their ISRs also access. This kernel 
synchronization routine keeps the ISR from executing while the shared data is being accessed. A 
driver can also use KeAcquireInterruptSpinLock to access an interrupt object’s spinlock directly, 
although it’s generally faster to rely on KeSynchronizeExecution for synchronization with an ISR. 

By now, you should realize that although ISRs require special attention, any data that a device 
driver uses is subject to being accessed by the same device driver running on another processor. 
Therefore, it’s critical for device driver code to synchronize its use of any global or shared data (or 
any accesses to the physical device itself). If the ISR uses that data, the device driver must use 
KeSynchronizeExecution; otherwise, the device driver can use standard kernel spinlocks. 

7.3.3 I/O Requests to Layered Drivers 

The preceding section showed how an I/O request to a simple device controlled by a single device 
driver is handled. I/O processing for file-based devices or for requests to other layered drivers 
happens in much the same way. The major difference is, obviously, that one or more additional 
layers of processing are added to the model. 

Figure 7-16 shows how an asynchronous I/O request travels through layered drivers. It uses as an 
example a disk controlled by a file system. 

Once again, the I/O manager receives the request and creates an I/O request packet to represent it. 
This time, however, it delivers the packet to a file system driver. The file system driver exercises 
great control over the I/O operation at that point. Depending on the type of request the caller made, 
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the file system can send the same IRP to the disk driver or it can generate additional IRPs and 
send them separately to the disk driver. 

EXPERIMENT: Viewing a Device Stack 

The kernel debugger command !devstack shows you the device stack of layered device objects 
associated with a specified device object. This example shows the device stack associated with a 
device object, \device\keyboardclass0, which is owned by the keyboard class driver: 

1. lkd> !devstack keyboardclass0  
2. !DevObj !DrvObj !DevExt ObjectName   
3. fffffa800a5e2040 \Driver\Ctrl2cap fffffa800a5e2190  
4. > fffffa800a612ce0 \Driver\kbdclass fffffa800a612e30 KeyboardClass0  
5. fffffa800a612040 \Driver\i8042prt fffffa800a612190  
6. fffffa80076e0a00 \Driver\ACPI fffffa80076f3a90 0000005c   
7. !DevNode fffffa800770f750 :   
8. DeviceInst is "ACPI\PNP0303\4&b0a2531&0"  
9. ServiceName is "i8042prt"  

The output highlights the entry associated with KeyboardClass0 with the “>“ prefix. The entries 
above that line are drivers layered above the keyboard class driver, and those below are layered 
beneath it. In general, IRPs flow from the top of the stack to the bottom. 

The file system is most likely to reuse an IRP if the request it receives translates into a single 
straightforward request to a device. For example, if an application issues a read request for the 
first 512 bytes in a file stored on a volume, the NTFS file system would simply call the volume 
manager driver, asking it to read one sector from the volume, beginning at the file’s starting 
location. 

To accommodate its reuse by multiple drivers in a request to layered drivers, an IRP contains a 
series of IRP stack locations (not to be confused with the stack used by threads to store function 
parameters and return addresses). These data areas, one for every driver that will be called, contain 
the information that each driver needs to execute its part of the request—for example, function 
code, parameters, and driver context information. As Figure 7-16 illustrates, 

additional stack locations are filled in as the IRP passes from one driver to the next. You can think 
of an IRP as being similar to a stack in the way data is added to it and removed from it during its 
lifetime. However, an IRP isn’t associated with any particular process, and its allocated size 
doesn’t grow or shrink. The I/O manager allocates an IRP from one of its IRP look-aside lists or 
nonpaged system memory at the beginning of the I/O operation. 
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EXPERIMENT: examining IrPs 

In this experiment, you’ll find an uncompleted IRP on the system, and you’ll determine the IRP 
type, the device at which it’s directed, the driver that manages the device, the thread that issued 
the IRP, and what process the thread belongs to. 

At any point in time, there are at least a few uncompleted IRPs on a system. This is because there 
are many devices to which applications can issue IRPs that a driver will only complete when a 
particular event occurs, such as data becoming available. One example is a blocking read from a 
network endpoint. You can see the outstanding IRPs on a system with the !irpfind kernel debugger 
command: 

1. lkd> !irpfind   
2. Scanning large pool allocation table for Tag: Irp? (86c16000 : 86d16000)   
3. Searching NonPaged pool (80000000 : ffc00000) for Tag: Irp?   
4. Irp [ Thread ] irpStack: (Mj,Mn) DevObj [Driver] MDL Process   
5. 862d2380 [8666dc68] irpStack: ( c, 2) 84a6f020 [ \FileSystem\Ntfs]   
6. 862d2bb0 [864e3d78] irpStack: ( e,20) 86171348 [ \Driver\AFD] 0x864dbd90  
7. 862d4518 [865f7600] irpStack: ( d, 0) 86156328 [ \FileSystem\Npfs]   
8. 862d4688 [867133f0] irpStack: ( 3, 0) 86156328 [ \FileSystem\Npfs]   
9. 862dd008 [00000000] Irp is complete (CurrentLocation 4 > StackCount 3) 0x00420000  
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10. 862dee28 [864fc030] irpStack: ( 3, 0) 84baf030 [ \Driver\kbdclass]   

The entry in bold in the output describes an IRP that is directed at the Kbdclass driver, so it is 
likely that the IRP was issued by the Windows subsystem raw input thread that reads keyboard 
input. Examining the IRP with the !irp command reveals the following: 

1. lkd> !irp 862dee28  
2. Irp is active with 3 stacks 3 is current (= 0x862deee0)   
3. No Mdl: System buffer=864f5108: Thread 864fc030: Irp stack trace.   
4. cmd flg cl Device File Completion-Context   
5. [ 0, 0] 0 0 00000000 00000000 00000000-00000000  
6. Args: 00000000 00000000 00000000 00000000  
7. [ 0, 0] 0 0 00000000 00000000 00000000-00000000  
8. Args: 00000000 00000000 00000000 00000000  
9. >[ 3, 0] 0 1 84baf030 864f52f8 00000000-00000000 pending   
10. \Driver\kbdclass   
11. Args: 00000078 00000000 00000000 00000000  

The active stack location is at the bottom. (The debugger shows the active location with a 
“>“ prefix.) It has a major function of 3, which corresponds to IRP_MJ_READ. 

The next step is to see what device object the IRP is targeting by executing the !devobj command 
on the device object address in the active stack location. 

1. lkd> !devobj 84baf030  
2. Device object (84baf030) is for:   
3. KeyboardClass1 \Driver\kbdclass DriverObject 84b706b8  
4. Current Irp 00000000 RefCount 0 Type 0000000b Flags 00002044  
5. Dacl 8b0538b8 DevExt 84baf0e8 DevObjExt 84baf1c8  
6. ExtensionFlags (0x00000800)   
7. Unknown flags 0x00000800  
8. AttachedTo (Lower) 84badaa0 \Driver\TermDD   
9. Device queue is not busy.   

The device at which the IRP is targeted is KeyboardClass1. The presence of a device object 
owned by the Termdd driver attached beneath it reveals that it is the device that represents 
keyboard input from a Terminal Server client, not the physical keyboard.  

We can see details about the thread and process that issued the IRP by using the !thread 
and !process commands: 

1. lkd> !thread 864fc030  
2. THREAD 864fc030 Cid 01d4.0234 Teb: 7ffd9000 Win32Thread: ffac4008 WAIT:   
3. (WrUserRequest) KernelMode Alertable   
4. 8623c620 SynchronizationEvent   
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5. 864fc3a8 NotificationTimer   
6. 864fc378 SynchronizationTimer   
7. 864fc360 SynchronizationEvent   
8. IRP List:   
9. 86af0e28: (0006,01d8) Flags: 00060970 Mdl: 00000000  
10. 86503958: (0006,0268) Flags: 00060970 Mdl: 00000000  
11. 862dee28: (0006,01d8) Flags: 00060970 Mdl: 00000000  
12. Not impersonating   
13. DeviceMap 8b0087d8  
14. Owning Process 0 Image:    
15. Attached Process 864d2d90 Image: csrss.exe   
16. Wait Start TickCount 171909 Ticks: 29 (0:00:00:00.452)   
17. Context Switch Count 121222  
18. UserTime 00:00:00.000  
19. KernelTime 00:00:00.717  
20. Win32 Start Address 0x764d9a30  
21. Stack Init 96f46000 Current 96f45c28 Base 96f46000 Limit 96f43000 Call 0  
22. Priority 15 BasePriority 13 PriorityDecrement 0 IoPriority 2 PagePriority 5  
23. lkd> !process 864d2d90  
24. PROCESS 864d2d90 SessionId: 1 Cid: 0208 Peb: 7ffdf000 ParentCid: 0200  
25. DirBase: ce21e0a0 ObjectTable: 964a6e68 HandleCount: 284.   
26. Image: csrss.exe   

Locating the thread in Process Explorer by opening the Properties dialog box for Csrss.exe and 
going to the Threads tab confirms, through the names of the functions on its stack, the role of the 
thread as a raw input thread for the Windows subsystem: 

  

After the disk driver finishes a data transfer, the disk interrupts and the I/O completes, as shown in 
Figure 7-17. 
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As an alternative to reusing a single IRP, a file system can establish a group of associated IRPs 
that work in parallel on a single I/O request. For example, if the data to be read from a file is 
dispersed across the disk, the file system driver might create several IRPs, each of which reads 
some portion of the request from a different sector. This queuing is illustrated in Figure 7-18. 
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The file system driver delivers the associated IRPs to the volume manager, which in turn sends 
them to the disk device driver, which queues them to the disk device. They are processed one at a 
time, and the file system driver keeps track of the returned data. When all the associated IRPs 
complete, the I/O system completes the original IRP and returns to the caller, as shown in Figure 
7-19. 
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Note All Windows file system drivers that manage disk-based file systems are part of a stack of 
drivers that is at least three layers deep: the file system driver sits at the top, a volume manager in 
the middle, and a disk driver at the bottom. In addition, any number of filter drivers can be 
interspersed above and below these drivers. For clarity, the preceding example of layered I/O 
requests includes only a file system driver and the volume manager driver. See Chapter 8, on 
storage management, for more information. 

Thread Agnostic I/O 

In the I/O models described thus far, IRPs are queued to the thread that initiated the I/O and are 
completed by the I/O manager issuing an APC to that thread so that process or threadspecific 
context is accessible by completion processing. Thread-specific I/O processing is usually 
sufficient for the performance and scalability needs of most applications, but Windows also 
includes support for thread agnostic I/O via two mechanisms: 

■ I/O completion ports, which are described at length later in this chapter 

■ Locking the user buffer into memory and mapping it into the system address space 

With I/O completion ports, the application decides when it wants to check for the completion of 
I/O, so the thread that happens to have issued an I/O request is not necessarily relevant because 
any other thread can perform the completion request. As such, instead of completing the IRP 
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inside the specific thread’s context, it can be completed in the context of any thread that has access 
to the completion port. 

Likewise, with a locked and kernel-mapped version of the user buffer, there’s no need to be in the 
same memory address space as the issuing thread because the kernel can access the memory from 
arbitrary contexts. Applications can enable this mechanism by using SetFileIoOverlappedRange. 

With both completion port I/O and I/O on file buffers set by SetFileIoOverlappedRange, the I/O 
manager associates the IRPs with the file object to which they have been issued instead of the 
issuing thread. The !fileobj extension in WinDbg will show an IRP list for file objects that are 
used with these mechanisms.  

In the next sections, we’ll see how thread agnostic I/O increases the reliability and performance of 
applications on Windows. 

7.3.4 I/O Cancellation 

While there are many ways in which IRP processing occurs and various methods to complete an 
I/O request, a great many I/O processing operations actually end in cancellation rather than 
completion. For example, a device may require removal while IRPs are still active, or the user 
might cancel a long-running operation to a device, for example a network operation. Another 
situation requiring I/O cancellation support is thread and process termination. When a thread exits, 
the I/Os associated with the thread must be cancelled, since the I/O operation is no longer relevant. 

The Windows I/O manager, working with drivers, must deal with these requests efficiently and 
reliably in order to provide a smooth user experience. Drivers manage this need by registering a 
cancel routine for their cancellable I/O operations, which is invoked by the I/O manager to cancel 
an I/O operation. When drivers fail to play their role in these scenarios, users may experience 
unkillable processes, which have disappeared visually but linger and still appear in Task Manager 
or Process Explorer. (See Chapter 5 for more information on processes and threads.) 

User-Initiated I/O Cancellation 

Most software uses one thread to handle user interface (UI) input and one or more threads to 
perform work, including I/O. In some cases, when a user wants to abort an operation he initiated 
in the UI, an application might need to cancel outstanding I/O operations. Operations that 
complete quickly might not require cancellation, but for operations that take arbitrary amounts of 
time—like large data transfers or network operations— Windows provides support for cancelling 
both synchronous operations and asynchronous operations. A thread can cancel its own 
outstanding asynchronous I/Os by calling CancelIo. It can cancel all asynchronous I/Os issued to a 
specific file handle, regardless of by which thread, with CancelIoEx. CancelIoEx also works on 
operations associated with I/O completion ports through the thread-agnostic support in Windows 
that was mentioned earlier because the I/O system keeps track of a completion port’s outstanding 
I/Os by linking them with the completion port. 
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For cancelling synchronous I/Os, a thread can call CancelSynchronousIo. CancelSynchronousIo 
enables even create (open) operations to be cancelled when supported by a device driver, and 
several drivers in Windows support this functionality, including the drivers that manage network 
file systems (for example, MUP, DFS, and SMB), which can cancel open operations to network 
paths. Figures 7-20 and 7-21 show synchronous and asynchronous I/O cancellation. 

  

  

I/O Cancellation for Thread Termination 

The other scenario in which I/Os must be cancelled is when a thread exits, either directly or as the 
result of its process terminating (which causes the threads of the process to terminate). Because 
every thread has a list of IRPs associated with it, the I/O manager can enumerate this list, look for 
cancellable IRPs, and cancel them. Unlike CancelIoEx, which does not wait for an IRP to be 
cancelled before returning, the process manager will not allow thread termination to proceed until 
all I/Os have been cancelled. As a result, if a driver fails to cancel an IRP, the process and thread 
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object will remain allocated until the system shuts down. Figure 7-22 illustrates the process 
termination scenario. 

  

Note Only IRPs for which a driver sets a cancel routine are cancellable. The process manager 
waits until all I/Os associated with a thread are either cancelled or completed before deleting the 
thread. 

EXPERIMENT: Debugging an unkillable Process 

In this experiment, we’ll use Notmyfault from Sysinternals (we’ll cover Notmyfault heavily in the 
“Crash Dump Analysis” section in Chapter 14) to force the unkillable process problem to exhibit 
itself by causing the Myfault.sys driver (which Notmyfault.exe uses) to indefinitely hold an IRP 
without having registered a cancel routine for it.  

To start, run Notmyfault.exe, select Hang IRP from the list of options, and then click Do Bug. The 
dialog box should look like the following when properly configured: 
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You shouldn’t see anything happen, and you should be able to click the Exit button to quit the 
application. However, you should still see the Notmyfault process in Task Manager or Process 
Explorer. Attempts to terminate the process will fail because Windows will wait forever for the 
IRP to complete given that Myfault doesn’t register a cancel routine. 

To debug an issue such as this, you can use WinDbg to look at what the thread is currently doing 
(or you could use Process Explorer’s Stack view on the Threads tab). Open a local kernel 
debugger session, and start by listing the information about the Notmyfault.exe process with 
the !process command: 

1. lkd> !process 0 7 notmyfault.exe   
2. PROCESS 86843ab0 SessionId: 1 Cid: 0594 Peb: 7ffd8000 ParentCid: 05c8  
3. DirBase: ce21f380 ObjectTable: 9cfb5070 HandleCount: 33.   
4. Image: NotMyfault.exe   
5. VadRoot 86658138 Vads 44 Clone 0 Private 210. Modified 5. Locked 0.   
6. DeviceMap 987545a8  
7. ...   
8. THREAD 868139b8 Cid 0594.0230 Teb: 7ffde000 Win32Thread: 00000000 WAIT:   
9. (Executive) KernelMode Non-Alertable   
10. 86797c64 NotificationEvent   
11. IRP List:   
12. 86a51228: (0006,0094) Flags: 00060000 Mdl: 00000000  
13. ChildEBP RetAddr Args to Child   
14. 88ae4b78 81cf23bf 868139b8 86813a40 00000000 nt!KiSwapContext+0x26  
15. 88ae4bbc 81c8fcf8 868139b8 86797c08 86797c64 nt!KiSwapThread+0x44f   
16. 88ae4c14 81e8a356 86797c64 00000000 00000000 nt!KeWaitForSingleObject+0x492  
17. 88ae4c40 81e875a3 86a51228 86797c08 86a51228 nt!IopCancelAlertedRequest+0x6d   
18. 88ae4c64 81e87cba 00000103 86797c08 00000000 nt!IopSynchronousServiceTail+0x267  
19. 88ae4d00 81e7198e 86727920 86a51228 00000000 nt!IopXxxControlFile+0x6b7  
20. 88ae4d34 81c92a7a 0000007c 00000000 00000000 nt!NtDeviceIoControlFile+0x2a   
21. 88ae4d34 77139a94 0000007c 00000000 00000000 nt!KiFastCallEntry+0x12a   
22. 01d5fecc 00000000 00000000 00000000 00000000 ntdll!KiFastSystemCallRet   
23. ...   

From the stack trace, you can see that the thread that initiated the I/O realized that the IRP had 
been cancelled (IopSynchronousServiceTail called IopCancelAlertedRequest) and is now waiting 
for the cancellation or completion. The next step is to use the same debugger extension used in the 
previous experiments, !irp, and attempt to analyze the problem. Copy the IRP pointer, and 
examine it with the !irp command: 

1. lkd> !irp 86a51228  
2. Irp is active with 1 stacks 1 is current (= 0x86a51298)   
3. No Mdl: No System Buffer: Thread 868139b8: Irp stack trace.   
4. cmd flg cl Device File Completion-Context   
5. >[ e, 0] 5 0 86727920 86797c08 00000000-00000000  
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6. \Driver\MYFAULT   
7. Args: 00000000 00000000 83360020 00000000  

From this output, it is obvious who the culprit driver is: \Driver\MYFAULT, or Myfault.sys. The 
name of the driver emphasizes that the only way this situation can happen is through a driver 
problem and not a buggy application. Unfortunately, now that you know which driver caused this 
issue, there isn’t much you can do—a system reboot is necessary because Windows can never 
safely assume it is okay to ignore the fact that cancellation hasn’t occurred yet. The IRP could 
return at any time and cause corruption of system memory. If you encounter this situation in 
practice, you should check for a newer version of the driver, which might include a fix for the bug. 

7.3.5 I/O Completion Ports 

Writing a high-performance server application requires implementing an efficient threading model. 
Having either too few or too many server threads to process client requests can lead to 
performance problems. For example, if a server creates a single thread to handle all requests, 
clients can become starved because the server will be tied up processing one request at a time. A 
single thread could simultaneously process multiple requests, switching from one to another as I/O 
operations are started, but this architecture introduces significant complexity and can’t take 
advantage of multiprocessor systems. At the other extreme, a server could create a big pool of 
threads so that virtually every client request is processed by a dedicated thread. This scenario 
usually leads to thread-thrashing, in which lots of threads wake up, perform some CPU processing, 
block while waiting for I/O, and then, after request processing is completed, block again waiting 
for a new request. If nothing else, having too many threads results in excessive context switching, 
caused by the scheduler having to divide processor time among multiple active threads. 

The goal of a server is to incur as few context switches as possible by having its threads avoid 
unnecessary blocking, while at the same time maximizing parallelism by using multiple threads. 
The ideal is for there to be a thread actively servicing a client request on every processor and for 
those threads not to block when they complete a request if additional  

The goal of a server is to incur as few context switches as possible by having its threads avoid 
unnecessary blocking, while at the same time maximizing parallelism by using multiple threads. 
The ideal is for there to be a thread actively servicing a client request on every processor and for 
those threads not to block when they complete a request if additional requests are waiting. For this 
optimal process to work correctly, however, the application must have a way to activate another 
thread when a thread processing a client request blocks on I/O (such as when it reads from a file as 
part of the processing). 

The IoCompletion Object 

Applications use the IoCompletion executive object, which is exported to Windows as a 
completion port, as the focal point for the completion of I/O associated with multiple file handles. 
Once a file is associated with a completion port, any asynchronous I/O operations that complete 
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on the file result in a completion packet being queued to the completion port. A thread can wait 
for any outstanding I/Os to complete on multiple files simply by waiting for a completion packet 
to be queued to the completion port. The Windows API provides similar functionality with the 
WaitForMultipleObjects API function, but the advantage that completion ports have is that 
concurrency, or the number of threads that an application has actively servicing client requests, is 
controlled with the aid of the system. 

When an application creates a completion port, it specifies a concurrency value. This value 
indicates the maximum number of threads associated with the port that should be running at any 
given time. As stated earlier, the ideal is to have one thread active at any given time for every 
processor in the system. Windows uses the concurrency value associated with a port to control 
how many threads an application has active. If the number of active threads  associated with a 
port equals the concurrency value, a thread that is waiting on the completion port won’t be 
allowed to run. Instead, it is expected that one of the active threads will finish processing its 
current request and check to see whether another packet is waiting at the port. If one is, the thread 
simply grabs the packet and goes off to process it. When this happens, there is no context switch, 
and the CPUs are utilized nearly to their full capacity. 

Using Completion Ports 

Figure 7-23 shows a high-level illustration of completion port operation. A completion port is 
created with a call to the Windows API function CreateIoCompletionPort. Threads that block on a 
completion port become associated with the port and are awakened in last in, first out (LIFO) 
order so that the thread that blocked most recently is the one that is given the next packet. Threads 
that block for long periods of time can have their stacks swapped out to disk, so if there are more 
threads associated with a port than there is work to process, the in-memory footprints of threads 
blocked the longest are minimized. 

  

A server application will usually receive client requests via network endpoints that are represented 
as file handles. Examples include Windows Sockets 2 (Winsock2) sockets or named pipes. As the 
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server creates its communications endpoints, it associates them with a completion port and its 
threads wait for incoming requests by calling GetQueuedCompletionStatus on the port. When a 
thread is given a packet from the completion port, it will go off and start processing the request, 
becoming an active thread. A thread will block many times during its processing, such as when it 
needs to read or write data to a file on disk or when it synchronizes with other threads. Windows 
detects this activity and recognizes that the completion port has one less active thread. Therefore, 
when a thread becomes inactive because it blocks, a thread waiting on the completion port will be 
awakened if there is a packet in the queue. 

An important mechanism that affects performance is called lock contention, which is the amount 
of time a thread spends waiting for a lock instead of doing real work. One of the most critical 
locks in the Windows kernel is the dispatcher lock (see Chapter 5 for more information on the 
dispatching mechanisms), and any time thread state is modified, especially in situations related to 
waiting and waking, the dispatcher lock is usually acquired, blocking other processors from doing 
similar actions. 

The I/O completion port mechanism minimizes contention on the dispatcher lock by avoiding its 
acquisition when possible. For example, this mechanism does not acquire the lock when a 
completion is queued to a port and no threads are waiting on that port, when a thread calls 
GetQueuedCompletionStatus and there are items in the queue, or when a thread calls 
GetQueuedCompletionStatus with a zero timeout. In all three of these cases, no thread wait or 
wake-up is necessary, and hence none acquire the dispatcher lock.  

Microsoft’s guidelines are to set the concurrency value roughly equal to the number of processors 
in a system. Keep in mind that it’s possible for the number of active threads for a completion port 
to exceed the concurrency limit. Consider a case in which the limit is specified as 1. A client 
request comes in, and a thread is dispatched to process the request, becoming active. A second 
request arrives, but a second thread waiting on the port isn’t allowed to proceed because the 
concurrency limit has been reached. Then the first thread blocks waiting for a file I/O, so it 
becomes inactive. The second thread is then released, and while it’s still active, the first thread’s 
file I/O is completed, making it active again. At that point—and until one of the threads 
blocks—the concurrency value is 2, which is higher than the limit of 1. Most of the time, the 
active count will remain at or just above the concurrency limit. 

The completion port API also makes it possible for a server application to queue privately defined 
completion packets to a completion port by using the PostQueuedCompletionStatus function. A 
server typically uses this function to inform its threads of external events, such as the need to shut 
down gracefully.  

Applications can use thread agnostic I/O, described earlier, with I/O completion ports to avoid 
associating threads with their own I/Os and associating them with a completion port object instead. 
In addition to the other scalability benefits of I/O completion ports, their use can minimize context 
switches. Standard I/O completions must be executed by the thread that initiated the I/O, but when 
an I/O associated with an I/O completion port completes, the I/O manager uses any waiting thread 
to perform the completion operation.  
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I/O Completion Port Operation 

Windows applications create completion ports by calling the Windows API CreateIo-Completion 
Port and specifying a NULL completion port handle. This results in the execution of the 
NtCreateIoCompletion system service. The executive’s IoCompletion object is based on the kernel 
synchronization object called a queue. Thus, the system service creates a completion port object 
and initializes a queue object in the port’s allocated memory. (A pointer 

to the port also points to the queue object because the queue is at the start of the port memory.) A 
queue object has a concurrency value that is specified when a thread initializes it, and in this case 
the value that is used is the one that was passed to CreateIoCompletionPort. KeInitializeQueue is 
the function that NtCreateIoCompletion calls to initialize a port’s queue object. 

When an application calls CreateIoCompletionPort to associate a file handle with a port, the 
NtSetInformationFile system service is executed with the file handle as the primary parameter. 
The information class that is set is FileCompletionInformation, and the completion port’s handle 
and the CompletionKey parameter from CreateIoCompletionPort are the data values. 
NtSetInformationFile dereferences the file handle to obtain the file object and allocates a 
completion context data structure. Finally, NtSetInformationFile sets the CompletionContext field 
in the file object to point at the context structure. When an asynchronous I/O operation completes 
on a file object, the I/O manager checks to see whether the CompletionContext field in the file 
object is non-NULL. If it is, the I/O manager allocates a completion packet and queues it to the 
completion port by calling KeInsertQueue with the port as the queue on which to insert the packet. 
(Remember that the completion port object and queue object have the same address.) 

When a server thread invokes GetQueuedCompletionStatus, the system service NtRemoveIo- 
Completion is executed. After validating parameters and translating the completion port handle to 
a pointer to the port, NtRemoveIoCompletion calls IoRemoveIoCompletion, which eventually 
calls KeRemoveQueueEx. For high-performance scenarios, it’s possible that multiple I/Os may 
have been completed, and although the thread will not block, it will still call into the kernel each 
time to get one item. The GetQueuedCompletionStatus or GetQueuedCompletionStatusEx API 
allows applications to retrieve more than one I/O completion status at the same time, reducing the 
number of user-to-kernel roundtrips and maintaining peak efficiency. Internally, this is 
implemented through the NtRemoveIoCompletionEx function, which calls 
IoRemoveIoCompletion with a count of queued items, which is passed on to KeRemoveQueueEx. 

As you can see, KeRemoveQueueEx and KeInsertQueue are the engines behind completion ports. 
They are the functions that determine whether a thread waiting for an I/O completion packet 
should be activated. Internally, a queue object maintains a count of the current number of active 
threads and the maximum number of active threads. If the current number equals or exceeds the 
maximum when a thread calls KeRemoveQueueEx, the thread will be put (in LIFO order) onto a 
list of threads waiting for a turn to process a completion packet. The list of threads hangs off the 
queue object. A thread’s control block data structure has a pointer in it that references the queue 
object of a queue that it’s associated with; if the pointer is NULL, the thread isn’t associated with 
a queue. 
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An improvement to the mechanism, which also improves the performance of other internal 
mechanisms that use I/O completion ports (such as the worker thread pool mechanism, described 
in Chapter 3), is the optimization of the KQUEUE dispatcher object, which we’ve mentioned in 
Chapter 3. Although we described how all dispatcher objects rely on the dispatcher lock during 
wait and unwait operations (or, in the case of kernel queues, remove and insert operations), the 
dispatcher header structure has a Lock member that can be used for an object-specific lock. 

The KQUEUE implementation makes use of this member and implements a local, per-object 
spinlock instead of using the global dispatcher lock whenever possible. Therefore, the 
KeInsertQueue and KeRemoveQueueEx APIs actually first call the KiAttemptFastQueueInsert 
and KiAttemptFastQueueRemove internal functions and fall back to the dispatcher-lockbased 
code if the fast operations cannot be used or fail. Because the fast routines don’t use the global 
lock, the overall throughput of the system is improved—other dispatcher and scheduler operations 
can happen while I/O completion ports are being used by applications.  

Windows keeps track of threads that become inactive because they block on something other than 
the completion port by relying on the queue pointer in a thread’s control block. The scheduler 
routines that possibly result in a thread blocking (such as KeWaitForSingleObject, 
KeDelayExecutionThread, and so on) check the thread’s queue pointer. If the pointer isn’t NULL, 
the functions call KiActivateWaiterQueue, a queue-related function that decrements the count of 
active threads associated with the queue. If the resultant number is less than the maximum and at 
least one completion packet is in the queue, the thread at the front of the queue’s thread list is 
awakened and given the oldest packet. Conversely, whenever a thread that is associated with a 
queue wakes up after blocking, the scheduler executes the function KiUnwaitThread, which 
increments the queue’s active count.  

Finally, the PostQueuedCompletionStatus Windows API function results in the execution of the 
NtSetIoCompletion system service. This function simply inserts the specified packet onto the 
completion port’s queue by using KeInsertQueue. 

Figure 7-24 shows an example of a completion port object in operation. Even though two threads 
are ready to process completion packets, the concurrency value of 1 allows only one thread 
associated with the completion port to be active, and so the two threads are blocked on the 
completion port. 
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Finally, the exact notification model of the I/O completion port can be fine-tuned through the 
SetFileCompletionNotificationModes API, which allows application developers to take advantage 
of additional, specific improvements that usually require code changes but can offer even more 
throughput. Three notification mode optimizations are supported, which are listed in Table 7-3. 
Note that these modes are per file handle and permanent.  

 

7.3.6 I/O Prioritization 

Without I/O priority, background activities like search indexing, virus scanning, and disk 
defragmenting can severely impact the responsiveness of foreground operations. A user launching 
an application or opening a document while another process is performing disk I/O, for example, 
experiences delays as the foreground task waits for disk access. The same interference also affects 
the streaming playback of multimedia content like music from a hard disk. 

Windows includes two types of I/O prioritization to help foreground I/O operations get preference: 
priority on individual I/O operations and I/O bandwidth reservations. 

I/O Priorities 
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The Windows I/O manager internally includes support for five I/O priorities, as shown in Table 
7-4, but only three of the priorities are used. (Future versions of Windows may support High and 
Low.) 

  

I/O has a default priority of Normal and the memory manager uses Critical when it wants to write 
dirty memory data out to disk under low-memory situations to make room in RAM for other data 
and code. The Windows Task Scheduler sets the I/O priority for tasks that have the default task 
priority to Very Low. The priority specified by applications written for Windows Vista that 
perform background processing is Very Low. All of the Windows Vista background operations, 
including Windows Defender scanning and desktop search indexing, use Very Low I/O priority. 

Internally, these five I/O priorities are divided into two I/O prioritization modes, called strategies. 
These are the hierarchy prioritization and the idle prioritization strategies. Hierarchy prioritization 
deals with all the I/O priorities except Very Low. It implements the following strategy: 

■ All critical-priority I/O must be processed before any high-priority I/O. 

■ All high-priority I/O must be processed before any normal-priority I/O. 

■ All normal-priority I/O must be processed before any low-priority I/O. 

■ All low-priority I/O is processed after all higher priority I/O. 

As each application generates I/Os, IRPs are put on different I/O queues based on their priority, 
and the hierarchy strategy decides the ordering of the operations. 

The idle prioritization strategy, on the other hand, uses a separate queue for Very Low priority I/O. 
Because the system processes all hierarchy prioritized I/O before idle I/O, it’s possible for the I/Os 
in this queue to be starved, as long as there’s even a single Very Low priority I/O on the system in 
the hierarchy priority strategy queue. 

To avoid this situation, as well as to control backoff (the sending rate of I/O transfers), the idle 
strategy uses a timer to monitor the queue and guarantee that at least one I/O is processed per unit 
of time (typically half a second). Data written using Very Low I/O also causes the cache manager 
to write modifications to disk immediately instead of doing it later and to bypass its read-ahead 
logic for read operations that would otherwise preemptively read from the file being accessed. The 
prioritization strategy also waits for 50 milliseconds after the completion of the last non-idle I/O in 
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order to issue the next idle I/O. Otherwise, idle I/Os would occur in the middle of nonidle streams, 
causing costly seeks. 

Combining these strategies into a virtual global I/O queue for demonstration purposes, a snapshot 
of this queue might look similar to Figure 7-25. Note that within each queue, the ordering is 
first-in, first-out (FIFO). The order in the figure is shown only as an example. 

  

User-mode applications can set I/O priority on three different objects. SetPriorityClass and 
SetThreadPriority set the priority for all the I/Os that either the entire process or specific threads 
will generate (the priority is stored in the IRP of each request). SetFileInformationByHandle can 
set the priority for a specific file object (the priority is stored in the file object). Drivers can also 
set I/O priority directly on an IRP by using the IoSetIoPriorityHint API. 

Note The I/O priority field in the IRP and/or file object is a hint. There is no guarantee that the I/O 
priority will be respected or even supported by the different drivers that are part of the storage 
stack. 

The two prioritization strategies are implemented by two different types of drivers. The hierarchy 
strategy is implemented by the storage port drivers, which are responsible for all I/Os on a specific 
port, such as ATA, SCSI, or USB. As of Windows Vista and Windows Server 2008, only the ATA 
port driver (%SystemRoot%\System32\Ataport.sys) and USB port driver (%SystemRoot% 
\System32\Usbstor.sys) implement this strategy, while the SCSI and storage port drivers 
(%SystemRoot%\System32\Scsiport.sys and %SystemRoot%\System32\Storport.sys) do not. 

Note All port drivers check specifically for Critical priority I/Os and move them ahead of their 
queues, even if they do not support the full hierarchy mechanism. This mechanism is in place to 
support critical memory manager paging I/Os to ensure system reliability. 

This means that consumer mass storage devices such as IDE or SATA hard drives and USB flash 
disks will take advantage of I/O prioritization, while devices based on SCSI, Fibre Channel, and 
iSCSI will not. 

On the other hand, it is the system storage class device driver (%SystemRoot%\System32 
\Classpnp.sys) that enforces the idle strategy, so it automatically applies to I/Os directed at all 
storage devices, including SCSI drives. This separation ensures that idle I/Os will be subject to 
back-off algorithms to ensure a reliable system during operation under high idle I/O usage and so 
that applications that use them can make forward progress. Placing support for this strategy in the 
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Microsoft-provided class driver avoids performance problems that would have been caused by 
lack of support for it in legacy third-party port drivers. 

Figure 7-26 displays a simplified view of the storage stack and where each strategy is 
implemented. See Chapter 8 for more information on the storage stack. 

  

The following experiment will show you an example of Very Low I/O priority and how you can 
use Process Monitor to look at I/O priorities on different requests. 

EXPERIMENT: Very Low vs. Normal I/O Throughput 

You can use the IO Priority sample application (included in the book’s utilities) to look at the 
throughput difference between two threads with different I/O priorities. Launch IoPriority.exe, 
make sure Thread 1 is checked to use Low priority, and then click the Start IO button. You should 
notice a significant difference in speed between the two threads, as shown in the following screen. 

  

You should also notice that Thread 1’s throughput remains fairly constant, around 2 KB/s. This 
can easily be explained by the fact that IO Priority performs its I/Os at 2 KB/s, which means that 
the idle prioritization strategy is kicking in and guaranteeing at least one I/O each half-second. 
Otherwise, Thread 2 would starve any I/O that Thread 1 is attempting to make. 

Note that if both threads run at low priority and the system is relatively idle, their throughput will 
be roughly equal to the throughput of a single normal I/O priority in the example. This is because 
low priority I/Os are not artificially throttled or otherwise hindered if there isn’t any competition 
from higher priority I/O. 
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You can also use Process Monitor to trace IO Priority’s I/Os and look at their I/O priority hint. 
Launch Process Monitor, configure a filter for IoPriority.exe, and repeat the experiment. In this 
application, Thread 1 writes to File_1, and Thread 2 writes to File_2. Scroll down until you see a 
write to File_1, and you should see output similar to that shown here. 

  

You can see that I/Os directed at File_1 have a priority of Very Low. By looking at the Time Of 
Day column, you’ll also notice that the I/Os are spaced 0.5 second from each other—another sign 
of the idle strategy in action. 

Finally, by using Process Explorer, you can identify Thread 1 in the IoPriority process by looking 
at the I/O priority for each of its threads on the Threads tab of its process Properties dialog box. 
You can also see that the priority for the thread is lower than the default of 8 (normal), which 
indicates that the thread is probably running in background priority mode. The following screen 
shows what you should expect to see. 

  

Note that if IO Priority sets the priority on File_1 instead of on the issuing thread, both threads 
would look the same. Only Process Monitor could show you the difference in I/O priorities. 

Bandwidth Reservation (Scheduled File I/O) 
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Windows bandwidth reservation support is useful for applications that desire consistent I/O 
throughput. Using the SetFileIoBandwidthReservation call, a media player application asks the 
I/O system to guarantee it the ability to read data from a device at a specified rate. If the device 
can deliver data at the requested rate and existing reservations allow it, the I/O system gives the 
application guidance as to how fast it should issue I/Os and how large the I/Os should be. 

The I/O system won’t service other I/Os unless it can satisfy the requirements of applications that 
have made reservations on the target storage device. Figure 7-27 shows a conceptual timeline of 
I/Os issued on the same file. The shaded regions are the only ones that will be available to other 
applications. If I/O bandwidth is already taken, new I/Os will have to wait until the next cycle. 

  

Like the hierarchy prioritization strategy, bandwidth reservation is implemented at the port driver 
level, which means it is available only for IDE, SATA, or USB-based mass-storage devices. 

7.3.7 Driver Verifier 

Driver Verifier is a mechanism that can be used to help find and isolate commonly found bugs in 
device drivers or other kernel-mode system code. Microsoft uses Driver Verifier to check its own 
device drivers as well as all device drivers that vendors submit for Hardware Compatibility List 
(HCL) testing. Doing so ensures that the drivers on the HCL are compatible with Windows and 
free from common driver errors. (Although not described in this book, there is also a 
corresponding Application Verifier tool that has resulted in quality improvements for user-mode 
code in Windows.) 

Also, although Driver Verifier serves primarily as a tool to help device driver developers discover 
bugs in their code, it is also a powerful tool for systems administrators experiencing crashes. 
Chapter 14 describes its role in crash analysis troubleshooting. Driver Verifier consists of support 
in several system components: the memory manager, I/O manager, and the HAL all have driver 
verification options that can be enabled. These options are configured using the Driver Verifier 
Manager (%SystemRoot%\Verifier.exe). When you run Driver Verifier with no command-line 
arguments, it presents a wizard-style interface, as shown in Figure 7-28. 

You can also enable and disable Driver Verifier, as well as display current settings, by using its 
command-line interface. From a command prompt, type verifier /? to see the switches.  

Even when you don’t select any options, Driver Verifier monitors drivers selected for verification, 
looking for a number of illegal operations, including calling kernel-memory pool functions at 
invalid IRQL, double-freeing memory, and requesting a zero-size memory allocation.  
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What follows is a description of the I/O-related verification options (shown in Figure 7-29). The 
options related to memory management are described in Chapter 9, along with how the memory 
manager redirects a driver’s operating system calls to special verifier versions. 

  

  

These options have the following effects: 

■ I/O Verification When this option is selected, the I/O manager allocates IRPs for verified drivers 
from a special pool and their usage is tracked. In addition, the Verifier crashes the system when an 
IRP is completed that contains an invalid status and when an invalid device object is passed to the 
I/O manager. 
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■ Enhanced I/O Verification This option monitors all IRPs to ensure that drivers mark them 
correctly when completing them asynchronously, that they manage device stack locations 
correctly, and that they delete device objects only once. In addition, the Verifier randomly stresses 
drivers by sending them fake power management and WMI IRPs, changing the order that devices 
are enumerated, and adjusting the status of PnP and power IRPs when they complete to test for 
drivers that return incorrect status from their dispatch routines. 

■ DMA Checking This is a hardware-supported mechanism that allows devices to transfer data to 
or from physical memory without involving the CPU. The I/O manager provides a number of 
functions that drivers use to schedule and control direct memory access (DMA) operations, and 
this option enables checks for correct use of the functions and for the buffers that the I/O manager 
supplies for DMA operations. 

■ Force Pending I/O Requests For many devices, asynchronous I/Os complete immediately, so 
drivers may not be coded to properly handle the occasional asynchronous I/O. When this option is 
enabled, the I/O manager will randomly return STATUS_PENDING in response to a driver’s calls 
to IoCallDriver, which simulates the asynchronous completion of an I/O. 

■ IRP Logging This option monitors a driver’s use of IRPs and makes a record of IRP usage, 
which is stored as WMI information. You can then use the Dc2wmiparser.exe utility in the WDK 
to convert these WMI records to a text file. Note that only 20 IRPs for each device will be 
recorded—each subsequent IRP will overwrite the least recently added entry. After a reboot, this 
information is discarded, so Dc2wmiparser.exe should be run if the contents of the trace are to be 
analyzed later. 

■ Disk Integrity Checking When you enable this option, the Verifier monitors disk read and write 
operations and checksums the associated data. When disk reads complete, it checks to see whether 
it has a previously stored checksum and crashes the system if the new and old checksum don’t 
match, because that would indicate corruption of the disk at the hardware level. 

7.4 Kernel-Mode Driver Framework (KMDF) 

We’ve already discussed some details about the Windows Driver Foundation (WDF) in Chapter 2. 
In this section, we’ll take a deeper look at the components and functionality provided by the 
kernel-mode part of the framework, KMDF. Note that this section will only briefly touch on some 
of the core architecture of KMDF. For a much more complete overview on the subject, please 
refer to Developing Drivers with Windows Driver Foundation by Penny Orwick and Guy Smith 
(Microsoft Press, 2007). 

7.4.1 Structure and Operation of a KMDF Driver 

First, let’s take a look at which kinds of drivers or devices are supported by KMDF. In general, 
any WDM-conformant driver should be supported by KMDF, as long as it performs standard I/O 
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processing and IRP manipulation. KMDF is not suitable for drivers that don’t use the Windows 
kernel API directly but instead perform library calls into existing port and class drivers. These 
types of drivers cannot use KMDF because they only provide callbacks for the actual WDM 
drivers that do the I/O processing. Additionally, if a driver provides its own dispatch functions 
instead of relying on a port or class driver, IEEE 1394 and ISA, PCI, PCMCIA, and SD Client (for 
Secure Digital storage devices) drivers can also make use of KMDF.  

Although KMDF is a different driver model than WDM, the basic driver structure shown earlier 
also generally applies to KMDF drivers. At their core, KMDF drivers must have the following 
functions: 

■ An initialization routine Just like any other driver, a KMDF driver has a DriverEntry function 
that initializes the driver. KMDF drivers will initiate the framework at this point and perform any 
configuration and initialization steps that are part of the driver or part of describing the driver to 
the framework. For non–Plug and Play drivers, this is where the first device object should be 
created. 

■ An add-device routine KMDF driver operation is based on events and callbacks (described 
shortly), and the EvtDriverDeviceAdd callback is the single most important one for PnP devices 
because it receives notifications that the PnP manager in the kernel has enumerated one of the 
driver’s devices. 

■ One or more EvtIo* routines Just like a WDM driver’s dispatch routines, these callback routines 
handle specific types of I/O requests from a particular device queue. A driver typically creates one 
or more queues in which KMDF places I/O requests for the driver’s devices. These queues can be 
configured by request type and dispatching type.  

The simplest KMDF driver might need to have only an initialization and add-device routine 
because the framework will provide the default, generic functionality that’s required for most 
types of I/O processing, including power and Plug and Play events. In the KMDF model, events 
refer to run-time states to which a driver can respond or during which a driver can participate. 
These events are not related to the synchronization primitives (synchronization is discussed in 
Chapter 3), but are internal to the framework. 

For events that are critical to a driver’s operation, or which need specialized processing, the driver 
registers a given callback routine to handle this event. In other cases, a driver can allow KMDF to 
perform a default, generic action instead. For example, during an eject event (EvtDeviceEject), a 
driver can choose to support ejection and supply a callback or to fall back to the default KMDF 
code that will tell the user that the device is not ejectable. Not all events have a default behavior, 
however, and callbacks must be provided by the driver. One notable example is the 
EvtDriverDeviceAdd event that is at the core of any Plug and Play driver.  

EXPERIMENT: Displaying KMDF Drivers 
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The Wdfkd.dll extension that ships with the Debugging Tools for Windows package provides 
many commands that can be used to debug and analyze KMDF drivers and devices (instead of 
using the built-in WDM-style debugging extension that may not offer the same kind of 
WDF-specific information). You can display installed KMDF drivers with the !wdfkd.wdfldr 
debugger command. In the following example, the output from a Windows Vista SP1 computer is 
shown, displaying the built-in drivers that are typically installed. 

1. lkd> !wdfkd.wdfldr   
2. LoadedModuleList 0x805ce18c   
3. ----------------------------------   
4. LIBRARY_MODULE 8472f448  
5. Version v1.7 build(6001)   
6. Service \Registry\Machine\System\CurrentControlSet\Services\Wdf01000  
7. ImageName Wdf01000.sys   
8. ImageAddress 0x80778000  
9. ImageSize 0x7c000  
10. Associated Clients: 6  
11. ImageName Version WdfGlobals FxGlobals ImageAddress ImageSize   
12. peauth.sys v0.0(0000) 0x867c00c0 0x867c0008 0x9b0d1000 0x000de000  
13. monitor.sys v0.0(0000) 0x8656d9d8 0x8656d920 0x8f527000 0x0000f000  
14. umbus.sys v0.0(0000) 0x84bfd4d0 0x84bfd418 0x829d9000 0x0000d000  
15. HDAudBus.sys v0.0(0000) 0x84b5d918 0x84b5d860 0x82be2000 0x00012000  
16. intelppm.sys v0.0(0000) 0x84ac9ee8 0x84ac9e30 0x82bc6000 0x0000f000  
17. msisadrv.sys v0.0(0000) 0x848da858 0x848da7a0 0x82253000 0x00008000  
18. ----------------------------------   
19. Total: 1 library loaded  

7.4.2 KMDF Data Model 

The KMDF data model is object-based, much like the model for the kernel, but it does not make 
use of the object manager. Instead, KMDF manages its own objects internally, exposing them as 
handles to drivers and keeping the actual data structures opaque. For each object type, the 
framework provides routines to perform operations on the object, such as WdfDeviceCreate, 
which creates a device. Additionally, objects can have specific data fields or members that can be 
accessed by Get/Set (used for modifications that should never fail) or Assign/Retrieve APIs (used 
for modifications that can fail). For example, the WdfInterruptGetInfo function returns 
information on a given interrupt object (WDFINTERRUPT). 

Also unlike the implementation of kernel objects, which all refer to distinct and isolated object 
types, KMDF objects are all part of a hierarchy—most object types are bound to a parent. The root 
object is the WDFDRIVER structure, which describes the actual driver. The structure and 
meaning is analogous to the DRIVER_OBJECT structure provided by the I/O manager and all 
other KMDF structures are children of it. The next most important object is WDFDEVICE, which 
refers to a given instance of a detected device on the system, which must have been created with 
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WdfDeviceCreate. Again, this is analogous to the DEVICE_OBJECT structure that’s used in the 
WDM model and by the I/O manager. Table 7-5 lists the object types supported by KMDF.  
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For each of these objects, other KMDF objects can be attached as children—some objects have 
only one or two valid parents, while other objects can be attached to any parent. For example, a 
WDFINTERRUPT object must be associated with a given WDFDEVICE, but a WDFSPINLOCK 
or WDFSTRING can have any object as a parent, allowing fine-grained control over their validity 
and usage and reducing global state variables. Figure 7-30 shows the entire KMDF object 
hierarchy. 
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Note that the associations mentioned earlier and shown in the figure are not necessarily immediate. 
The parent must simply be on the hierarchy chain, meaning one of the ancestor nodes must be of 
this type. This relationship is useful to realize because object hierarchies not only affect the 
objects’ locality but also their lifetime. Each time a child object is created, a reference count is 
added to it by its link to its parent. Therefore, when a parent object is destroyed, all the child 
objects are also destroyed, which is why associating objects such as WDFSTRING or 
WDFMEMORY with a given object, instead of the default WDFDRIVER object, can 
automatically free up memory and state information when the parent object is destroyed. 

Closely related to the concept hierarchy is KMDF’s notion of object context. Because KMDF 
objects are opaque, as discussed, and are associated with a parent object for locality, it becomes 
important to allow drivers to attach their own data to an object in order to track certain specific 
information outside the framework’s capabilities or support.  

Object contexts allow all KMDF objects to contain such information, and they additionally allow 
multiple object context areas, which permit multiple layers of code inside the same driver to 
interact with the same object in different ways. In the WDM model, the device extension data 
structure allows such information to be associated with a given device, but with KMDF even a 
spinlock or string can contain context areas. This extensibility allows each library or layer of code 
responsible for processing an I/O to interact independently of other code, based on the context 
area that it works with, and allows a  mechanism similar to inheritance. 

Finally, KMDF objects are also associated with a set of attributes that are shown in Table 7-6. 
These attributes are usually configured to their defaults, but the values can be overridden by the 
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driver when creating the object by specifying a WDF_OBJECT_ATTRIBUTES structure (similar 
to the object manager’s OBJECT_ATTRIBUTES structure when creating a kernel object).  

 

7.4.3 KMDF I/O Model 

The KMDF I/O model follows the WDM mechanisms discussed earlier in the chapter. In fact, one 
can even think of the framework itself as a WDM driver, since it uses kernel APIs and WDM 
behavior to abstract KMDF and make it functional. Under KMDF, the framework driver sets its 
own WDM-style IRP dispatch routines and takes control over all IRPs sent to the driver. After 
being handled by one of three KMDF I/O handlers (which we’ll describe shortly), it then packages 
these requests in the appropriate KMDF objects, inserts them in the appropriate queues if required, 
and performs driver callback if the driver is interested in those events. Figure 7-31 describes the 
flow of I/O in the framework. 

Based on the IRP processing discussed for WDM drivers earlier, KMDF performs one of the 
following three actions: 

■ Sends the IRP to the I/O handler, which processes standard device operations  

■ Sends the IRP to the PnP and power handler that processes these kinds of events and notifies 
other drivers if the state has changed 

■ Sends the IRP to the WMI handler, which handles tracing and logging. 
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These components will then notify the driver of any events it registered for, potentially forward 
the request to another handler for further processing, and then complete the request based on an 
internal handler action or as the result of a driver call. If KMDF has finished processing the IRP 
but the request itself has still not been fully processed, KMDF will take one of the following two 
actions: 

■ For bus drivers and function drivers, complete the IRP with STATUS_INVALID_DEVICE 
_REQUEST 

■ For filter drivers, forward the request to the next lower driver 

I/O processing by KMDF is based on the mechanism of queues (WDFQUEUE, not the KQUEUE 
object discussed in Chapter 3). KMDF queues are highly scalable containers of I/O requests 
(packaged as WDFREQUEST objects) and provide a rich feature set beyond merely sorting the 
pending I/Os for a given device. For example, queues also track currently active requests and 
support I/O cancellation, I/O concurrency (the ability to perform and complete more than one I/O 
request at a time), and I/O synchronization (as noted in the list of object attributes in Table 7-6). A 
typical KMDF driver creates at least one queue (if not more) and associates one or more events 
with each queue, as well as some of the following options: 

■ The callbacks registered with the events associated with this queue 

■ The power management state for the queue. KMDF supports both power-managed and 
nonpower-managed queues. For the former, the I/O handler will handle waking up the device 
when required (and when possible), arm the idle timer when the device has no I/Os queued up, 
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and call the driver’s I/O cancellation routines when the system is switching away from a working 
state. 

■ The dispatch method for the queue. KMDF can deliver I/Os from a queue either in a sequential, 
parallel, or manual mode. Sequential I/Os are delivered one at a time (KMDF waits for the driver 
to complete the previous request), while parallel I/Os are delivered to the driver as soon as 
possible. In manual mode, the driver must manually retrieve I/Os from the queue. 

■ Whether or not the queue can accept zero-length buffers, such as incoming requests that don’t 
actually contain any data. 

Note The dispatch method affects solely the number of requests that are allowed to be active 
inside a driver’s queue at one time. It does not determine whether the event callbacks themselves 
will be called concurrently or serially. That behavior is determined through the synchronization 
scope object attribute described earlier. Therefore, it is possible for a parallel queue to have 
concurrency disabled but still have multiple incoming requests. 

Based on the mechanism of queues, the KMDF I/O handler can perform several possible tasks 
upon receiving either a create, close, cleanup, write, read, or device control (IOCTL) request: 

■ For create requests, the driver can request to be immediately notified through 
EvtDeviceFileCreate, or it can create a nonmanual queue to receive create requests. It must then 
register an EvtIoDefault callback to receive the notifications. Finally, if none of these methods are 
used, KMDF will simply complete the request with a success code, meaning that by default, 
applications will be able to open handles to KMDF drivers that don’t supply their own code. 

■ For cleanup and close requests, the driver will be immediately notified through EvtFileCleanup 
and EvtFileClose callbacks, if registered. Otherwise, the framework will simply complete with a 
success code. 

■ Finally, Figure 7-32 illustrates the flow of an I/O request to a KMDF driver for the most 
common driver operations (read, write, and I/O control codes). 
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7.5 user-Mode Driver Framework (uMDF) 

Although this chapter focuses on kernel-mode drivers, Windows includes a growing number of 
drivers that actually run in user mode, as previously described, using the User-Mode Driver 
Framework (UMDF) that is part of the WDF. Before finishing our discussion on drivers, we’ll 
take a quick look at the architecture of UMDF and what it offers. Once again, for a much more 
complete overview on the subject, please refer to Developing Drivers with Windows Driver 
Foundation by Penny Orwick and Guy Smith. 

UMDF is designed specifically to support what are called protocol device classes, which refers to 
devices that all use the same standardized, generic protocol and offer specialized functionality on 
top of it. These protocols currently include IEEE 1394 (FireWire), USB, Bluetooth, and TCP/IP. 
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Any device running on top of these buses (or connected to a network) is a potential candidate for 
UMDF—examples include portable music players, PDAs, cell phones, cameras and webcams, and 
so on. Two other large users of UMDF are SideShow-compatible devices (auxiliary displays) and 
the Windows Portable Device (WPD) Framework, which supports USB removable storage (USB 
bulk transfer devices). Finally, as with KMDF, it’s possible to implement software-only drivers, 
such as for a virtual device, in UMDF. 

To make porting code easier from kernel mode to user mode, and to keep a consistent architecture, 
UMDF uses the same conceptual driver programming model as KMDF, but it uses different 
components, interfaces, and data structures. For example, KMDF includes objects unique to kernel 
mode, while UMDF includes some objects unique to user mode. Objects and functionality that 
can’t be accessed through UMDF include direct handling of interrupts, 

DMA, nonpaged pool, and strict timing requirements. Furthermore, a UMDF driver can’t be on 
any kernel driver stack or be a client of another driver or the kernel itself. Unlike KMDF drivers, 
which run as driver objects representing a .sys image file, UMDF drivers run in a driver host 
process, similar to a service-hosting process. The host process contains the driver itself (which is 
implemented as an in-process COM component), the user-mode driver framework (implemented 
as a DLL containing COM-like components for each UMDF object), and a run-time environment 
(responsible for I/O dispatching, driver loading, device stack management, communication with 
the kernel, and a thread pool). 

Just like in the kernel, each UMDF driver runs as part of a stack, which can contain multiple 
drivers that are responsible for managing a device. Naturally, since user-mode code can’t access 
the kernel address space, UMDF also includes some components that allow this access to occur 
through a specialized interface to the kernel. This is implemented by a kernel-mode side of UMDF 
that uses ALPC (see Chapter 3 for more information on advanced local procedure call) to talk to 
the run-time environment in the user-mode driver host processes. Figure 7-33 displays the 
architecture of the UMDF driver model. 
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Figure 7-33 shows two different device stacks that manage two different hardware devices, each 
with a UMDF driver running inside its own driver host process. From the diagram, you can see 
that the following components take part in the architecture: 

■ Applications Applications are the clients of the drivers. These are standard Windows 
applications that use the same APIs to perform I/Os as they would with a KMDFmanaged or a 
WDM-managed device. Applications don’t know that they’re talking to a UMDF-based device, 
and the calls are still sent to the kernel’s I/O manager. 

■ Windows kernel (I/O manager) Based on the application I/O APIs, the I/O manager builds the 
IRPs for the operations, just like for any other standard device. 

■ Reflector The reflector is what makes UMDF “tick.” It is a standard WDM filter driver that sits 
at the top of the device stack of each device that is being managed by a UMDF driver. The 
reflector is responsible for managing the communication between the kernel and the user-mode 
driver host process. IRPs related to power management, Plug and Play, and standard I/O are 
redirected to the host process through ALPC. This lets the UMDF driver respond to the I/Os and 
perform work, as well as be involved in the Plug and Play model, by providing enumeration, 
installation, and management of its devices. The reflector is also responsible for keeping an eye on 
the driver host processes by making sure that they remain responsive to requests within an 
adequate time to prevent drivers and applications from hanging. 

■ Driver manager The driver manager is responsible for starting and quitting the driver host 
processes, based on which UMDF-managed devices are present, and also for managing 
information on them. It is also responsible for responding to messages coming from the reflector 
and applying them to the appropriate host process (such as reacting to device installation). The 
driver manager runs as a standard Windows service and is configured for automatic startup as 
soon as the first UMDF driver for a device is installed. Only one instance of the driver manager 
runs for all driver host processes, and it must always be running to allow UMDF drivers to work. 

■ Host process The host process provides the address space and run-time environment for the 
actual driver. Although it runs in the local service account, it is not actually a Windows service 
and is not managed by the SCM—only by the driver manager. The host process is also responsible 
for providing the user-mode device stack for the actual hardware, which is visible to all 
applications on the system. In the current UMDF release, each device instance has its own device 
stack, which runs in a separate host process. In the future, multiple instances may share the same 
host process. Host processes are child processes of the driver manager. 

■ Kernel-mode drivers If specific kernel support for a device that is managed by a UMDF driver 
is needed, it is also possible to write a companion kernel-mode driver that fills that role. In this 
way, it is possible for a device to be managed both by a UMDF and a KMDF (or WDM) driver. 

You can easily see UMDF in action on your system by inserting any USB flash drive with some 
content on it. Run Process Explorer, and you should see a WUDFHost.exe process that 
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corresponds to a driver host process. Switch to DLL view and scroll down until you see DLLs 
similar to the ones shown in Figure 7-34. 

  

You can identify three main components, which match the architectural overview described 
earlier: 

■ WUDFx.dll, the framework itself 

■ WUDFPlatform.dll, the run-time environment 

■ WpdFs.dll, the COM component representing the WPD driver, exposing contents of USB 
storage devices to Windows shell and media applications 

7.6 The Plug and Play (PnP) Manager 

The PnP manager is the primary component involved in supporting the ability of Windows to 
recognize and adapt to changing hardware configurations. A user doesn’t need to understand the 
intricacies of hardware or manual configuration to install and remove devices. For example, it’s 
the PnP manager that enables a running Windows laptop that is placed on a docking station to 
automatically detect additional devices located in the docking station and make them available to 
the user.  

Plug and Play support requires cooperation at the hardware, device driver, and operating system 
levels. Industry standards for the enumeration and identification of devices attached to buses are 
the foundation of Windows Plug and Play support. For example, the USB standard defines the 
way that devices on a USB bus identify themselves. With this foundation in place, Windows Plug 
and Play support provides the following capabilities: 
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■ The PnP manager automatically recognizes installed devices, a process that includes 
enumerating devices attached to the system during a boot and detecting the addition and removal 
of devices as the system executes. 

■ Hardware resource allocation is a role the PnP manager fills by gathering the hardware resource 
requirements (interrupts, I/O memory, I/O registers, or bus-specific resources) of the devices 
attached to a system and, in a process called resource arbitration, optimally assigning resources so 
that each device meets the requirements necessary for its operation. Because hardware devices can 
be added to the system after boot-time resource assignment, the PnP manager must also be able to 
reassign resources to accommodate the needs of dynamically added devices. 

■ Loading appropriate drivers is another responsibility of the PnP manager. The PnP manager 
determines, based on the identification of a device, whether a driver capable of managing the 
device is installed on the system, and if one is, instructs the I/O manager to load it. If a suitable 
driver isn’t installed, the kernel-mode PnP manager communicates with the user-mode PnP 
manager to install the device, possibly requesting the user’s assistance in locating a suitable set of 
drivers. 

■ The PnP manager also implements application and driver mechanisms for the detection of 
hardware configuration changes. Applications or drivers sometimes require a specific hardware 
device to function, so Windows includes a means for them to request notification of the presence, 
addition, or removal of devices. 

■ It also provides a place for storage device state, and it participates in system setup, upgrade, 
migration, and offline image management. 

■ In addition, it supports network connected devices, such as network projects and printers, by 
allowing specialized bus drivers to detect the network as a bus and create device nodes for the 
devices running on it. 

7.6.1 Level of Plug and Play Support 

Windows aims to provide full support for Plug and Play, but the level of support possible depends 
on the attached devices and installed drivers. If a single device or driver doesn’t support Plug and 
Play, the extent of Plug and Play support for the system can be compromised. In addition, a driver 
that doesn’t support Plug and Play might prevent other devices from being usable by the system. 
Table 7-7 shows the outcome of various combinations of devices and drivers that can and can’t 
support Plug and Play.  
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A device that isn’t Plug and Play–compatible is one that doesn’t support automatic detection, such 
as a legacy ISA sound card. Because the operating system doesn’t know where the hardware 
physically lies, certain operations—such as laptop undocking, sleep, and hibernation—are 
disallowed. However, if a Plug and Play driver is manually installed for the device, the driver can 
at least implement PnP manager–directed resource assignment for the device.  

Drivers that aren’t Plug and Play–compatible include legacy drivers, such as those that ran on 
Windows NT 4. Although these drivers might continue to function on later versions of Windows, 
the PnP manager can’t reconfigure the resources assigned to such devices in the event that 
resource reallocation is necessary to accommodate the needs of a dynamically added device. For 
example, a device might be able to use I/O memory ranges A and B, and during the boot the PnP 
manager assigns it range A. If a device that can use only A is attached to the system later, the PnP 
manager can’t direct the first device’s driver to reconfigure itself to use range B. This prevents the 
second device from obtaining required resources, which results in the device being unavailable for 
use by the system. Legacy drivers also impair a machine’s ability to sleep or hibernate. (See the 
section “The Power Manager” for more details.) 

7.6.2 Driver Support for Plug and Play 

To support Plug and Play, a driver must implement a Plug and Play dispatch routine, a power 
management dispatch routine (described in the section “The Power Manager” later in this chapter), 
and an add-device routine. Bus drivers must support different types of Plug and Play requests than 
function or filter drivers do, however. For example, when the PnP manager is guiding device 
enumeration during the system boot (described in detail later in this chapter), it asks bus drivers 
for a description of the devices that they find on their respective buses. The description includes 
data that uniquely identifies each device as well as the resource requirements of the devices. The 
PnP manager takes this information and loads any function or filter drivers that have been 
installed for the detected devices. It then calls the add-device routine of each driver for every 
installed device the drivers are responsible for. 

Function and filter drivers prepare to begin managing their devices in their add-device routines, 
but they don’t actually communicate with the device hardware. Instead, they wait for the PnP 
manager to send a start-device command for the device to their Plug and Play dispatch routine. 
Prior to sending the start-device command the PnP manager performs resource arbitration to 
decide what resources to assign the device. The start-device command includes the resource 
assignment that the PnP manager determines during resource arbitration. When a driver receives a 
start-device command, it can configure its device to use the specified resources. If an application 
tries to open a device that hasn’t finished starting, it receives an error indicating that the device 
does not exist. 

After a device has started, the PnP manager can send the driver additional Plug and Play 
commands, including ones related to a device’s removal from the system or to resource 
reassignment. For example, when the user invokes the remove/eject device utility, shown in 
Figure 7-35 (accessible by right-clicking on the PC card icon in the taskbar and selecting Safely 
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Remove Hardware), to tell Windows to eject a USB flash drive, the PnP manager sends a 
query-remove notification to any applications that have registered for Plug and Play notifications 
for the device. Applications typically register for notification on their handles, which they close 
during a query-remove notification. If no applications veto the query-remove request, the PnP 
manager sends a query-remove command to the driver that owns the device being ejected. At that 
point, the driver has a chance to deny the removal or to ensure that any pending I/O operations 
involving the device have completed and to begin rejecting further I/O requests aimed at the 
device. If the driver agrees to the remove request and no open handles to the device remain, the 
PnP manager next sends a remove command to the driver to request that the driver discontinue 
accessing the device and release any resources the driver has allocated on behalf of the device. 

  

When the PnP manager needs to reassign a device’s resources, it first asks the driver whether it 
can temporarily suspend further activity on the device by sending the driver a query-stop 
command. The driver either agrees to the request, if doing so wouldn’t cause data loss or 
corruption, or denies the request. As with a query-remove command, if the driver agrees to the 
request, the driver completes pending I/O operations and won’t initiate further I/O requests for the 
device that can’t be aborted and subsequently restarted. The driver typically queues new I/O 
requests so that the resource reshuffling is transparent to applications currently accessing the 
device. The PnP manager then sends the driver a stop command. At that point, the PnP manager 
can direct the driver to assign different resources to the device and once again send the driver a 
start-device command for the device. 

The various Plug and Play commands essentially guide a device through an assortment of 
operational states, forming a well-defined state-transition table, which is shown in simplified form 
in Figure 7-36. (Several possible transitions and Plug and Play commands have been omitted for 
clarity. Also, the state diagram depicted is that implemented by function drivers. Bus drivers 
implement a more complex state diagram.) A state shown in the figure that we haven’t discussed 
is the one that results from the PnP manager’s surprise-remove command. This command results 
when either a user removes a device without warning, as when the user ejects a PCMCIA card 
without using the remove/eject utility, or the device fails. 
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The surprise-remove command tells the driver to immediately cease all interaction with the device 
because the device is no longer attached to the system and to cancel any pending I/O requests. 

  

7.6.3 Driver Loading, Initialization, and Installation 

Driver loading and initialization on Windows consists of two types of loading: explicit loading 
and enumeration-based loading. Explicit loading is guided by the 
HKLM\SYSTEM\CurrentControlSet\Services branch of the registry, as described in the section 
“Service Applications” in Chapter 4. Enumeration-based loading results when the PnP manager 
dynamically loads drivers for the devices that a bus driver reports during bus enumeration.  

The Start Value 

In Chapter 4, we explained that every driver and Windows service has a registry key under the 
Services branch of the current control set. The key includes values that specify the type of the 
image (for example, Windows service, driver, and file system), the path to the driver or service’s 
image file, and values that control the driver or service’s load ordering. There are two main 
differences between explicit device driver loading and Windows service loading: 

■ Only device drivers can specify Start values of boot-start (0) or system-start (1). 

■ Device drivers can use the Group and Tag values to control the order of loading within a phase 
of the boot, but unlike services, they can’t specify DependOnGroup or DependOnService values. 

Chapter 13 describes the phases of the boot process and explains that a driver Start value of 0 
means that the operating system loader loads the driver. A Start value of 1 means that the I/O 
manager loads the driver after the executive subsystems have finished initializing.  

The I/O manager calls driver initialization routines in the order that the drivers load within a boot 
phase. Like Windows services, drivers use the Group value in their registry key to specify which 
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group they belong to; the registry value HKLM\SYSTEM\CurrentControlSet\Control 
\ServiceGroupOrder\List determines the order that groups are loaded within a boot phase.  

A driver can further refine its load order by including a Tag value to control its order within a 
group. The I/O manager sorts the drivers within each group according to the Tag values defined in 
the drivers’ registry keys. Drivers without a tag go to the end of the list in their group. You might 
assume that the I/O manager initializes drivers with lower-number tags before it initializes drivers 
with higher-number tags, but such isn’t necessarily the case. The registry key 
HKLM\SYSTEM\CurrentControlSet\Control\GroupOrderList defines tag precedence within a 
group; with this key, Microsoft and device driver developers can take liberties with redefining the 
integer number system. 

Here are the guidelines by which drivers set their Start value: 

■ Non–Plug and Play drivers set their Start value to reflect the boot phase they want to load in. 

■ Drivers, including both Plug and Play and non–Plug and Play drivers, that must be loaded by the 
boot loader during the system boot specify a Start value of boot-start (0). Examples include system 
bus drivers and the boot file system driver. 

■ A driver that isn’t required for booting the system and that detects a device that a system bus 
driver can’t enumerate specifies a Start value of system-start (1). An example is the serial port 
driver, which informs the PnP manager of the presence of standard PC serial ports that were 
detected by Setup and recorded in the registry. 

■ A non–Plug and Play driver or file system driver that doesn’t have to be present when the 
system boots specifies a Start value of auto-start (2). An example is the Multiple Universal 
Naming Convention (UNC) Provider (MUP) driver, which provides support for UNC-based path 
names to remote resources (for example, \\REMOTE COMPUTERNAME\SHARE). 

■ Plug and Play drivers that aren’t required to boot the system specify a Start value of 
demand-start (3). Examples include network adapter drivers. 

The only purpose that the Start values for Plug and Play drivers and drivers for enumerable 
devices have is to ensure that the operating system loader loads the driver—if the driver is 
required for the system to boot successfully. Beyond that, the PnP manager’s device enumeration 
process, described next, determines the load order for Plug and Play drivers. 

Device Enumeration 

The PnP manager begins device enumeration with a virtual bus driver called Root, which 
represents the entire computer system and acts as the bus driver for non–Plug and Play drivers and 
for the HAL. The HAL acts as a bus driver that enumerates devices directly attached to the 
motherboard as well as system components such as batteries. Instead of actually enumerating, the 



 571

HAL relies on the hardware description the Setup process recorded in the registry to detect the 
primary bus (a PCI bus in most cases) and devices such as batteries and fans. 

The primary bus driver enumerates the devices on its bus, possibly finding other buses, for which 
the PnP manager initializes drivers. Those drivers in turn can detect other devices, including other 
subsidiary buses. This recursive process of enumeration, driver loading (if the driver isn’t already 
loaded), and further enumeration proceeds until all the devices on the system have been detected 
and configured. 

As the bus drivers report detected devices to the PnP manager, the PnP manager creates an 
internal tree called the device tree that represents the relationships between devices. Nodes in the 
tree are called devnodes, and a devnode contains information about the device objects that 
represent the device as well as other Plug and Play–related information stored in the devnode by 
the PnP manager. Figure 7-37 shows an example of a simplified device tree. This system is 
ACPI-compliant, so an ACPI-compliant HAL serves as the primary bus enumerator. A PCI bus 
serves as the system’s primary bus, which USB, ISA, and SCSI buses are connected to. 

  

The Device Manager utility, which is accessible from the Computer Management snap-in in the 
Programs/Administrative Tools folder of the Start menu (and also from the Hardware tab of the 
System utility in Control Panel), shows a simple list of devices present on a system in its default 
configuration. You can also select the Devices By Connection option from the Device Manager’s 
View menu to see the devices as they relate to the device tree. Figure 7-38 shows an example of 
the Device Manager’s Devices By Connection view. 
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Taking device enumeration into account, the load and initialization order of drivers is as follows: 

1. The I/O manager invokes the driver entry routine of each boot-start driver. If a boot driver has 
child devices, the I/O manager enumerates those devices, reporting their presence to the PnP 
manager. The child devices are configured and started if their drivers are boot-start drivers. If a 
device has a driver that isn’t a boot-start driver, the PnP manager creates a devnode for the device 
but doesn’t start it or load its driver. 

2. After the boot-start drivers are initialized, the PnP manager walks the device tree, loading the 
drivers for devnodes that weren’t loaded in step 1 and starting their devices. As each device starts, 
the PnP manager enumerates its child devices, if it has any, starting those devices’ drivers and 
performing enumeration of their children as required. The PnP manager loads the drivers for 
detected devices in this step regardless of the driver’s Start value. (The one exception is if the Start 
value is set to disabled.) At the end of this step, all Plug and Play devices have their drivers loaded 
and are started, except devices that aren’t enumerable and the children of those devices. 

3. The PnP manager loads any drivers with a Start value of system-start that aren’t yet loaded. 
Those drivers detect and report their nonenumerable devices. The PnP manager loads drivers for 
those devices until all enumerated devices are configured and started. 

4. The service control manager loads drivers marked as auto-start.  

The device tree serves to guide both the PnP manager and the power manager as they issue Plug 
and Play and power IRPs to devices. In general, IRPs flow from the top of a devnode to the 
bottom, and in some cases a driver in one devnode creates new IRPs to send to other devnodes, 
always moving toward the root. The flow of Plug and Play and power IRPs is further described 
later in this chapter. 
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EXPERIMENT: Dumping the Device Tree 

A more detailed way to view the device tree than using Device Manager is to use the !devnode 
kernel debugger command. Specifying 0 1 as command options dumps the internal device tree 
devnode structures, indenting entries to show their hierarchical relationships, as shown here: 

1. lkd> !devnode 0 1  
2. Dumping IopRootDeviceNode (= 0x85161a98)   
3. DevNode 0x85161a98 for PDO 0x84d10390  
4. InstancePath is "HTREE\ROOT\0"  
5. State = DeviceNodeStarted (0x308)   
6. Previous State = DeviceNodeEnumerateCompletion (0x30d)   
7. DevNode 0x8515bea8 for PDO 0x8515b030  
8. DevNode 0x8515c698 for PDO 0x8515c820  
9. InstancePath is "Root\ACPI_HAL\0000"  
10. State = DeviceNodeStarted (0x308)   
11. Previous State = DeviceNodeEnumerateCompletion (0x30d)   
12. DevNode 0x84d1c5b0 for PDO 0x84d1c738  
13. InstancePath is "ACPI_HAL\PNP0C08\0"  
14. ServiceName is "ACPI"  
15. State = DeviceNodeStarted (0x308)   
16. Previous State = DeviceNodeEnumerateCompletion (0x30d)   
17. DevNode 0x85ebf1b0 for PDO 0x85ec0210  
18. InstancePath is "ACPI\GenuineIntel_-_x86_Family_6_Model_15\_0"  
19. ServiceName is “intelppm”   
20. State = DeviceNodeStarted (0x308)   
21. Previous State = DeviceNodeEnumerateCompletion (0x30d)   
22. DevNode 0x85ed6970 for PDO 0x8515e618  
23. InstancePath is "ACPI\GenuineIntel_-_x86_Family_6_Model_15\_1"  
24. ServiceName is "intelppm"  
25. State = DeviceNodeStarted (0x308)   
26. Previous State = DeviceNodeEnumerateCompletion (0x30d)   
27. DevNode 0x85ed75c8 for PDO 0x85ed79e8  
28. InstancePath is "ACPI\ThermalZone\THM_"  
29. State = DeviceNodeStarted (0x308)   
30. Previous State = DeviceNodeEnumerateCompletion (0x30d)   
31. DevNode 0x85ed6cd8 for PDO 0x85ed6858  
32. InstancePath is "ACPI\pnp0c14\0"  
33. ServiceName is "WmiAcpi"  
34. State = DeviceNodeStarted (0x308)   
35. Previous State = DeviceNodeEnumerateCompletion (0x30d)   
36. DevNode 0x85ed7008 for PDO 0x85ed6730  
37. InstancePath is "ACPI\ACPI0003\2&daba3ff&2"  
38. ServiceName is "CmBatt"  
39. State = DeviceNodeStarted (0x308)   
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40. Previous State = DeviceNodeEnumerateCompletion (0x30d)   
41. DevNode 0x85ed7e60 for PDO 0x84d2e030  
42. InstancePath is "ACPI\PNP0C0A\1"  
43. ServiceName is "CmBatt"  
44. §   

Information shown for each devnode includes the InstancePath, which is the name of the device’s 
enumeration registry key stored under HKLM\SYSTEM \CurrentControl Set\Enum, and the 
ServiceName, which corresponds to the device’s driver registry key under 
HKLM\SYSTEM\CurrentControlSet \Services. To see the resources, such as interrupts, ports, and 
memory, assigned to each devnode, specify 0 3 as the command options for the !devnode 
command. 

A record of all the devices detected since the system was installed is recorded under the 
HKLM\SYSTEM\CurrentControlSet\Enum registry key. Subkeys are in the form \\, where the 
enumerator is a bus driver, the device ID is a unique identifier for a type of device, and the 
instance ID uniquely identifies different instances of the same hardware. 

Devnodes 

Figure 7-39 shows that a devnode is made up of at least two, and sometimes more, device objects: 

■ A physical device object (PDO) that the PnP manager instructs a bus driver to create when the 
bus driver reports the presence of a device on its bus during enumeration. The PDO represents the 
physical interface to the device. 

■ One or more optional filter device objects (FiDOs) that layer between the PDO and the FDO 
(described next), and that are created by bus filter drivers. 

■ One or more optional FiDOs that layer between the PDO and the FDO (and that layer above any 
FiDOs created by bus filter drivers) that are created by lower-level filter drivers. 

■ A functional device object (FDO) that is created by the driver, which is called a function driver, 
that the PnP manager loads to manage a detected device. An FDO represents the logical interface 
to a device. A function driver can also act as a bus driver if devices are attached to the device 
represented by the FDO. The function driver often creates an interface (described earlier) to the 
FDO’s corresponding PDO so that applications and other drivers can open the device and interact 
with it. Sometimes function drivers are divided into a separate class/port driver and miniport 
driver that work together to manage I/O for the FDO. 

■ One or more optional FiDOs that layer above the FDO and that are created by upperlevel filter 
drivers. 
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Devnodes are built from the bottom up and rely on the I/O manager’s layering functionality, so 
IRPs flow from the top of a devnode toward the bottom. However, any level in the devnode can 
choose to complete an IRP. For example, the function driver can handle a read request without 
passing the IRP to the bus driver. Only when the function driver requires the help of a bus driver 
to perform bus-specific processing does the IRP flow all the way to the bottom and then into the 
devnode containing the bus driver.  

Devnode Driver Loading 

So far, we’ve avoided answering two important questions: “How does the PnP manager determine 
what function driver to load for a particular device?” and “How do filter drivers register their 
presence so that they are loaded at appropriate times in the creation of a devnode?” 

The answer to both these questions lies in the registry. When a bus driver performs device 
enumeration, it reports device identifiers for the devices it detects back to the PnP manager. The 
identifiers are bus-specific; for a USB bus, an identifier consists of a vendor ID (VID) for the 
hardware vendor that made the device and a product ID (PID) that the vendor assigned to the 
device. (See the WDK for more information on device ID formats.) Together these IDs form what 
Plug and Play calls a device ID. The PnP manager also queries the bus driver for an instance ID to 
help it distinguish different instances of the same hardware. The instance ID can describe either a 
bus-relative location (for example, the USB port) or a globally unique descriptor (for example, a 
serial number). 

The device ID and instance ID are combined to form a device instance ID (DIID), which the PnP 
manager uses to locate the device’s key in the enumeration branch of the registry 
(HKLM\SYSTEM\CurrentControlSet\Enum). Figure 7-40 presents an example of a keyboard’s 
enumeration subkey. The device’s key contains descriptive data and includes values named 
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Service and ClassGUID (which are obtained from a driver’s INF file) that help the PnP manager 
locate the device’s drivers. 

  

EXPERIMENT: Viewing Detailed Devnode Information in Device Manager 

The Device Manager applet that you can access from the Hardware tab of the System Control 
Panel application can show detailed information about a device node by using a tab called Details. 
The tab allows you to view an assortment of fields, including the devnode’s device instance ID, 
hardware ID, service name, filters, and power capabilities.  

The following screen shows the selection combo box of the Details tab expanded to reveal the 
types of information you can access: 
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Using the ClassGUID value, the PnP manager locates the device’s class key under 
HKLM\SYSTEM\CurrentControlSet\Control\Class. The keyboard class key is shown in Figure 
7-41. The enumeration key and class key supply the PnP manager the information it needs to load 
the drivers necessary for the device’s devnode. Drivers are loaded in the following order: 

1. Any lower-level filter drivers specified in the LowerFilters value of the device’s enumeration 
key. 

2. Any lower-level filter drivers specified in the LowerFilters value of the device’s class key. 

3. The function driver specified by the Service value in the device’s enumeration key. This value 
is interpreted as the driver’s key under HKLM\SYSTEM\CurrentControlSet\Services. 

4. Any upper-level filter drivers specified in the UpperFilters value of the device’s enumeration 
key. 

5. Any upper-level filter drivers specified in the UpperFilters value of the device’s class key. In all 
cases, drivers are referenced by the name of their key under HKLM\SYSTEM\CurrentControlSet 
\Services. 

  

Note The WDK refers to a device’s enumeration key as its hardware key and to the class key as 
the software key. 

The keyboard device shown in Figure 7-40 and Figure 7-41 has no lower-level filter drivers. The 
function driver is the i8042prt driver, and there are two upper-level filter drivers specified in the 
keyboard’s class key: kbdclass and vmkbd2. 
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7.6.4 Driver Installation 

If the PnP manager encounters a device for which no driver is installed, it relies on the user-mode 
PnP manager to guide the installation process. If the device is detected during the system boot, a 
devnode is defined for the device but the loading process is postponed until the user-mode PnP 
manager starts. (The user-mode PnP manager is implemented in \%SystemRoot%\System32 
\Umpnpmgr.dll and runs as a service in the Services.exe process.)  

The components involved in a driver’s installation are shown in Figure 7-42. Shaded objects in the 
figure correspond to components generally supplied by the system, whereas objects that aren’t 
shaded are included in a driver’s installation files. First, a bus driver informs the PnP manager of a 
device it enumerates using a DIID (1). The PnP manager checks the registry for the presence of a 
corresponding function driver, and when it doesn’t find one, it informs the user-mode PnP 
manager (2) of the new device by its DIID. The user-mode PnP manager first tries to perform an 
automatic install without user intervention. If the installation process involves the posting of 
dialog boxes that require user interaction and the currently logged-on user has administrator 
privileges, (3) the user-mode PnP manager launches the Rundll32.exe application (the same 
application that hosts Control Panel utilities) to execute the Hardware Installation Wizard 
(\Windows\System32\Newdev.dll). If the currently loggedon user doesn’t have administrator 
privileges (or if no user is logged on) and the installation of the device requires user interaction, 
the user-mode PnP manager defers the installation until a privileged user logs on. The Hardware 
Installation Wizard uses Setup and CfgMgr (configuration manager) API functions to locate INF 
files that correspond to drivers that are compatible with the detected device. This process might 
involve having the user insert installation media containing a vendor’s INF files, or the wizard 
might locate a suitable INF file in the driver store (\Windows\System32\DriverStore) that contains 
drivers that ship with Windows. Installation is performed in two steps. In the first, the third-party 
driver developer imports the driver package into the driver store, and in the second step, the 
system performs the actual installation, which is always done through the %SystemRoot% 
\System32\Drvinst.exe process. 
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To find drivers for the new device, the installation process gets a list of hardware IDs and 
compatible IDs from the bus driver. These IDs describe all the various ways the hardware might 
be identified in a driver installation file (.inf). The lists are ordered so that the most specific 
description of the hardware is listed first. If matches are found in multiple INFs, more precise 
matches are preferred over less precise matches, digitally signed INFs are preferred over unsigned 
ones, and newer signed INFs are preferred over older signed ones. If a match is found based on a 
compatible ID, the Hardware Installation Wizard can choose to prompt for media in case a more 
up-to-date driver came with the hardware. 

The INF file locates the function driver’s files and contains commands that fill in the driver’s 
enumeration and class keys, and the INF file might direct the Hardware Installation Wizard to (4) 
launch class or device co-installer DLLs that perform class or device-specific installation steps, 
such as displaying configuration dialog boxes that let the user specify settings for a device. 

EXPERIMENT: Looking at a Driver’s INF File 

When a driver or other software that has an INF file is installed, the system copies its INF file to 
the \Windows\Inf directory. One file that will always be there is Keyboard.inf because it’s the INF 
file for the keyboard class driver. View its contents by opening it in Notepad and you should see 
something like this:  

1. ; Copyright (c) 1993-1996, Microsoft Corporation   
2. [version]   
3. signature="$Windows NT$"  
4. Class=Keyboard   
5. ClassGUID={4D36E96B-E325-11CE-BFC1-08002BE10318}   
6. Provider=%MS%   
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7. LayoutFile=layout.inf   
8. DriverVer=07/01/2001,5.1.2600.1106  
9. [ClassInstall32.NT]   
10. AddReg=keyboard_class_addreg   
11. ...   

If you search the file for “.sys”, you’ll come across the entry that directs the user-mode PnP 
manager to install the i8042prt.sys and kbdclass.sys drivers: 

1. ...   
2. [STANDARD_CopyFiles]   
3. i8042prt.sys   
4. kbdclass.sys   
5. ...  

Before actually installing a driver, the user-mode PnP manager checks the system’s driversigning 
policy. If the settings specify that the system should block or warn of the installation of unsigned 
drivers, the user-mode PnP manager checks the driver’s INF file for an entry that locates a catalog 
(a file that ends with the .cat extension) containing the driver’s digital signature. 

Microsoft’s WHQL tests the drivers included with Windows and those submitted by hardware 
vendors. When a driver passes the WHQL tests, it is “signed” by Microsoft. This means that 
WHQL obtains a hash, or unique value representing the driver’s files, including its image file, and 
then cryptographically signs it with Microsoft’s private driver-signing key. The signed hash is 
stored in a catalog file and included on the Windows installation media or returned to the vendor 
that submitted the driver for inclusion with its driver. 

EXPERIMENT: Viewing Catalog Files 

When you install a component such as a driver that includes a catalog file, Windows copies the 
catalog file to a directory under \Windows\System32\Catroot. Navigate to that directory in 
Explorer and you find the subdirectory that contains .cat files. Nt5.cat and Nt5inf.cat store the 
signatures for Windows system files, for example.  

If you open one of the catalog files, a dialog box appears with two pages. The page labeled 
General shows information about the signature on the catalog file, and the Security Catalog page 
has the hashes of the components that are signed with the catalog file. This screen shot of a 
catalog file for NVIDIA video drivers shows the hash for the video adapter’s kernel miniport 
driver. Other hashes in the catalog are associated with the various support DLLs that ship with the 
driver. 
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As it is installing a driver, the user-mode PnP manager extracts the driver’s signature from its 
catalog file, decrypts the signature using the public half of Microsoft’s driver-signing 
private/public key pair, and compares the resulting hash with a hash of the driver file it’s about to 
install. If the hashes match, the driver is verified as having passed WHQL testing. If a driver fails 
the signature verification, the user-mode PnP manager acts according to the settings of the system 
driver-signing policy, either failing the installation attempt, warning the user that the driver is 
unsigned, or silently installing the driver. 

Note Drivers installed using setup programs that manually configure the registry and copy driver 
files to a system and driver files that are dynamically loaded by applications aren’t checked for 
signatures by the PnP manager’s signing policy. Instead, they are checked by the Kernel Mode 
Code Signing policy described in Chapter 3. Only drivers installed using INF files are validated 
against the PnP manager’s driver-signing policy. 

After a driver is installed, the kernel-mode PnP manager (step 5 in Figure 7-42) starts the driver 
and calls its add-device routine to inform the driver of the presence of the device it was loaded for. 
The construction of the devnode then continues as described earlier.  

Note The user-mode PnP manager also checks to see whether the driver it’s about to install is on 
the protected driver list maintained by Windows Update and, if so, blocks the installation with a 
warning to the user. Drivers that are known to have incompatibilities or bugs are added to the list 
and blocked from installation. 
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7.7 The Power Manager 

Just as Windows Plug and Play features require support from a system’s hardware, its 
powermanagement capabilities require hardware that complies with the Advanced Configuration 
and Power Interface (ACPI) specification (available at www.teleport.com/~acpi/spec.htm). 

The ACPI standard defines various power levels for a system and for devices. The six system 
power states are described in Table 7-8. They are referred to as S0 (fully on or working) through 
S5 (fully off ). Each state has the following characteristics: 

■ Power consumption The amount of power the computer consumes 

■ Software resumption The software state from which the computer resumes when moving to a 
“more on” state 

■ Hardware latency The length of time it takes to return the computer to the fully on state 

  

States S1 through S4 are sleeping states, in which the computer appears to be off because of 
reduced power consumption. However, the computer retains enough information, either in 
memory or on disk, to move to S0. For states S1 through S3, enough power is required to preserve 
the contents of the computer’s memory so that when the transition is made to S0 (when the user or 
a device wakes up the computer), the power manager continues executing where it left off before 
the suspend. 

When the system moves to S4, the power manager saves the compressed contents of memory to a 
hibernation file named Hiberfil.sys, which is large enough to hold the uncompressed contents of 
memory, in the root directory of the system volume. (Compression is used to minimize disk I/O 
and to improve hibernation and resume-from-hibernation performance.) After it finishes saving 
memory, the power manager shuts off the computer. When a user subsequently turns on the 
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computer, a normal boot process occurs, except that Bootmgr checks for and detects a valid 
memory image stored in the hibernation file. If the hibernation file contains saved system state, 
Bootmgr launches Winresume, which reads the contents of the file into memory, and then resumes 
execution at the point in memory that is recorded in the hibernation file. 

On systems with hybrid sleep enabled (by default, only desktop computers), a user request to put 
the computer to sleep will actually be a combination of both the S3 state and the S4 state: while 
the computer is put to sleep, an emergency hibernation file will also be written to disk. Unlike 
typical hibernation files, which contain almost all active memory, the emergency hibernation file 
includes only data that could not be paged in at a later time, making the  suspend operation faster 
than a typical hibernation (because less data is written to disk). Drivers will then be notified that 
an S4 transition is occurring, allowing them to configure themselves and save state just as if an 
actual hibernation request had been initiated. After this point, the system is put in the normal sleep 
state just like during a standard sleep transition. However, if the power goes out, the system is now 
essentially in an S4 state—the user can power on the machine, and Windows will resume from the 
emergency hibernation file.  

The computer never directly transitions between states S1 and S4; instead, it must move to state 
S0 first. As illustrated in Figure 7-43, when the system is moving from any of states S1 through 
S5 to state S0, it’s said to be waking, and when it’s transitioning from state S0 to any of states S1 
through S5, it’s said to be sleeping. 

  

Although the system can be in one of six power states, ACPI defines devices as being in one of 
four power states, D0 through D3. State D0 is fully on, and state D3 is fully off. The ACPI 
standard leaves it to individual drivers and devices to define the meanings of states D1 and D2, 
except that state D1 must consume an amount of power less than or equal to that consumed in 
state D0, and when the device is in state D2, it must consume power less than or equal to that 
consumed in D1. Microsoft, in conjunction with the major hardware OEMs, has defined a series of 
power management reference specifications that specify the device power states that are required 
for all devices in a particular class (for the major device classes: display, network, SCSI, and so 
on). For some devices, there’s no intermediate power state between fully on and fully off, which 
results in these states being undefined. 
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7.7.1 Power Manager Operation 

Power management policy in Windows is split between the power manager and the individual 
device drivers. The power manager is the owner of the system power policy. This ownership 
means that the power manager decides which system power state is appropriate at any given point, 
and when a sleep, hibernation, or shutdown is required, the power manager instructs the 
power-capable devices in the system to perform appropriate system powerstate transitions. The 
power manager decides when a system power-state transition is necessary by considering a 
number of factors: 

■ System activity level 

■ System battery level 

■ Shutdown, hibernate, or sleep requests from applications 

■ User actions, such as pressing the power button 

■ Control Panel power settings 

When the PnP manager performs device enumeration, part of the information it receives about a 
device is its power-management capabilities. A driver reports whether or not its devices support 
device states D1 and D2 and, optionally, the latencies, or times required, to move from states D1 
through D3 to D0. To help the power manager determine when to make system power-state 
transitions, bus drivers also return a table that implements a mapping between each of the system 
power states (S0 through S5) and the device power states that a device supports. 

The table lists the lowest possible device power state for each system state and directly reflects the 
state of various power planes when the machine sleeps or hibernates. For example, a bus that 
supports all four device power states might return the mapping table shown in Table 7-9. Most 
device drivers turn their devices completely off (D3) when leaving S0 to minimize power 
consumption when the machine isn’t in use. Some devices, however, such as network adapter 
cards, support the ability to wake up the system from a sleeping state. This ability, along with the 
lowest device power state in which the capability is present, is also reported during device 
enumeration. 
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7.7.2 Driver Power Operation 

When the power manager decides to make a transition between system power states, it sends 
power commands to a driver’s power dispatch routine. More than one driver can be responsible 
for managing a device, but only one of the drivers is designated as the device power-policy owner. 
This driver determines, based on the system state, a device’s power state. For example, if the 
system transitions between state S0 and S1, a driver might decide to move a device’s power state 
from D0 to D1. 

Instead of directly informing the other drivers that share the management of the device of its 
decision, the device power-policy owner asks the power manager, via the PoRequestPowerIrp 
function, to tell the other drivers by issuing a device power command to their power dispatch 
routines. This behavior allows the power manager to control the number of power commands that 
are active on a system at any given time. For example, some devices in the system might require a 
significant amount of current to power up. The power manager ensures that such devices aren’t 
powered up simultaneously. 

EXPERIMENT: Viewing a Driver’s Power Mappings 

You can see a driver’s system power state to driver power state mappings with Device Manager. 
Open the Properties dialog box for a device, and choose the Power Data entry in the drop-down 
list of the Details tab to see the mappings. The dialog box also displays the current power state of 
the device, the device-specific power capabilities that it provides, and the power states from which 
it is able to wake the system. 
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Many power commands have corresponding query commands. For example, when the system is 
moving to a sleep state, the power manager will first ask the devices on the system whether the 
transition is acceptable. A device that is busy performing time- critical operations or interacting 
with device hardware might reject the command, which results in the system maintaining its 
current system power-state setting. 

EXPERIMENT: Viewing the System Power Capabilities and Policy 

You can view a computer’s system power capabilities by using the !pocaps kernel debugger 
command. Here’s the output of the command when run on an ACPIcompliant laptop running 
Windows Vista: 

1. lkd> !pocaps   
2. PopCapabilities @ 0x82114d80  
3. Misc Supported Features: PwrButton SlpButton Lid S3 S4 S5 HiberFile FullWake   
4. VideoDim   
5. Processor Features: Thermal   
6. Disk Features: SpinDown   
7. Battery Features: BatteriesPresent   
8. Battery 0 - Capacity: 0 Granularity: 0  
9. Battery 1 - Capacity: 0 Granularity: 0  
10. Battery 2 - Capacity: 0 Granularity: 0  
11. Wake Caps   
12. Ac OnLine Wake: Sx   
13. Soft Lid Wake: Sx   
14. RTC Wake: S4  
15. Min Device Wake: Sx   
16. Default Wake: Sx   
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The Misc Supported Features line reports that, in addition to S0 (fully on), the system supports 
system power states S1, S3, S4, and S5 (it doesn’t implement S2) and has a valid hibernation file 
to which it can save system memory when it hibernates (state S4).  

The Power Options page, shown here (available by selecting Power Options in Control Panel), lets 
you configure various aspects of the system’s power policy. The exact properties you can 
configure depend on the system’s power capabilities, which we just examined. 

  

By changing any of the preconfigured plan settings, you can set the idle detection timeouts that 
control when the system turns off the monitor, spins down hard disks, goes to standby mode 
(moves to system power state S1), and hibernates (moves the system to power state S4). In 
addition, selecting the Change Advanced Power Settings option lets you specify the power-related 
behavior of the system when you press the power or sleep buttons or close a laptop’s lid. 
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The settings you configure in Power Options directly affect values in the system’s power policy, 
which you can display with the !popolicy debugger command. Here’s the output of the command 
on the same system: 

1. lkd> !popolicy   
2. SYSTEM_POWER_POLICY (R.1) @ 0x82107994  
3. PowerButton: Sleep Flags: 00000000 Event: 00000000  
4. SleepButton: Sleep Flags: 00000000 Event: 00000000  
5. LidClose: Sleep Flags: 00000000 Event: 00000000  
6. Idle: Sleep Flags: 00000000 Event: 00000000  
7. OverThrottled: None Flags: 00000000 Event: 00000000  
8. IdleTimeout: 384 IdleSensitivity: 90%  
9. MinSleep: S3 MaxSleep: S3  
10. LidOpenWake: S0 FastSleep: S0  
11. WinLogonFlags: 1 S4Timeout: fd20  
12. VideoTimeout: 300 VideoDim: 0  
13. SpinTimeout: 258 OptForPower: 0  
14. FanTolerance: 0% ForcedThrottle: 0%  
15. SpinTimeout: 258 OptForPower: 0  
16. MinThrottle: 0% DyanmicThrottle: None   

The first lines of the display correspond to the button behaviors specified on the Advanced 
Settings tab of Power Options, and on this system both the power and the sleep buttons put the 
computer in a sleep state, just as closing the lid does.  
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The timeout values shown at the end of the output are expressed in seconds and displayed in 
hexadecimal notation. The values reported here directly correspond to the settings you can see 
configured on the Power Options page. (The laptop is on battery.) For example, the video timeout 
is 300, meaning the monitor turns off after 300 seconds, or 5 minutes, and the hard disk spin-down 
timeout is 0x258, which corresponds to 600 seconds, or 10 minutes. 

7.7.3 Driver and Application Control of Device Power 

Besides responding to power manager commands related to system power-state transitions, a 
driver can unilaterally control the device power state of its devices. In some cases, a driver might 
want to reduce the power consumption of a device it controls when the device is left inactive for a 
period of time. Examples include monitors that support a dimmed mode and disks that support 
spin-down. A driver can either detect an idle device itself or use facilities provided by the power 
manager. If the device uses the power manager, it registers the device with the power manager by 
calling the PoRegisterDeviceForIdleDetection function.  

This function informs the power manager of the timeout values to use to detect a device as idle 
and of the device power state that the power manager should apply when it detects the device as 
being idle. The driver specifies two timeouts: one to use when the user has configured the 
computer to conserve energy and the other to use when the user has configured the computer for 
optimum performance. After calling PoRegisterDeviceForIdleDetection, the driver must inform 
the power manager, by calling the PoSetDeviceBusy function, whenever the device is active. 

Although a device has control over its own power state, it does not have the ability to manipulate 
the system power state or to prevent system power transitions from occurring. For example, if a 
badly designed driver doesn’t support any low-power states, it can choose to remain on or turn 
itself completely off without hindering the system’s overall ability to enter a low-power 
state—this is because the power manager only notifies the driver of a transition and doesn’t ask 
for consent. 

Although drivers and the kernel are chiefly responsible for power management, applications are 
also allowed to provide their input. User-mode processes can register for a variety of power 
notifications, such as when the battery is low or critically low, when the laptop has switched from 
DC (battery) to AC (adapter/charger) power, or when the system is initiating a power transition. 
Just like drivers, however, applications cannot veto these operations, and they can have up to two 
seconds to clean up any state necessary before a sleep transition. 

7.8 Conclusion 

The I/O system defines the model of I/O processing on Windows and performs functions that are 
common to or required by more than one driver. Its chief responsibility is to create IRPs 
representing I/O requests and to shepherd the packets through various drivers, returning results to 
the caller when an I/O is complete. The I/O manager locates various drivers and devices by using 
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I/O system objects, including driver and device objects. Internally, the Windows I/O system 
operates asynchronously to achieve high performance and provides both synchronous and 
asynchronous I/O capabilities to user-mode applications. 

Device drivers include not only traditional hardware device drivers but also file system, network, 
and layered filter drivers. All drivers have a common structure and communicate with one another 
and the I/O manager by using common mechanisms. The I/O system interfaces allow drivers to be 
written in a high-level language to lessen development time and to enhance their portability. 
Because drivers present a common structure to the operating system, they can be layered one on 
top of another to achieve modularity and reduce duplication between drivers. Also, all Windows 
device drivers should be designed to work correctly on multiprocessor systems.  

Finally, the role of the PnP manager is to work with device drivers to dynamically detect hardware 
devices and to build an internal device tree that guides hardware device enumeration and driver 
installation. The power manager works with device drivers to move devices into low-power states 
when applicable to conserve energy and prolong battery life.  

Four more upcoming chapters in the book will cover additional topics related to the I/O system: 
storage management, file systems (including details on the NTFS file system), the cache manager, 
and networking. 
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8. Storage Management 

Storage management defines the way that an operating system interfaces with nonvolatile storage 
devices and media. The term storage encompasses many different devices, including tape drives, 
optical media, USB flash drives, floppy disks, hard disks, network storage such as iSCSI, and 
storage area networks (SANs). Windows provides specialized support for each of these classes of 
storage media. Because our focus in this book is on the kernel components of Windows, in this 
chapter we’ll concentrate on just the fundamentals of the hard-disk storage subsystem in Windows, 
which includes support for external disks and flash drives. Significant portions of the support 
Windows provides for removable media and remote storage (offline archiving) are implemented in 
user mode.  

In this chapter, we’ll examine how kernel-mode device drivers interface file system drivers to disk 
media, discuss how disks are partitioned, describe the way volume managers abstract and manage 
volumes, and present the implementation of multipartition disk-management features in Windows, 
including replicating and dividing file system data across physical disks for reliability and for 
performance enhancement. We’ll also describe how file system drivers mount volumes they are 
responsible for managing, and we’ll conclude by discussing drive encryption technology in 
Windows and support for automatic backups and recovery. 

8.1 Storage Terminology 

To fully understand the rest of this chapter, you need to be familiar with some basic terminology:  

■ Disks are physical storage devices such as a hard disk, a 3.5-inch floppy disk, or a CD-ROM. 

■ A disk is divided into sectors, which are addressable blocks of fixed size. Sector sizes are 
determined by hardware. Most hard disk sectors are 512 bytes, and CD-ROM sectors are typically 
2048 bytes. 

■ Partitions are collections of contiguous sectors on a disk. A partition table or other 
diskmanagement database stores a partition’s starting sector, size, and other characteristics and is 
located on the same disk as the partition. 

■ Simple volumes are objects that represent sectors from a single partition that file system drivers 
manage as a single unit. 

■ Multipartition volumes are objects that represent sectors from multiple partitions and that file 
system drivers manage as a single unit. Multipartition volumes offer performance, reliability, and 
sizing features that simple volumes do not. 
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8.2 Disk Drivers 

The device drivers involved in managing a particular storage device are collectively known as a 
storage stack. Figure 8-1 shows each type of driver that might be present in a stack and includes a 
brief description of its purpose. This chapter describes the behavior of device drivers below the 
file system layer in the stack. (The file system driver operation is described in Chapter 11.) 

8.2.1 Winload  

As you saw in Chapter 4, Winload is the Windows operating system file that conducts the first 
portion of the Windows boot process. Although Winload isn’t technically part of the storage stack, 
it is involved with storage management because it includes support for accessing disk devices 
before the Windows I/O system is operational. Winload resides on the boot volume; the 
boot-sector code on the system volume executes Bootmgr. Bootmgr reads the BCD from the 
system volume or EFI firmware and presents the computer’s boot choices to the user. Bootmgr 
translates the name of the BCD boot entry that a user selects to the appropriate boot partition and 
then runs Winload to load the Windows system files (starting with the registry, Ntoskrnl.exe and 
its dependencies, and the boot drivers) into memory to continue the boot process. In all cases, 
Winload uses the computer firmware to read the disk containing the system volume.  

8.2.2 Disk Class, Port, and Miniport Drivers 

During initialization, the Windows I/O manager starts the disk storage drivers. Storage drivers in 
Windows follow a class/port/miniport architecture, in which Microsoft supplies a storage class 
driver that implements functionality common to all storage devices and a storage port driver that 
implements functionality common to a particular bus—such as a Small Computer System 
Interface (SCSI) bus or an Integrated Device Electronics (IDE) system—and OEMs supply 
miniport drivers that plug into the port driver to interface Windows to a particular controller 
implementation. 

In the disk storage driver architecture, only class drivers conform to the standard Windows device 
driver interfaces. Miniport drivers use a port driver interface instead of the device driver interface, 
and the port driver simply implements a collection of device driver support routines that interface 
miniport drivers to Windows. This approach simplifies the role of miniport driver developers and, 
because Microsoft supplies operating system–specific port drivers, allows driver developers to 
focus on hardware-specific driver logic. Windows includes Disk (\Windows\System32\Drivers 
\Disk.sys), a class driver that implements functionality common to disks. Windows also provides a 
handful of disk port drivers. For example, Scsiport.sys is the legacy port driver for disks on SCSI 
buses, and Ataport.sys is a port driver for IDEbased systems. Most newer drivers use the 
Storport.sys port driver as a replacement for Scsiport.sys. Storport.sys is designed to realize the 
high performance capabilities of hardware RAID and Fibre Channel adapters. The Storport model 
is similar to Scsiport, making it easy for vendors to migrate existing Scsiport miniport drivers to 
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Storport. Miniport drivers that developers write to use Storport take advantage of several of 
Storport’s performance enhancing features, including support for the parallel execution of I/O 
initiation and  completion on multiprocessor systems, more controllable I/O request-queue 
architecture, and execution of more code at lower IRQL to minimize the duration of hardware 
interrupt masking. Storport also includes support for dynamic redirection of interrupts and DPCs 
to the best (most local) NUMA node on systems that support it. 

Both the Scsiport.sys and Ataport.sys drivers implement a version of the disk scheduling 
algorithm known as C-LOOK. The drivers place disk I/O requests in lists sorted by the first sector 
(also known as the logical block address, or LBA) at which an I/O request is directed. They use 
the KeInsertByKeyDeviceQueue and KeRemoveByKeyDeviceQueue functions (documented in 
the Windows Driver Kit) representing I/O requests as items and using a request’s starting sector as 
the key required by the functions. When servicing requests, the drivers proceed through the list 
from lowest sector to highest. When they reach the end of the list the drivers start back at the 
beginning, since new requests might have been inserted in the meantime. If disk requests are 
spread throughout a disk this approach results in the disk head continuously moving from near the 
outermost cylinders of the disk toward the innermost cylinders. Storport.sys does not implement 
disk scheduling because it is commonly used for managing I/Os directed at storage arrays where 
there is no clearly defined notion of a disk start and end. 

Windows ships with several miniport drivers, including one—Aha154x.sys—for Adaptec’s 1540 
family of SCSI controllers. On systems that have at least one ATAPI-based IDE device, Atapi.sys, 
Pciidex.sys, and Pciide.sys together provide miniport functionality. Most Windows installations 
include one or more of the drivers mentioned. 

 iSCSI Drivers 

The development of iSCSI as a disk transport protocol integrates the SCSI protocol with TCP/IP 
networking so that computers can communicate with block-storage devices, including disks, over 
IP networks. Storage area networking (SAN) is usually architected on Fibre Channel networking, 
but administrators can leverage iSCSI to create relatively inexpensive SANs from networking 
technology such as Gigabit Ethernet to provide scalability, disaster protection, efficient backup, 
and data protection. Windows support for iSCSI comes in the form of the Microsoft iSCSI 
Software Initiator, which can be installed as a feature on Windows Vista Enterprise and Windows 
Vista Ultimate, as well as on Windows Server 2008.  

The Microsoft iSCSI Software Initiator includes several components: 

■ Initiator This optional component, which consists of the Storport port driver and the iSCSI 
miniport driver (\Windows\System32\Drivers\Msiscsi.sys), uses the TCP/IP driver to implement 
software iSCSI over standard Ethernet adapters and TCP/IP offloaded network adapters. 

■ Initiator service This service, implemented in \Windows\System32\Iscsiexe.exe, manages the 
discovery and security of all iSCSI initiators as well as session initiation and termination. iSCSI 
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device discovery functionality is implemented in \Windows\System32\Iscsium.dll and conforms to 
the Internet Storage Name Service (iSNS) protocol. 

■ Management applications These include Iscsicli.exe, a command-line tool for managing iSCSI 
device connections and security, and the corresponding Control Panel application. 

Some vendors produce iSCSI adapters that offload the iSCSI protocol to hardware. The Initiator 
service works with these adapters, which must support iSNS, so that all iSCSI devices, including 
those discovered by the Initiator service and those discovered by iSCSI hardware, are recognized 
and managed through standard Windows interfaces. 

Multipath I/O (MPIO) Drivers 

Most disk devices have one path—or series of adapters, cables, and switches—between them and 
a computer. Servers requiring high levels of availability use multipathing solutions, where more 
than one set of connection hardware exists between the computer and a disk so that if a path fails 
the system can still access the disk via an alternate path. Without support from the operating 
system or disk drivers, however, a disk with two paths, for example, appears as two different disks. 
Windows includes multipath I/O support to manage multipath disks as a single disk. This support 
relies on built-in or third-party drivers called device-specific modules (DSMs) to manage details 
of the path management—for example, load balancing policies that choose which path to use for 
routing requests and error detection mechanisms to inform Windows when a path fails. MPIO 
support is available for Windows Server 2008 in the form of the Microsoft MPIO Driver 
Development Kit, which hardware and software vendors can license. 

In a Windows MPIO storage stack, shown in Figure 8-2, the disk driver includes functionality for 
MPIO devices. Disk.sys is responsible for claiming ownership of device objects representing 
multipath disks—so that it can ensure that only one device object is created to represent those 
disks—and for locating the appropriate DSM to manage the paths to the device. The Multipath 
Bus Driver (\Windows\System32\Drivers\Mpio.sys) manages connections between the computer 
and the device, including power management for the device. Disk.sys informs Mpio.sys of the 
presence of the devices for it to manage. Finally, the port driver for a multipath disk is also 
MPIO-aware in order to manage information passed up the device stack. There are therefore a 
total of three disk device stacks, two representing the physical paths (children of the adapter 
device stacks) and one representing the disk (child of the MPIO adapter device stack). When the 
latter receives a request, it uses the DSM to determine which path to forward that request to. The 
DSM makes the selection based on policy, and the request is sent to the corresponding disk device 
stack, which in turn forwards it to the device via the corresponding adapter. 

EXPERIMENT: Watching Physical Disk i/O 

Diskmon from Windows Sysinternals (www.microsoft.com/technet/sysinternals) uses the disk 
class driver’s Event Tracing for Windows (or ETW, which is described in Chapter 3) 
instrumentation to monitor I/O activity to physical disks and display it in a window. Diskmon 
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updates once a second with new data. For each operation, Diskmon shows the time, duration, 
target disk number, type and offset, and length, as you can see in the screen shown here. 
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8.2.3 Disk Device Objects 

The Windows disk class driver creates device objects that represent disks. Device objects that 
represent disks have names of the form \Device\HarddiskX\DRX; the number that identifies the 
disk replaces both Xs. To maintain compatibility with applications that use older naming 
conventions, the disk class driver creates symbolic links with Windows NT 4–formatted names 
that refer to the device objects the driver created. For example, the volume manager driver creates 
the link \Device\Harddisk0\Partition0 to refer to \Device\Harddisk0\DR0, and \Device\Harddisk0 
\Partition1 to refer to the first partition device object of the first disk. For backward compatibility 
with applications that expect legacy names, the disk class driver also creates the same symbolic 
links in Windows that represent physical drives that it would have created on Windows NT 4 
systems. Thus, for example, the link \GLOBAL??\PhysicalDrive0 references \Device\Harddisk0 
\DR0. Figure 8-3 shows the WinObj utility from Sysinternals displaying the contents of a 
Harddisk directory for a basic disk. You can see the physical disk and partition device objects in 
the pane at the right. 

  

As you saw in Chapter 3, the Windows API is unaware of the Windows object manager 
namespace. Windows reserves two groups of namespace subdirectories to use, one of which is the 
\Global?? subdirectory. (The other group is the collection of per-session \BaseNamed-Objects 
subdirectories, which are covered in Chapter 3.) In this subdirectory, Windows makes available 
device objects that Windows applications interact with—including COM and parallel ports—as 
well as disks. Because disk objects actually reside in other subdirectories, Windows uses symbolic 
links to connect names under \Global?? with objects located elsewhere in the namespace. For each 
physical disk on a system, the I/O manager creates a \Global??\ PhysicalDriveX link that points to 
\Device\HarddiskX\DRX. (Numbers, starting from 0, replace X.) Windows applications that 
directly interact with the sectors on a disk open the disk by calling the Windows CreateFile 
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function and specifying the name \\.\PhysicalDriveX (in which X is the disk number) as a 
parameter. The Windows application layer converts the name to \Global??\PhysicalDriveX before 
handing the name to the Windows object manager. 

8.2.4 Partition Manager 

The partition manager, \Windows\System32\Drivers\Partmgr.sys, is responsible for discovering, 
creating, deleting, and managing partitions. To become aware of partitions, the partition manager 
acts as the function driver for disk device objects created by disk class drivers. The partition 
manager uses the I/O manager’s IoReadPartitionTableEx function to identify partitions and create 
device objects that represent them. As miniport drivers present the disks that they identify early in 
the boot process to the disk class driver, the disk class driver invokes the IoReadPartitionTableEx 
function for each disk. This function invokes sector-level disk I/O that the class, port, and 
miniport drivers provide to read a disk’s MBR or GPT (described later in this chapter) and 
construct an internal representation of the disk’s partitioning. The partition manager driver creates 
device objects to represent each primary partition (including logical drives within extended 
partitions) that the driver obtains from IoRead PartitionTableEx. These names have the form 
\Device\HarddiskVolumeY, where Y represents the partition number.  

When a partition is added, a private IOCTL command is sent to each registered volume manager, 
asking the volume manager if it owns that partition. If so, the partition manager remembers the 
specific volume manager that claimed that partition, and from this point on it notifies that driver 
when the partition is either deleted or modified. Volume manager device drivers receive the 
notification of partitions for disks that they manage and define volume objects when they account 
for all the partitions that make up the volumes.  

The partition manager is also responsible for ensuring that all disks and partitions have a unique 
ID (signature for MBR and GUIDs for GPT). If it encounters two disks with the same ID, it tries 
to determine (by writing to one disk and reading from the other) whether they are two different 
disks or the same disk being viewed via two different paths (this can happen if the MPIO software 
isn’t present or isn’t working correctly). If the two disks are different, the partition manager 
changes the ID of one of them; if they are two paths to the same disk, the partition manager hides 
all the partitions on one of the disks from the volume managers to prevent the partitions from 
being mounted twice. 

By managing disk attributes that are persisted in the registry (such as read-only and offline), the 
partition manager can perform actions such as hiding partitions from the volume managers, which 
inhibits the volumes from manifesting on the system. Clustering and Hyper-V use these attributes. 
The partition manager also redirects write operations that are sent directly to the disk but fall 
within a partition space to the corresponding volume manager. The volume manager determines 
whether to allow the write operation based on whether the volume is dismounted or not. 
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8.3 Volume Management 

Windows has the concept of basic and dynamic disks. Windows calls disks that rely exclusively 
on the MBR-style or GPT partitioning scheme basic disks. Dynamic disks implement a more 
flexible partitioning scheme than that of basic disks. The fundamental difference between basic 
and dynamic disks is that dynamic disks support the creation of new multipartition volumes. 
Recall from the list of terms earlier in the chapter that multipartition volumes provide performance, 
sizing, and reliability features not supported by simple volumes. Windows manages all disks as 
basic disks unless you manually create dynamic disks or convert existing basic disks (with enough 
free space) to dynamic disks. Microsoft recommends that you use basic disks unless you require 
the multipartition functionality of dynamic disks.  

Note Windows does not support multipartition volumes on basic disks. For a number of reasons, 
including the fact that laptops usually have only one disk and laptop disks typically don’t move 
easily between computers, Windows uses only basic disks on laptops. In addition, only fixed disks 
can be dynamic, and disks located on IEEE 1394 or USB buses or on shared cluster server disks 
are always basic disks (or fixed dynamic disks). 

8.3.1 Basic Disks 

This section describes the two types of partitioning, MBR-style and GPT, that Windows uses to 
define volumes on basic disks, and the volume manager driver that presents the volumes to file 
system drivers. Windows silently defaults to defining all disks as basic disks.  

MBR-Style Partitioning 

The standard BIOS implementations that BIOS-based (non-EFI) x86 hardware uses dictate one 
requirement of the partitioning format in Windows—that the first sector of the primary disk 
contains the Master Boot Record (MBR). When a BIOS-based x86 system boots, the computer’s 
BIOS reads the MBR and treats part of the MBR’s contents as executable code. The BIOS invokes 
the MBR code to initiate an operating system boot process after the BIOS performs preliminary 
configuration of the computer’s hardware. In Microsoft operating systems such as Windows, the 
MBR also contains a partition table. A partition table consists of four entries that define the 
locations of as many as four primary partitions on a disk. The partition table also records a 
partition’s type. Numerous predefined partition types exist, and a partition’s type specifies which 
file system the partition includes. For example, partition types exist for FAT32 and NTFS. 

A special partition type, an extended partition, contains another MBR with its own partition table. 
The equivalent of a primary partition in an extended partition is called a logical drive. By using 
extended partitions, Microsoft’s operating systems overcome the apparent limit of four partitions 
per disk. In general, the recursion that extended partitions permit can continue indefinitely, which 
means that no upper limit exists to the number of possible partitions on a disk. The Windows boot 
process makes evident the distinction between primary and logical drives. The system must mark 
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one primary partition of the primary disk as active. The Windows code in the MBR loads the code 
stored in the first sector of the active partition (the system volume) into memory and then transfers 
control to that code. Because of the role in the boot process played by this first sector in the 
primary partition, Windows designates the first sector of any partition as the boot sector. As you 
will see in Chapter 13, every partition formatted with a file system has a boot sector that stores 
information about the structure of the file system on that partition. 

GUID Partition Table Partitioning 

As part of an initiative to provide a standardized and extensible firmware platform for operating 
systems to use during their boot process, Intel has designed the Extensible Firmware Interface 
(EFI) specification. EFI includes a mini–operating system environment implemented in firmware 
(typically ROM) that operating systems use early in the system boot process to load system 
diagnostics and their boot code. EFI defines a partitioning scheme, called the GUID (globally 
unique identifier) Partition Table (GPT) that addresses some of the shortcomings of MBR-style 
partitioning. For example, the sector addresses that the GPT structures use are 64 bits wide instead 
of 32 bits. A 32-bit sector address is sufficient to access only 2 terabytes (TB) of storage, while a 
GPT allows the addressing of disk sizes into the foreseeable future. Other advantages of the GPT 
scheme include the fact that it uses cyclic redundancy checksums (CRC) to ensure the integrity of 
the partition table, and it maintains a backup copy of the partition table. GPT takes its name from 
the fact that in addition to storing a 36-byte Unicode partition name for each partition, it assigns 
each partition a GUID. 

Figure 8-4 shows a sample GPT partition layout. Like for MBR-style partitioning, the first sector 
of a GPT disk is an MBR that serves to protect the GPT partitioning in case the disk is accessed 
from a non-GPT aware operating system. However, the second and last sectors of the disk store 
the GPT headers with the actual partition table following the second sector and preceding the last 
sector. With its extensible list of partitions, GPT partitioning doesn’t require nested partitions, as 
MBR partitions do.  
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Note Because Windows doesn’t support the creation of multipartition volumes on basic disks, a 
new basic disk partition is the equivalent of a volume. For this reason, the Disk Management 
MMC snap-in uses the term partition when you create a volume on a basic disk. 

Basic Disk Volume Manager 

The volume manager driver (\Windows\System32\Drivers\Volmgr.sys) creates disk device objects 
that represent volumes on basic disks and plays an integral role in managing all basic disk 
volumes, including simple volumes. For each volume, the volume manager creates a device object 
of the form \Device\HarddiskVolumeX, in which X is a number (starting from 1) that identifies 
the volume. 

The volume manager is actually a bus driver because it’s responsible for enumerating basic disks 
to detect the presence of basic volumes and report them to the Windows Plug and Play (PnP) 
manager. To implement this enumeration, the volume manager leverages the PnP manager, with 
the aid of the partition manager (Partmgr.sys) driver to determine what basic disk partitions exist. 
The partition manager registers with the PnP manager so that Windows can inform the partition 
manager whenever the disk class driver creates a partition device object.  

The partition manager informs the volume manager about new partition objects through a private 
interface and creates filter device objects that the partition manager then attaches to the partition 
objects. The existence of the filter objects prompts Windows to inform the partition manager 
whenever a partition device object is deleted so that the partition manager can update the volume 
manager. The disk class driver deletes a partition device object when a partition in the Disk 
Management MMC snap-in is deleted. As the volume manager becomes aware of partitions, it 
uses the basic disk configuration information to determine the correspondence of partitions to 
volumes and creates a volume device object when it has been informed of the presence of all the 
partitions in a volume’s description. 

Windows volume drive-letter assignment, a process described shortly, creates drive-letter 
symbolic links under the \Global?? object manager directory that point to the volume device 
objects that the volume manager creates. When the system or an application accesses a volume for 
the first time, Windows performs a mount operation that gives file system drivers the opportunity 
to recognize and claim ownership for volumes formatted with a file system type they manage. 
(Mount operations are described in the section “Volume Mounting” later in this chapter.) 

8.3.2 Dynamic Disks 

As we’ve stated, dynamic disks are the disk format in Windows necessary for creating 
multipartition volumes such as mirrors, striped arrays, and RAID-5 arrays (described later in the 
chapter). Dynamic disks are partitioned using Logical Disk Manager (LDM) partitioning. LDM is 
part of the Virtual Disk Service (VDS) subsystem in Windows, which consists of user-mode and 
device driver components and oversees dynamic disks. A major difference between LDM’s 
partitioning and MBR-style and GPT partitioning is that LDM maintains one unified database that 
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stores partitioning information for all the dynamic disks on a system—including 
multipartition-volume configuration. 

The LDM Database 

The LDM database resides in a 1-MB reserved space at the end of each dynamic disk. The need 
for this space is the reason Windows requires free space at the end of a basic disk before you can 
convert it to a dynamic disk. The LDM database consists of four regions, which Figure 8-5 shows: 
a header sector that LDM calls the Private Header, a table of contents area, a database records area, 
and a transactional log area. (The fifth region shown in Figure 8-5 is simply a copy of the Private 
Header.) The Private Header sector resides 1 MB before the end of a dynamic disk and anchors 
the database. As you spend time with Windows, you’ll quickly notice that it uses GUIDs to 
identify just about everything, and disks are no exception. A GUID (globally unique identifier) is 
a 128-bit value that various components in Windows use to uniquely identify objects. LDM 
assigns each dynamic disk a GUID, and the Private Header sector notes the GUID of the dynamic 
disk on which it resides—hence the Private Header’s designation as information that is private to 
the disk. The Private Header also stores the name of the disk group, which is the name of the 
computer concatenated with Dg0 (for example, Daryl-Dg0 if the computer’s name is Daryl), and a 
pointer to the beginning of the database table of contents. For reliability, LDM keeps a copy of the 
Private Header in the disk’s last sector. 

The database table of contents is 16 sectors in size and contains information regarding the 
database’s layout. LDM begins the database record area immediately following the table of 
contents with a sector that serves as the database record header. This sector stores information 
about the database record area, including the number of records it contains, the name and GUID of 
the disk group the database relates to, and a sequence number identifier that LDM uses for the 
next entry it creates in the database. Sectors following the database record header contain 128-byte 
fixed-size records that store entries that describe the disk group’s partitions and volumes. 

A database entry can be one of four types: partition, disk, component, and volume. LDM uses the 
database entry types to identify three levels that describe volumes. LDM connects entries with 
internal object identifiers. At the lowest level, partition entries describe soft partitions, which are 
contiguous regions on a disk; identifiers stored in a partition entry link the entry to a component 
and disk entry. A disk entry represents a dynamic disk that is part of the disk group and includes 
the disk’s GUID. A component entry serves as a connector between one or more partition entries 
and the volume entry each partition is associated with. A volume entry stores the GUID of the 
volume, the volume’s total size and state, and a drive-letter hint. Disk entries that are larger than a 
database record span multiple records; partition, component, and volume entries rarely span 
multiple records. 
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LDM requires three entries to describe a simple volume: a partition, component, and volume entry. 
The following listing shows the contents of a simple LDM database that defines one 200-MB 
volume that consists of one partition: 

  

The partition entry describes the area on a disk that the system assigned to the volume, the 
component entry connects the partition entry with the volume entry, and the volume entry contains 
the GUID that Windows uses internally to identify the volume. Multipartition volumes require 
more than three entries. For example, a striped volume (which is described later in the chapter) 
consists of at least two partition entries, a component entry, and a volume entry. The only volume 
type that has more than one component entry is a mirror; mirrors have two component entries, 
each of which represents one-half of the mirror. LDM uses two component entries for mirrors so 
that when you break a mirror, LDM can split it at the component level, creating two volumes with 
one component entry each. 

The final area of the LDM database is the transactional log area, which consists of a few sectors 
for storing backup database information as the information is modified. This setup safeguards the 
database in case of a crash or power failure because LDM can use the log to return the database to 
a consistent state. 

EXPERIMENT: using LDMDump to View the LDM Database 

You can use LDMDump from Sysinternals to view detailed information about the contents of the 
LDM database. LDMDump takes a disk number as a command-line argument, and its output is 
usually more than a few screens in size, so you should pipe its output to a file for viewing in a text 
editor—for example, ldmdump /d0 > disk.txt. The following example shows excerpts of 
LDMDump output. The LDM database header displays first, followed by the LDM database 
records that describe a 12-GB disk with three 4-GB dynamic volumes. The volume’s database 
entry is listed as Volume1. At the end of the output, LDMDump lists the soft partitions and 
definitions of volumes it locates in the database. 
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1. C:\>ldmdump /d0  
2. Logical Disk Manager Configuration Dump v1.03  
3. Copyright (C) 2000-2002 Mark Russinovich   
4. PRIVATE HEAD:   
5. Signature : PRIVHEAD   
6. Version : 2.12  
7. Disk Id : b5f4a801-758d-11dd-b7f0-000c297f0108  
8. Host Id : 1b77da20-c717-11d0-a5be-00a0c91db73c   
9. Disk Group Id : b5f4a7fd-758d-11dd-b7f0-000c297f0108  
10. Disk Group Name : WIN-SL5V78KD01W-Dg0  
11. Logical disk start : 3F   
12. Logical disk size : 7FF7C1 (4094 MB)   
13. Configuration start: 7FF800  
14. Configuration size : 800 (1 MB)   
15. Number of TOCs : 2  
16. TOC size : 7FD (1022 KB)   
17. Number of Configs : 1  
18. Config size : 5C9 (740 KB)   
19. Number of Logs : 1  
20. Log size : E0 (112 KB)   
21. TOC 1:  
22. Signature : TOCBLOCK   
23. Sequence : 0x1  
24. Config bitmap start: 0x11  
25. Config bitmap size : 0x5C9  
26. Log bitmap start : 0x5DA   
27. Log bitmap size : 0xE0  
28. ...   
29. VBLK DATABASE:   
30. 0x000004: [000001]    
31. Name : WIN-SL5V78KD01W-Dg0  
32. Object Id : 0x0001  
33. GUID : b5f4a7fd-758d-11dd-b7f0-000c297f010  
34. 0x000006: [000003]    
35. Name : Disk1  
36. Object Id : 0x0002  
37. Disk Id : b5f4a7fe-758d-11dd-b7f0-000c297f010  
38. 0x000007: [000005]    
39. Name : Disk2  
40. Object Id : 0x0003  
41. Disk Id : b5f4a801-758d-11dd-b7f0-000c297f010  
42. 0x000008: [000007]    
43. Name : Disk3  
44. Object Id : 0x0004  
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45. Disk Id : b5f4a804-758d-11dd-b7f0-000c297f010  
46. 0x000009: [000009]    
47. Name : Volume1-01  
48. Object Id : 0x0006  
49. Parent Id : 0x0005  
50. 0x00000A: [00000A]    
51. Name : Disk1-01  
52. Object Id : 0x0007  
53. Parent Id : 0x3157  
54. Disk Id : 0x0000  
55. Start : 0x7C100  
56. Size : 0x0 (0 MB)   
57. Volume Off : 0x3 (0 MB)   
58. 0x00000B: [00000B]    
59. Name : Disk2-01  
60. Object Id : 0x0008  
61. Parent Id : 0x3157  
62. Disk Id : 0x0000  
63. Start : 0x7C100  
64. Size : 0x0 (0 MB)   
65. Volume Off : 0x7FE80003 (1047808 MB)   
66. 0x00000C: [00000C]    
67. Name : Disk3-01  
68. Object Id : 0x0009  
69. Parent Id : 0x3157  
70. Disk Id : 0x0000  
71. Start : 0x7C100  
72. Size : 0x0 (0 MB)   
73. Volume Off : 0xFFD00003 (2095616 MB)   
74. 0x00000D: [00000F]    
75. Name : Volume1  
76. Object Id : 0x0005  
77. Volume state: ACTIVE   
78. Size : 0x017FB800 (12279 MB)   
79. GUID : b5f4a806-758d-11dd-b7f0-c297f0108  
80. Drive Hint : E:   

LDM and GPT or MBR-Style Partitioning 

When you install Windows on a computer, one of the first things it requires you to do is to create a 
partition on the system’s primary physical disk. Windows defines the system volume on this 
partition to store the files that it invokes early in the boot process. In addition, Windows Setup 
requires you to create a partition that serves as the home for the boot volume, onto which the setup 
program installs the Windows system files and creates the system directory (\Windows). The 
system and boot volumes can be the same volume, in which case you don’t have to create a new 
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partition for the boot volume. The nomenclature that Microsoft defines for system and boot 
volumes is somewhat confusing. The system volume is where Windows places boot files, 
including the boot loader (Winload) and Boot Manager (Bootmgr), and the boot volume is where 
Windows stores operating system files such as Ntoskrnl.exe, the core kernel file. 

Although the partitioning data of a dynamic disk resides in the LDM database, LDM implements 
MBR-style partitioning or GPT partitioning so that the Windows boot code can find the system 
and boot volumes when the volumes are on dynamic disks. (Winload and the IA64 firmware, for 
example, know nothing about LDM partitioning.) If a disk contains the system or boot volumes, 
partitions in the MBR or GPT describe the location of those volumes. Otherwise, one partition 
encompasses the entire usable area of the disk. LDM marks this partition as type “LDM”. The 
region encompassed by this place-holding MBR-style or GPT partition is where LDM creates 
partitions that the LDM database organizes. On MBRpartitioned disks the LDM database resides 
in hidden sectors at the end of the disk, and on GPT-partitioned disks there exists an LDM 
metadata partition that encompasses the LDM database near the beginning of the disk. 

Another reason LDM creates an MBR or a GPT is so that legacy disk-management utilities, 
including those that run under Windows and under other operating systems in dual-boot 
environments, don’t mistakenly believe a dynamic disk is unpartitioned. Because LDM partitions 
aren’t described in the MBR or GPT of a disk, they are called soft partitions; MBR-style and GPT 
partitions are called hard partitions. Figure 8-6 illustrates this dynamic disk  layout on an 
MBR-style partitioned disk. 

 

8.3.3 Multipartition Volume Management 

As we’ve stated, dynamic disks are the disk format in Windows necessary for creating 
multipartition volumes such as mirrors, striped arrays, and RAID-5 arrays (described later in the 
chapter). Dynamic disks are partitioned using Logical Disk Manager (LDM) partitioning. LDM is 
part of the Virtual Disk Service (VDS) subsystem in Windows, which consists of user-mode and 
device driver components and oversees dynamic disks. A major difference between LDM’s 
partitioning and MBR-style and GPT partitioning is that LDM maintains one unified database that 
stores partitioning information for all the dynamic disks on a system—including 
multipartition-volume configuration. 

The LDM Database 



 606

The LDM database resides in a 1-MB reserved space at the end of each dynamic disk. The need 
for this space is the reason Windows requires free space at the end of a basic disk before you can 
convert it to a dynamic disk. The LDM database consists of four regions, which Figure 8-5 shows: 
a header sector that LDM calls the Private Header, a table of contents area, a database records area, 
and a transactional log area. (The fifth region shown in Figure 8-5 is simply a copy of the Private 
Header.) The Private Header sector resides 1 MB before the end of a dynamic disk and anchors 
the database. As you spend time with Windows, you’ll quickly notice that it uses GUIDs to 
identify just about everything, and disks are no exception. A GUID (globally unique identifier) is 
a 128-bit value that various components in Windows use to uniquely identify objects. LDM 
assigns each dynamic disk a GUID, and the Private Header sector notes the GUID of the dynamic 
disk on which it resides—hence the Private Header’s designation as information that is private to 
the disk. The Private Header also stores the name of the disk group, which is the name of the 
computer concatenated with Dg0 (for example, Daryl-Dg0 if the computer’s name is Daryl), and a 
pointer to the beginning of the database table of contents. For reliability, LDM keeps a copy of the 
Private Header in the disk’s last sector. 

The database table of contents is 16 sectors in size and contains information regarding the 
database’s layout. LDM begins the database record area immediately following the table of 
contents with a sector that serves as the database record header. This sector stores information 
about the database record area, including the number of records it contains, the name and GUID of 
the disk group the database relates to, and a sequence number identifier that LDM uses for the 
next entry it creates in the database. Sectors following the database record header contain 128-byte 
fixed-size records that store entries that describe the disk group’s partitions and volumes. 

A database entry can be one of four types: partition, disk, component, and volume. LDM uses the 
database entry types to identify three levels that describe volumes. LDM connects entries with 
internal object identifiers. At the lowest level, partition entries describe soft partitions, which are 
contiguous regions on a disk; identifiers stored in a partition entry link the entry to a component 
and disk entry. A disk entry represents a dynamic disk that is part of the disk group and includes 
the disk’s GUID. A component entry serves as a connector between one or more partition entries 
and the volume entry each partition is associated with. A volume entry stores the GUID of the 
volume, the volume’s total size and state, and a drive-letter hint. Disk entries that are larger than a 
database record span multiple records; partition, component, and volume entries rarely span 
multiple records. 
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LDM requires three entries to describe a simple volume: a partition, component, and volume entry. 
The following listing shows the contents of a simple LDM database that defines one 200-MB 
volume that consists of one partition: 

  

The partition entry describes the area on a disk that the system assigned to the volume, the 
component entry connects the partition entry with the volume entry, and the volume entry contains 
the GUID that Windows uses internally to identify the volume. Multipartition volumes require 
more than three entries. For example, a striped volume (which is described later in the chapter) 
consists of at least two partition entries, a component entry, and a volume entry. The only volume 
type that has more than one component entry is a mirror; mirrors have two component entries, 
each of which represents one-half of the mirror. LDM uses two component entries for mirrors so 
that when you break a mirror, LDM can split it at the component level, creating two volumes with 
one component entry each. 

The final area of the LDM database is the transactional log area, which consists of a few sectors 
for storing backup database information as the information is modified. This setup safeguards the 
database in case of a crash or power failure because LDM can use the log to return the database to 
a consistent state. 

EXPERIMENT: using LDMDump to View the LDM Database 

You can use LDMDump from Sysinternals to view detailed information about the contents of the 
LDM database. LDMDump takes a disk number as a command-line argument, and its output is 
usually more than a few screens in size, so you should pipe its output to a file for viewing in a text 
editor—for example, ldmdump /d0 > disk.txt. The following example shows excerpts of 
LDMDump output. The LDM database header displays first, followed by the LDM database 
records that describe a 12-GB disk with three 4-GB dynamic volumes. The volume’s database 
entry is listed as Volume1. At the end of the output, LDMDump lists the soft partitions and 
definitions of volumes it locates in the database. 

1. C:\>ldmdump /d0  
2. Logical Disk Manager Configuration Dump v1.03  
3. Copyright (C) 2000-2002 Mark Russinovich   
4. PRIVATE HEAD:   
5. Signature : PRIVHEAD   
6. Version : 2.12  
7. Disk Id : b5f4a801-758d-11dd-b7f0-000c297f0108  
8. Host Id : 1b77da20-c717-11d0-a5be-00a0c91db73c   
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9. Disk Group Id : b5f4a7fd-758d-11dd-b7f0-000c297f0108  
10. Disk Group Name : WIN-SL5V78KD01W-Dg0  
11. Logical disk start : 3F   
12. Logical disk size : 7FF7C1 (4094 MB)   
13. Configuration start: 7FF800  
14. Configuration size : 800 (1 MB)   
15. Number of TOCs : 2  
16. TOC size : 7FD (1022 KB)   
17. Number of Configs : 1  
18. Config size : 5C9 (740 KB)   
19. Number of Logs : 1  
20. Log size : E0 (112 KB)   
21. TOC 1:  
22. Signature : TOCBLOCK   
23. Sequence : 0x1  
24. Config bitmap start: 0x11  
25. Config bitmap size : 0x5C9  
26. Log bitmap start : 0x5DA   
27. Log bitmap size : 0xE0  
28. ...   
29. VBLK DATABASE:   
30. 0x000004: [000001]    
31. Name : WIN-SL5V78KD01W-Dg0  
32. Object Id : 0x0001  
33. GUID : b5f4a7fd-758d-11dd-b7f0-000c297f010  
34. 0x000006: [000003]    
35. Name : Disk1  
36. Object Id : 0x0002  
37. Disk Id : b5f4a7fe-758d-11dd-b7f0-000c297f010  
38. 0x000007: [000005]    
39. Name : Disk2  
40. Object Id : 0x0003  
41. Disk Id : b5f4a801-758d-11dd-b7f0-000c297f010  
42. 0x000008: [000007]    
43. Name : Disk3  
44. Object Id : 0x0004  
45. Disk Id : b5f4a804-758d-11dd-b7f0-000c297f010  
46. 0x000009: [000009]    
47. Name : Volume1-01  
48. Object Id : 0x0006  
49. Parent Id : 0x0005  
50. 0x00000A: [00000A]    
51. Name : Disk1-01  
52. Object Id : 0x0007  
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53. Parent Id : 0x3157  
54. Disk Id : 0x0000  
55. Start : 0x7C100  
56. Size : 0x0 (0 MB)   
57. Volume Off : 0x3 (0 MB)   
58. 0x00000B: [00000B]    
59. Name : Disk2-01  
60. Object Id : 0x0008  
61. Parent Id : 0x3157  
62. Disk Id : 0x0000  
63. Start : 0x7C100  
64. Size : 0x0 (0 MB)   
65. Volume Off : 0x7FE80003 (1047808 MB)   
66. 0x00000C: [00000C]    
67. Name : Disk3-01  
68. Object Id : 0x0009  
69. Parent Id : 0x3157  
70. Disk Id : 0x0000  
71. Start : 0x7C100  
72. Size : 0x0 (0 MB)   
73. Volume Off : 0xFFD00003 (2095616 MB)   
74. 0x00000D: [00000F]    
75. Name : Volume1  
76. Object Id : 0x0005  
77. Volume state: ACTIVE   
78. Size : 0x017FB800 (12279 MB)   
79. GUID : b5f4a806-758d-11dd-b7f0-c297f0108  
80. Drive Hint : E:   

LDM and GPT or MBR-Style Partitioning 

When you install Windows on a computer, one of the first things it requires you to do is to create a 
partition on the system’s primary physical disk. Windows defines the system volume on this 
partition to store the files that it invokes early in the boot process. In addition, Windows Setup 
requires you to create a partition that serves as the home for the boot volume, onto which the setup 
program installs the Windows system files and creates the system directory (\Windows). The 
system and boot volumes can be the same volume, in which case you don’t have to create a new 
partition for the boot volume. The nomenclature that Microsoft defines for system and boot 
volumes is somewhat confusing. The system volume is where Windows places boot files, 
including the boot loader (Winload) and Boot Manager (Bootmgr), and the boot volume is where 
Windows stores operating system files such as Ntoskrnl.exe, the core kernel file. 

Although the partitioning data of a dynamic disk resides in the LDM database, LDM implements 
MBR-style partitioning or GPT partitioning so that the Windows boot code can find the system 
and boot volumes when the volumes are on dynamic disks. (Winload and the IA64 firmware, for 
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example, know nothing about LDM partitioning.) If a disk contains the system or boot volumes, 
partitions in the MBR or GPT describe the location of those volumes. Otherwise, one partition 
encompasses the entire usable area of the disk. LDM marks this partition as type “LDM”. The 
region encompassed by this place-holding MBR-style or GPT partition is where LDM creates 
partitions that the LDM database organizes. On MBRpartitioned disks the LDM database resides 
in hid  

VolMgr is responsible for presenting volumes that file system drivers manage and for mapping 
I/O directed at volumes to the underlying partitions that they’re part of. For simple volumes, this 
process is straightforward: the volume manager ensures that volume-relative offsets are translated 
to disk-relative offsets by adding the volume-relative offset to the volume’s starting disk offset. 

Multipartition volumes are more complex because the partitions that make up a volume can be 
located on discontiguous partitions or even on different disks. Some types of multipartition 
volumes use data redundancy, so they require more involved volume-to-disk–offset translation. 
Thus, VolMgr uses VolMgrX to process all I/O requests aimed at the multipartition volumes they 
manage by determining which partitions the I/O ultimately affects.  

The following types of multipartition volumes are available in Windows: 

■ Spanned volumes 

■ Mirrored volumes 

■ Striped volumes 

■ RAID-5 volumes 

After describing multipartition-volume partition configuration and logical operation for each of 
the multipartition-volume types, we’ll cover the way that the VolMgr driver handles IRPs that a 
file system driver sends to multipartition volumes. The term volume manager is used to represent 
VolMgr and the VolMgrX extension DLL throughout the explanation of multipartition volumes. 

Spanned Volumes 

A spanned volume is a single logical volume composed of a maximum of 32 free partitions 

on one or more disks. The Disk Management MMC snap-in combines the partitions into a 

spanned volume, which can then be formatted for any of the Windows-supported file systems. 

Figure 8-8 shows a 100-MB spanned volume identified by drive letter D that has been 

created from the last third of the first disk and the first third of the second. Spanned volumes 

were called volume sets in Windows NT 4. 
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A spanned volume is useful for consolidating small areas of free disk space into one larger volume 
or for creating a single large volume out of two or more small disks. If the spanned volume has 
been formatted for NTFS, it can be extended to include additional free areas or additional disks 
without affecting the data already stored on the volume. This extensibility is one of the biggest 
benefits of describing all data on an NTFS volume as a file. NTFS can dynamically increase the 
size of a logical volume because the bitmap that records the allocation status of the volume is just 
another file—the bitmap file. The bitmap file can be extended to include any space added to the 
volume. Dynamically extending a FAT volume, on the other hand, would require the FAT itself to 
be extended, which would dislocate everything else on the disk. 

A volume manager hides the physical configuration of disks from the file systems installed on 
Windows. NTFS, for example, views volume D: in Figure 8-8 as an ordinary 100-MB volume. 
NTFS consults its bitmap to determine what space in the volume is free for allocation. It then calls 
the volume manager to read or write data beginning at a particular byte offset on the volume. The 
volume manager views the physical sectors in the spanned volume as numbered sequentially from 
the first free area on the first disk to the last free area on the last disk. It determines which physical 
sector on which disk corresponds to the supplied byte offset.  

Striped Volumes 

A striped volume is a series of up to 32 partitions, one partition per disk, that gets combined into a 
single logical volume. Striped volumes are also known as RAID level 0 (RAID-0) volumes. 
Figure 8-9 shows a striped volume consisting of three partitions, one on each of three disks. (A 
partition in a striped volume need not span an entire disk; the only restriction is that the partitions 
on each disk be the same size.) 
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To a file system, this striped volume appears to be a single 450-MB volume, but a volume 
manager optimizes data storage and retrieval times on the striped volume by distributing the 
volume’s data among the physical disks. The volume manager accesses the physical sectors of the 
disks as if they were numbered sequentially in stripes across the disks, as illustrated in Figure 
8-10. 

  

Because each stripe unit is a relatively narrow 64 KB (a value chosen to prevent small individual 
reads and writes from accessing two disks), the data tends to be distributed evenly among the 
disks. Striping thus increases the probability that multiple pending read and write operations will 
be bound for different disks. And because data on all three disks can be accessed simultaneously, 
latency time for disk I/O is often reduced, particularly on heavily loaded systems. 

Spanned volumes make managing disk volumes more convenient, and striped volumes spread the 
I/O load over multiple disks. These two volume-management features don’t provide the ability to 
recover data if a disk fails, however. For data recovery, a volume manager implements two 
redundant storage schemes: mirrored volumes and RAID-5 volumes. These features are created 
with the Windows Disk Management administrative tool.  

Mirrored Volumes 

In a mirrored volume, the contents of a partition on one disk are duplicated in an equalsized 
partition on another disk. Mirrored volumes are sometimes referred to as RAID level 1 (RAID-1). 
A mirrored volume is shown in Figure 8-11. 

  

When a program writes to drive C:, the volume manager writes the same data to the same location 
on the mirror partition. If the first disk or any of the data on its C: partition becomes unreadable 
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because of a hardware or software failure, the volume manager automatically accesses the data 
from the mirror partition. A mirror volume can be formatted for any of the Windows-supported 
file systems. The file system drivers remain independent and are not affected by the volume 
manager’s mirroring activity. 

Mirrored volumes can aid in read I/O throughput on heavily loaded systems. When I/O activity is 
high, the volume manager balances its read operations between the primary partition and the 
mirror partition (accounting for the number of unfinished I/O requests pending from each disk). 
Two read operations can proceed simultaneously and thus theoretically finish in half the time. 
When a file is modified, both partitions of the mirror set must be written, but disk writes are 
performed in parallel, so the performance of user-mode programs is generally not affected by the 
extra disk update. 

Mirrored volumes are the only multipartition volume type supported for system and boot volumes. 
The reason for this is that the Windows boot code, including the MBR code and Winload, don’t 
have the sophistication required to understand multipartition volumes—mirrored volumes are the 
exception because the boot code treats them as simple volumes, reading from the half of the 
mirror marked as the boot or system drive in the MBR-style partition table. Because the boot code 
doesn’t modify the disk, it can safely ignore the other half of the mirror. 

EXPERIMENT: Watching Mirrored Volume i/O Operations 

Using the Reliability and Performance Monitor, you can verify that write operations directed at 
mirrored volumes copy to both disks that make up the mirror and that read operations, if relatively 
infrequent, occur primarily from one half of the volume. This experiment requires three hard disks. 
If you don’t have three disks, you can skip the experiment setup instructions and view the 
Performance tool screen shot in this experiment that demonstrates the experiment’s results. 

Use the Disk Management MMC snap-in to create a mirrored volume. To do this, perform the 
following steps: 

1. Run Disk Management by starting Computer Management, expanding the Storage tree, and 
clicking Disk Management (or by inserting Disk Management as a snap-in in an MMC console). 

2. Right-click on an unallocated space of a drive, and then click New Simple Volume. 

3. Follow the instructions in the New Simple Volume Wizard to create a simple volume. (Make 
sure there’s enough room on another disk for a volume of the same size as the one you’re 
creating.) 

4. Right-click on the new volume, and then click Add Mirror on the context menu.  

Once you have a mirrored volume, run the Performance tool and add counters for the 
PhysicalDisk performance object for both disk instances that contain a partition belonging to the 
mirror. Select the Disk Writes/sec counters for each instance. Select a large directory from the 
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third disk (the one that isn’t part of the mirrored volume), and copy it to the mirrored volume. The 
Performance tool output window should look something like the one on the following page as the 
copy operation progresses. 

  

The top two lines, which overlap throughout the timeline, are the Disk Writes/sec counters for 
each disk. The screen shot reveals that the volume manager (in this case VolMgr) is writing the 
copied file data to both halves of the volume. This read behavior occurs because the number of 
outstanding I/O operations during the copy didn’t warrant that the volume manager perform more 
aggressive read-operation load balancing.  

RAID-5 Volumes 

A RAID-5 volume is a fault tolerant variant of a regular striped volume. RAID-5 volumes 
implement RAID level 5. They are also known as striped volumes with rotated parity because they 
are based on the striping approach taken by striped volumes. Fault tolerance is achieved by 
reserving the equivalent of one disk for storing parity for each stripe. Figure 8-12 is a visual 
representation of a RAID-5 volume. 

In Figure 8-12, the parity for stripe 1 is stored on disk 1. It contains a byte-for-byte logical sum 
(XOR) of the first stripe units on disks 2 and 3. The parity for stripe 2 is stored on disk 2, and the 
parity for stripe 3 is stored on disk 3. Rotating the parity across the disks in this way is an I/O 
optimization technique. Each time data is written to a disk, the parity bytes corresponding to the 
modified bytes must be recalculated and rewritten. If the parity were always written to the same 
disk, that disk would be busy continually and could become an I/O bottleneck. 
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Recovering a failed disk in a RAID-5 volume relies on a simple arithmetic principle: in an 
equation with n variables, if you know the value of n – 1 of the variables, you can determine the 
value of the missing variable by subtraction. For example, in the equation x + y = z, where z 
represents the parity stripe unit, the volume manager computes z – y to determine the contents of x; 
to find y, it computes z – x. The volume manager uses similar logic to recover lost data. If a disk 
in a RAID-5 volume fails or if data on one disk becomes unreadable, the volume manager 
reconstructs the missing data by using the XOR operation (bitwise logical addition). 

If disk 1 in Figure 8-12 fails, the contents of its stripe units 2 and 5 are calculated by XORing the 
corresponding stripe units of disk 3 with the parity stripe units on disk 2. The contents of stripes 3 
and 6 on disk 1 are similarly determined by XORing the corresponding stripe units of disk 2 with 
the parity stripe units on disk 3. At least three disks (or rather, three same-sized partitions on three 
disks) are required to create a RAID-5 volume. 

8.3.4 The Volume Namespace 

The volume namespace mechanism handles the assignment of drive letters to device objects that 
represent actual volumes, which lets Windows applications access these drives through familiar 
means, and also provides mount and dismount functionality. 

The Mount Manager 

The Mount Manager device driver (Mountmgr.sys) assigns drive letters for dynamic disk volumes 
and basic disk volumes created after Windows is installed, CD-ROMs, floppies, and removable 
devices. Windows stores all drive-letter assignments under HKLM\SYSTEM\ 

MountedDevices. If you look in the registry under that key, you’ll see values with names such as 
\??\Volume{X} (where X is a GUID) and values such as \DosDevices\C:. Every volume has a 
volume name entry, but a volume doesn’t necessarily have an assigned drive letter. Figure 8-13 
shows the contents of an example Mount Manager registry key. Note that the MountedDevices 
key, like the Disk key in Windows NT 4, isn’t included in a control set and so isn’t protected by 
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the last known good boot option. (See the section “Accepting the Boot and Last Known Good” in 
Chapter 13 for more information on control sets and the last known good boot option.) 

The data that the registry stores in values for basic disk volume drive letters and volume names is 
the Windows NT 4–style disk signature and the starting offset of the first partition associated with 
the volume. The data that the registry stores in values for dynamic disk volumes includes the 
volume’s VolMgr-internal GUID. When the Mount Manager initializes during the boot process, it 
registers with the Windows Plug and Play subsystem so that it receives notification whenever a 
device identifies itself as a volume. When the Mount Manager receives such a notification, it 
determines the new volume’s GUID or disk signature and uses the GUID or signature as a guide 
to look in its internal database, which reflects the contents of the MountedDevices registry key. 
The Mount Manager then determines whether its internal database contains the drive-letter 
assignment. If the volume has no entry in the database, the Mount Manager asks VolMgr for a 
suggested drive-letter assignment and stores that in the database. VolMgr doesn’t return 
suggestions for simple volumes, but it looks at the drive-letter hint in the volume’s database entry 
for dynamic volumes. 

  

If no suggested drive-letter assignment exists for the volume, the Mount Manager uses the first 
unassigned drive letter (if one exists), defines a new assignment, creates a symbolic link for the 
assignment (for example, \Global??\D:), and updates the MountedDevices registry key. If there 
are no available drive letters, no drive-letter assignment is made. At the same time, the Mount 
Manager creates a volume symbolic link (that is, \Global??\Volume{X}) that defines a new 
volume GUID if the volume doesn’t already have one. This GUID is different from the volume 
GUIDs that VolMgr uses internally. 

Mount Points 

Mount points let you link volumes through directories on NTFS volumes, which makes volumes 
with no drive-letter assignment accessible. For example, an NTFS directory that you’ve named 
C:\Projects could mount another volume (NTFS or FAT) that contains your project directories and 
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files. If your project volume had a file you named \CurrentProject\Description.txt, you could 
access the file through the path C:\Projects\CurrentProject\Description.txt. What makes mount 
points possible is reparse point technology. (Reparse points are discussed in more detail in 
Chapter 11.) 

A reparse point is a block of arbitrary data with some fixed header data that Windows associates 
with an NTFS file or directory. An application or the system defines the format and behavior of a 
reparse point, including the value of the unique reparse point tag that identifies reparse points 
belonging to the application or system and specifies the size and meaning of the data portion of a 
reparse point. (The data portion can be as large as 16 KB.) Reparse points store their unique tag in 
a fixed segment. Any application that implements a reparse point must supply a file system filter 
driver to watch for reparse-related return codes for file operations that execute on NTFS volumes, 
and the driver must take appropriate action when it detects the codes. NTFS returns a reparse 
status code whenever it processes a file operation and encounters a file or directory with an 
associated reparse point. 

The Windows NTFS file system driver, the I/O manager, and the object manager all partly 
implement reparse point functionality. The object manager initiates pathname parsing operations 
by using the I/O manager to interface with file system drivers. Therefore, the object manager must 
retry operations for which the I/O manager returns a reparse status code. The I/O manager 
implements pathname modification that mount points and other reparse points might require, and 
the NTFS file system driver must associate and identify reparse point data with files and 
directories. You can therefore think of the I/O manager as the reparse point file system filter driver 
for many Microsoft-defined reparse points. 

One common use of reparse points is the symbolic link functionality offered on Windows by 
NTFS (see Chapter 11 for more information on NTFS symbolic links). If the I/O manager receives 
a reparse status code from NTFS and the file or directory for which NTFS returned the code isn’t 
associated with one of a handful of built-in Windows reparse points, no filter driver claimed the 
reparse point. The I/O manager then returns an error to the object manager that propagates as a 
“file cannot be accessed by the system” error to the application making the file or directory access. 

Mount points are reparse points that store a volume name (\Global??\Volume{X}) as the reparse 
data. When you use the Disk Management MMC snap-in to assign or remove path assignments for 
volumes, you’re creating mount points. You can also create and display mount points by using the 
built-in command-line tool Mountvol.exe (\Windows\System32\Mountvol.exe). 

The Mount Manager maintains the Mount Manager remote database on every NTFS volume in 
which the Mount Manager records any mount points defined for that volume. The database file 
resides in the directory System Volume Information on the NTFS volume. Mount points move 
when a disk moves from one system to another and in dual-boot environments—that is, when 
booting between multiple Windows installations—because of the existence of the Mount Manager 
remote database. NTFS also keeps track of reparse points in the NTFS metadata file 
\$Extend\$Reparse. (NTFS doesn’t make any of its metadata files available for viewing by 
applications.) NTFS stores reparse point information in the metadata file so that Windows can, for 
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example, easily enumerate the mount points (which are reparse points) defined for a volume when 
a Windows application, such as Disk Management, requests mount-point definitions. 

Volume Mounting 

Because Windows assigns a drive letter to a volume doesn’t mean that the volume contains data 
that has been organized in a file system format that Windows recognizes. The volumerecognition 
process consists of a file system claiming ownership for a partition; the process takes place the 
first time the kernel, a device driver, or an application accesses a file or directory on a volume. 
After a file system driver signals its responsibility for a partition, the I/O manager directs all IRPs 
aimed at the volume to the owning driver. Mount operations in Windows consist of three 
components: file system driver registration, volume parameter blocks (VPBs), and mount requests. 

Note The partition manager honors the system SAN policy, which can be set with the Windows 
DiskPart utility, that specifies whether it should surface disks for visibility to the volume manager. 
The default policy in Windows Server 2008 Enterprise and Datacenter editions is to not make 
SAN disks visible, which prevents the system from aggressively mounting their volumes.  

The I/O manager oversees the mount process and is aware of available file system drivers because 
all file system drivers register with the I/O manager when they initialize. The I/O manager 
provides the IoRegisterFileSystem function to local disk (rather than network) file system drivers 
for this registration. When a file system driver registers, the I/O manager stores a reference to the 
driver in a list that the I/O manager uses during mount operations.  

Every device object contains a VPB data structure, but the I/O manager treats VPBs as meaningful 
only for volume device objects. A VPB serves as the link between a volume device object and the 
device object that a file system driver creates to represent a mounted file system instance for that 
volume. If a VPB’s file system reference is empty, no file system has mounted the volume. The 
I/O manager checks a volume device object’s VPB whenever an open API that specifies a file 
name or a directory name on a volume device object executes.  

For example, if the Mount Manager assigns drive letter D to the second volume on a system, it 
creates a \Global??\D: symbolic link that resolves to the device object \Device\HarddiskVolume2. 
A Windows application that attempts to open the \Temp\Test.txt file on the D: drive specifies the 
name D:\Temp\Test.txt, which the Windows subsystem converts to \Global??\D:\Temp\Test.txt 
before invoking NtCreateFile, the kernel’s file-open routine. NtCreateFile uses the object manager 
to parse the name, and the object manager encounters the \Device\HarddiskVolume2 device object 
with the path \Temp\Test.txt still unresolved. At that point, the I/O manager checks to see whether 
\Device\HarddiskVolume2’s VPB references a file system. If it doesn’t, the I/O manager asks 
each registered file system driver via a mount request whether the driver recognizes the format of 
the volume in question as the driver’s own. 

EXPERIMENT: Looking at VPBs 
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You can look at the contents of a VPB by using the !vpb kernel debugger command. Because the 
VPB is pointed to by the device object for a volume, you must first locate a volume device object. 
To do this, you must dump a volume manager’s driver object, locate a device object that 
represents a volume, and display the device object, which reveals its Vpb field. 

1. lkd> !drvobj volmgr   
2. Driver object (84905030) is for:   
3. \Driver\volmgr   
4. Driver Extension List: (id , addr)   
5. Device Object list:   
6. 84a64780 849d5b28 84a64518 84a64030  
7. 84905e00  

The !drvobj command lists the addresses of the device objects a driver owns. In this example, 
there are five device objects. One of them represents the programmatic interface to the device 
driver, and the rest are volume device objects. Because the objects are listed in reverse order from 
the way that they were created and the driver creates the device driver interface object first, you 
know the first device object listed is that of a volume. Now execute the !devobj kernel debugger 
command on the volume device object address: 

1. lkd> !devobj 84a64780  
2. Device object (84a64780) is for:   
3. HarddiskVolume4 \Driver\volmgr DriverObject 84905030  
4. Current Irp 00000000 RefCount 0 Type 00000007 Flags 00001050  
5. Vpb 84a64228 Dacl 8b1a8674 DevExt 84a64838 DevObjExt 84a64930 Dope 849fd838     

DevNode   
6. 849d5938  
7. ExtensionFlags (0x00000800)   
8. Unknown flags 0x00000800  
9. AttachedDevice (Upper) 84a66020 \Driver\volsnap   
10. Device queue is not busy   

The !devobj command shows the Vpb field for the volume device object. (The device object 
shown is named HarddiskVolume4.) Now you’re ready to execute the !vpb command: 

1. lkd> !vpb 84a64228  
2. Vpb at 0x84a64228  
3. Flags: 0x1 mounted   
4. DeviceObject: 0x84a6b020  
5. RealDevice: 0x849d5b28  
6. RefCount: 4311  
7. Volume Label: OS  

The command reveals that the volume device object is mounted by a file system driver that has 
assigned the volume the name OS. The RealDevice field in the VPB points back to the volume 
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device object, and the DeviceObject field points to the mounted file system device object. You can 
use !devobj on this address to get more information on the mounted file system, as seen in the 
output below, which shows that NTFS has mounted the volume: 

1. lkd> !devobj 0x84a6b020  
2. Device object (84a6b020) is for:   
3. \FileSystem\Ntfs DriverObject 84a02ad0  
4. Current Irp 00000000 RefCount 0 Type 00000008 Flags 00040000  
5. DevExt 84a6b0d8 DevObjExt 84a6bc00  
6. ExtensionFlags (0x00000800)   
7. Unknown flags 0x00000800  
8. AttachedDevice (Upper) 84a63ac0 \FileSystem\FltMgr   
9. Device queue is not busy  

The convention followed by file system drivers for recognizing volumes mounted with their 
format is to examine the volume’s boot record, which is stored in the first sector of the volume. 
Boot records for Microsoft file systems contain a field that stores a file system format type. File 
system drivers usually examine this field, and if it indicates a format they manage, they look at 
other information stored in the boot record. This information usually includes a file system name 
field and enough data for the file system driver to locate critical metadata files on the volume. 
NTFS, for example, will recognize a volume only if the Type field is NTFS, the Name field is 
“NTFS,” and the critical metadata files described by the boot record are consistent. 

If a file system driver signals affirmatively, the I/O manager fills in the VPB and passes the open 
request with the remaining path (that is, \Temp\Test.txt) to the file system driver. The file system 
driver completes the request by using its file system format to interpret the data that the volume 
stores. After a mount fills in a volume device object’s VPB, the I/O manager hands subsequent 
open requests aimed at the volume to the mounted file system driver. If no file system driver 
claims a volume, Raw—a file system driver built into Ntoskrnl.exe—claims the volume and fails 
all requests to open files on that partition. Figure 8-14 shows a simplified example (that is, the 
figure omits the file system driver’s interactions with the Windows cache and memory managers) 
of the path that I/O directed at a mounted volume follows. 
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Instead of having every file system driver loaded, regardless of whether they have any volumes to 
manage, Windows tries to minimize memory usage by using a surrogate driver named File System 
Recognizer (\Windows\System32\Drivers\Fs_rec.sys) to perform preliminary file system 
recognition. File System Recognizer knows enough about each file system format that Windows 
supports to be able to examine a boot record and determine whether it’s associated with a 
Windows file system driver. When the system boots, File System Recognizer registers as a file 
system driver, and when the I/O manager calls it during a file system mount operation for a new 
volume, File System Recognizer loads the appropriate file system driver if the boot record 
corresponds to one that isn’t loaded. After loading a file system driver, File System Recognizer 
forwards the mount IRP to the driver and lets the file system driver claim ownership of the 
volume. 

Aside from the boot volume, which a driver mounts while the kernel is initializing, file system 
drivers mount most volumes when the Chkdsk file system consistency-checking application runs 
during a boot sequence. The boot-time version of Chkdsk is a native application (as opposed to a 
Windows application) named Autochk.exe (\Windows\System32\Autochk.exe), and the Session 
Manager (\Windows\System32\Smss.exe) runs it because it is specified as a boot-run program in 
the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\BootExecute value. Chkdsk 
accesses each drive letter to see whether the volume associated with the letter requires a 
consistency check. 

8.3.5 Volume I/O Operations 

File system drivers manage data stored on volumes but rely on volume managers to interact with 
storage drivers to transfer data to and from the disk or disks on which a volume resides. File 
system drivers obtain references to a volume manager’s volume objects through the mount process 
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and then send the volume manager requests via the volume objects. Applications can also send the 
volume manager requests, bypassing file system drivers, when they want to directly manipulate a 
volume’s data. File-undelete programs are an example of applications that do this. 

Whenever a file system driver or application sends an I/O request to a device object that represents 
a volume, the Windows I/O manager routes the request (which comes in an IRP—a self-contained 
package) to the volume manager that created the target device object. Thus, if an application 
wants to read the boot sector of the second volume on the system (which is a simple volume in 
this example), it opens the device object \Device\HarddiskVolume2 and then sends the object a 
request to read 512 bytes starting at offset zero on the device. The I/O manager sends the 
application’s request in the form of an IRP to the volume manager that owns the device object, 
notifying it that the IRP is directed at the HarddiskVolume2 device. 

Because volumes are logical conveniences that Windows uses to represent contiguous areas on 
one or more physical disks, the volume manager must translate offsets that are relative to a 
volume to offsets that are relative to the beginning of a disk. If volume 2 consists of one partition 
that begins 4096 sectors into the disk, the partition manager would adjust the IRP’s parameters to 
designate an offset with that value before passing the request to the disk class driver. The disk 
class driver uses a miniport driver to carry out physical disk I/O and read requested data into an 
application buffer designated in the IRP. 

Some examples of a volume manager’s operations will help clarify its role when it handles 
requests aimed at multipartition volumes. If a striped volume consists of two partitions, partition 1 
and partition 2, the VolMgr device object intercepts file system disk I/O aimed at the device object 
for the volume, and the VolMgr driver adjusts the request before passing it to the disk class driver. 
The adjustment that VolMgr makes configures the request to refer to the correct offset of the 
request’s target stripe on either partition 1 or partition 2. If the I/O spans both partitions of the 
volume, VolMgr must issue two subsidiary I/O requests, one aimed at each disk. This is shown in 
Figure 8-15. 
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In the case of writes to a mirrored volume, VolMgr splits each request so that each half of the 
mirror receives the write operation. For mirrored reads, VolMgr performs a read from half of a 
mirror, relying on the other half when a read operation fails. 

8.3.6 Virtual Disk Service 

A company that makes storage products such as RAID adapters, hard disks, or storage arrays has 
to implement custom applications for installing and managing their devices. The use of different 
management applications for different storage devices has obvious drawbacks from the 
perspective of system administration. These drawbacks include learning multiple interfaces and 
the inability to use standard Windows storage management tools to manage thirdparty storage 
devices. 

Windows includes the Virtual Disk Service (or VDS, located at \Windows\System32\Vds.exe), 
which provides a unified high-level storage interface so that administrators can manage storage 
devices from different vendors using the same user interfaces. VDS is shown in Figure 8-16. VDS 
exports a COM-based API that allows applications to create and format disks and to view and 
manage hardware RAID adapters. For example, a utility can use the VDS API to query the list of 
physical disks that map to a RAID logical unit number (LUN). Windows disk management 
utilities, including the Disk Management MMC snap-in and the DiskPart and DiskRAID 
command-line tools, use VDS APIs. 
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VDS supplies two interfaces, one for software providers and one for hardware providers: 

■ Software providers implement interfaces to high-level storage abstractions such as disks, disk 
partitions, and volumes. Examples of operations supported by these interfaces include creating, 
extending, and deleting volumes; adding or breaking mirrors; and formatting and assigning drive 
letters. VDS looks for registered software providers in HKLM\SYSTEM\CurrentControlSet 
\Services\Vds\SoftwareProviders. Windows includes the VDS Dynamic Disk Provider (\Windows 
\System32\Vdsdyn.dll) for interfacing to dynamic disks and the VDS Basic Provider 
(\Windows\System32\Vdsbas.dll) for interfacing to basic disks. 

■ Hardware vendors implement VDS hardware providers as DLLs that register under 
HKLM\SYSTEM\CurrentControlSet\Services\Vds\HardwareProviders and that translate 
device-independent VDS commands into commands for their hardware. The hardware provider 
allows for management of a storage subsystem such as a hardware RAID array or an adapter card, 
and supported operations include creating, extending, deleting, masking, and unmasking LUNs. 

When an application initiates a connection to the VDS API and the VDS service isn’t started, the 
Svchost process hosting the RPC service starts the VDS loader process (\Windows\System32 
\Vdsldr.exe), which starts the VDS service process and then exits. When the last connection to the 
VDS API closes, the VDS service process exits. 
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8.4 BitLocker Drive encryption 

An operating system can enforce its security policies only while it’s active, so you have to take 
additional measures to protect data when the physical security of a system can be compromised 
and the data accessed from outside the operating system. Hardware-based mechanisms such as 
BIOS passwords and encryption are two technologies commonly used to prevent unauthorized 
access, especially on laptops, which are the computers most likely to be lost or stolen.  

While Windows supports the Encrypting File System (EFS), you can’t use EFS to protect access 
to sensitive areas of the system, such as the registry hive files. For example, if Group Policy 
allows you to log on to your laptop even when you’re not connected to a domain, then your 
domain credential verifiers are cached in the registry, so an attacker could use tools to obtain your 
domain account password hash and use that to try to obtain your password with a password 
cracker. The password would provide access to your account and EFS files (assuming you didn’t 
store the EFS key on a smart card). To make it easy to encrypt the entire boot volume, including 
all its system files and data, Windows includes a full-volume encryption feature called Windows 
BitLocker Drive Encryption.  

BitLocker helps prevent unauthorized access to data on lost or stolen computers by combining two 
major data-protection procedures: 

■ Encrypting the entire Windows operating system volume on the hard disk. 

■ Verifying the integrity of early boot components and boot configuration data. 

The most secure implementation of BitLocker leverages the enhanced security capabilities of a 
Trusted Platform Module (TPM) version 1.2. The TPM is a hardware component installed in 
many newer computers by computer manufacturers. It works with BitLocker to help protect user 
data and to ensure that a computer running Windows has not been tampered with while the system 
was offline. On computers that do not have a TPM version 1.2, BitLocker can still encrypt the 
Windows operating system volume. However, this implementation requires the user to insert a 
USB startup key to start the computer or resume from hibernation, and it does not provide the full 
offline and preboot protection that a TPM-enabled system does. 

8.4.1 BitLocker Architecture 

BitLocker’s architecture provides functionality and management mechanisms both in kernel mode 
and user mode. At a high level, the main components of BitLocker are: 

■ The Trusted Platform Module driver (%SystemRoot%\System32\Drivers\Tpm.sys), a kernel- 
mode driver that accesses the TPM chip. 
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■ The TPM Base Services, which include a user-mode service that provides user-mode access to 
the TPM (%SystemRoot%\System32\tbssvc.dll), a WMI provider, and an MMC snap-in for 
configuration (%SystemRoot%\System32\Tpm.msc). 

■ The BitLocker-related code in the Boot Manager (Bootmgr) that authenticates access to the disk, 
handles boot-related unlocking, and allows recovery. 

■ The BitLocker filter driver (%SystemRoot%\System32\Drivers\Fvevol.sys), a kernel-mode filter 
driver that performs on-the-fly encryption and decryption of the volume.  

■ The BitLocker WMI provider and management script, which allow configuration and scripting 
of the BitLocker interface. 

In the next sections, we’ll take a look at these various components and the services they provide. 

Figure 8-17 provides an overview of the BitLocker architecture. 

  

8.4.2 Encryption Keys 

BitLocker encrypts the contents of the volume using a full volume encryption key (FVEK) and 
cryptography that uses the AES128-CBC (by default) or AES256-CBC algorithm, with a 
Microsoft-specific extension called a diffuser. In turn, the FVEK is encrypted with a volume 
master key (VMK) and stored in a special metadata region of the volume. Securing the volume 
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master key is an indirect way of protecting data on the volume: the addition of the volume master 
key allows the system to be rekeyed easily when keys upstream in the trust chain are lost or 
compromised. This ability to rekey the system saves the expense of decrypting and encrypting the 
entire volume again.  

When you configure BitLocker, you have a number of options for how the VMK will be protected, 
depending on the system’s hardware capabilities. If the system has a TPM, you can either encrypt 
the VMK with the TPM, have the system encrypt the VMK using a key stored in the TPM and one 
stored on a USB flash device, encrypt the VMK using a TPM-stored key and a PIN you enter 
when the system boots, or a combination of both a PIN and a USB flash device. For systems that 
don’t have a compatible TPM, BitLocker offers the option of encrypting the VMK using a key 
stored on an external USB flash device. 

In any case you’ll need an unencrypted 1.5 GB NTFS system volume, the volume where the Boot 
Manager and BCD are stored, because the MBR and boot-sector code are legacy code, run in 
16-bit real mode (as previously discussed), and do not have the ability to perform any on-the-fly 
decryption of the same volume they’re running on. This means that these components must remain 
on an unencrypted volume so that the BIOS can access them and they can run and locate Bootmgr. 

  

Finally, BitLocker also provides a simple encryption-based authentication scheme to ensure the 
integrity of the drive contents. Although AES encryption is currently considered uncrackable 
through brute-force attacks and is one of the most widely used algorithms in the industry today, it 
doesn’t provide a way to ensure that modified encrypted data can’t in some way be modified such 
that it is translated back to plaintext data that an attacker could make use of. For example, by 
precise manipulation of the encrypted data, a hacker might be able to cause a certain logon 
function to behave differently and allow all logons. 

To protect the system against this type of attack, BitLocker includes a diffuser algorithm called 
Elephant. The job of the diffuser is to make sure that even a single bit change in the ciphertext 
(encrypted data) will result in a totally random plaintext data output, ensuring that the modified 
executable code will most likely arbitrarily crash instead of performing a specific malicious 
function. Additionally, when combined with code integrity (see Chapter 3 for more information on 
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code integrity), the diffuser will also cause core system files to fail their signature checks, 
rendering the system unbootable. 

  

8.4.3 Trusted Platform Module (TPM) 

A TPM is a tamper-resistant processor mounted on a motherboard that provides various 
cryptographic services such as key and random number generation and sealed storage. Support for 
TPM in Windows reaches beyond supporting BitLocker, however. Through the TPM Base 
Services (TBS), other applications on the system can also take advantage of compatible hardware 
TPM chips and use WMI to administer and script access to the TPM. For example, Windows uses 
a TPM as an additional seed into random number generation, which enhances the overall security 
of all applications on the system that depend on strong security or hashing algorithms (including 
mechanisms such as logons). Although your computer may have a TPM, that does not necessarily 
mean that Windows will be able to support it. There are two requirements for Windows TPM 
support: 

■ The computer must have a TPM version 1.2 or higher 
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■ The computer must have a Trusted Computing Group (TCG)-compliant BIOS. The BIOS 
establishes a chain of trust for the preboot environment and must include support for TCG-specific 
Static Root of Trust Measurement (SRTM). 

The easiest way to determine whether your machine contains a compatible TPM is to run the TPM 
MMC snap-in (%SystemRoot%\System32\Tpm.msc). If Windows detects a compatible TPM, you 
should see a window similar to the one shown in Figure 8-19. Otherwise, an error message will 
appear. 

As stated earlier, BitLocker can be configured to use the TPM to perform system integrity checks 
on critical early boot components. At a high level, the TPM collects and stores measurements 
from multiple early boot components and boot configuration data to create a system identifier 
(much like a fingerprint) for that computer. It stores each part of this fingerprint as a hash in a 
platform configuration register (PCR). BitLocker uses the hash of these functions to seal the VMK, 
which is the key that BitLocker uses to protect other keys, including the FVEKs used to encrypt 
volumes. 

  

If the early boot components are changed or tampered with, such as by changing the BIOS or 
MBR, or moving the hard disk to a different computer, the TPM prevents BitLocker from 
unsealing the VMK, and Windows enters a key recovery mode (described later in the chapter). If 
the PCR values match those used to seal the key, however, it unseals the key, and BitLocker can 
decrypt the keys used to protect volumes. Once the keys are unsealed, Windows starts and system 
protection becomes the responsibility of the user and the operating system. A platform validation 
profile supported by TPMs consists of 24 PCRs that can be extended to contain additional 
information and only reset after a TPM reset (implying a machine reboot). Each PCR is associated 
with components that run when an operating system starts, as shown in Table 8-2. 

BitLocker uses registers 0, 4, 8, 9, 10, and 11 to seal the VMK. This secures the encryption key 
against changes to the Core Root of Trust of Measurement (CRTM), BIOS, and platform 
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extensions; Master Boot Record (MBR) code; the NTFS boot sector; the NTFS boot block; the 
Boot Manager; and the BitLocker Access Control.  

  

8.4.4 BitLocker Boot Process 

The actual measurements stored in the TPM PCRs are generated by the TPM itself, the TPM 
BIOS, and Windows. When the system boots, the TPM does a self-test, following which the 
CRTM in the BIOS measures its own hashing and PCR loading code and writes the hash to the 
first PCR of the TPM. It then hashes the BIOS and stores that measurement in the first PCR as 
well. The BIOS in turn hashes the next component in the boot sequence, the MBR of the boot 
drive, and this process continues until the operating system loader is measured. Each subsequent 
piece of code that runs is responsible for measuring the code that it loads and for storing the 
measurement in the appropriate register in the TPM.  

Finally, when the user selects which operating system to boot, the Boot Manager (Bootmgr) reads 
the encrypted VMK from the volume and asks the TPM to unseal it. As described previously, only 
if all the measurements are the same as when the VMK was sealed, including the optional PIN, 
will the TPM successfully decrypt the VMK. This process not only guarantees that the machine 
and system files are identical to the applications or operating systems that are allowed to read the 
drive, but also verifies the uniqueness of the operating system installation.  

For example, even another identical Windows operating system installed on the same machine 
will not get access to the drive because Bootmgr takes an active role in protecting the VMK from 
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being passed to an operating system to which it doesn’t belong (by generating a MAC hash of 
several system configuration options). 

You can think of this scheme as a verification chain, where each component in the boot sequence 
describes the next component to the TPM. Only if all the descriptions match the original ones 
given to it will the TPM divulge its secret. BitLocker therefore protects the encrypted data even 
when the disk is removed and placed in another system, the system is booted using a different 
operating system, or the unencrypted files on the boot volume are compromised. Figure 8-20 
shows the various steps of the preboot process up until Winload begins loading the operating 
system. 

8.4.5 BitLocker Key Recovery 

For recovery purposes, BitLocker uses a recovery key (stored on a USB device) or a recovery 
password (numerical password), as shown in Figure 8-18. You create the recovery key or recovery 
password during BitLocker initialization. A copy of the VMK is encrypted with a 256-bit 
AES-CCM key that can be computed with the recovery password and a salt stored in the metadata 
block. The password is a 48-digit number, eight groups of 6 digits, with three properties for 
checksumming: 

■ Each group of 6 digits must be divisible by 11. This check can be used to identify groups 
mistyped by the user. 

■ Each group of 6 digits must be less than 2**16 * 11. Each group contains 16 bits of key 
information. The eight groups, therefore, hold 128 bits of key. 

■ The sixth digit in each group is a checksum digit. 

Inserting the recovery key or typing the recovery password enables an authorized user to regain 
access to the encrypted volume in the event of an attempted security breach or system failure. 
Figure 8-21 displays the prompt requesting the user to type the recovery password. 
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The recovery key or password is also used in cases in which parts of the system have changed, 
resulting in different measurements. One common example of this is when a user has modified the 
BCD, such as by adding the debug option. Upon reboot, Bootmgr will detect the change and ask 
the user to validate it by inputting the recovery key. For this reason, it is extremely important not 
to lose this key, because it isn’t only used for recovery but for validating system changes. Another 
application of the recovery key is for foreign volumes. Foreign volumes are operating system 
volumes that were BitLocker-enabled on another computer and have been transferred to a 
different Windows computer. An administrator can unlock these volumes by entering the recovery 
password. 

8.4.6 Full Volume Encryption Driver 

Unlike EFS, which is implemented by the NTFS file system driver and operates at the file level, 
BitLocker encrypts at the volume level using the full volume encryption (FVE) driver 
(%SystemRoot%\System32\Drivers\Fvevol.sys), as shown in Figure 8-22. 

  

FVE is a filter driver, so it automatically sees all the I/O requests that NTFS sends to the volume, 
encrypting blocks as they’re written and decrypting them as they’re read using the FVEK assigned 
to the volume when it’s initially configured to use BitLocker. Because the encryption and 
decryption happen beneath NTFS in the I/O system, the volume appears to NTFS as if it’s 
unencrypted, and NTFS does not even need to be aware that BitLocker is enabled. If you attempt 
to read data from the volume from outside Windows, however, it appears to be random data. 

BitLocker also uses an extra measure to make plain-text attacks in which an attacker knows the 
contents of a sector and uses that information to try and derive the key used to encrypt it more 
difficult. By combining the FVEK with the sector number to create the key used to encrypt a 
particular sector, and passing the encrypted data through the Elephant diffuser, BitLocker ensures 
that every sector is encrypted with a slightly different key, resulting in different encrypted data for 
different sectors even if their contents are identical.  
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8.4.7 BitLocker Management 

BitLocker provides three different kinds of administrative interfaces, each suited to a particular 
role or task. It provides a WMI interface (and works with the TBS WMI interface) for 
programmatic access to the BitLocker functionality, a set of Group Policies that allow 
administrators to define the behavior across the network or a series of machines, and integration 
with Active Directory. 

Developers and system administrators with scripting familiarity can access the Win32_Tpm and 
Win32_EncryptableVolume interfaces to protect keys, define authentication methods, define 
which PCR registers are used as part of the BitLocker profile, and manually initiate encryption or 
decryption of an entire volume. The manage-bde.wsf script, located in %SystemRoot%\System32, 
uses these interfaces to allow command-line management of the BitLocker service. 

On systems that are joined to a domain, the key for each machine can automatically be backed up 
as part of a key escrow service, allowing IT administrators to easily recover and gain access to 
machines that are part of the corporate network. Additionally, various Group Policies related to 
BitLocker can be configured. You can access these by using the Local Group Policy Editor, under 
the Computer Configuration, Administrative Templates, Windows Components, BitLocker Drive 
Encryption entry. For example, Figure 8-23 displays the option for enabling the Active Directory 
key backup functionality. 

  

If a TPM chip is present on the system, additional options (such as TPM Key Backup) can be 
accessed from the Trusted Platform Module Services entry under Windows Components. 

8.5 Volume Shadow Copy Service  

The Volume Shadow Copy Service (VSS) is a built-in Windows mechanism that enables the 
creation of consistent, point-in-time copies of data, known as shadow copies or snapshots. VSS 



 634

coordinates with applications, file-system services, backup applications, fast-recovery solutions, 
and storage hardware to produce consistent shadow copies. 

8.5.1 Shadow Copies  

Shadow copies are created through one of two mechanisms—clone and copy-on-write. The VSS 
provider (described in more detail later) determines the method to use. (Providers can implement 
the snapshot as they see fit. For example, certain hardware providers will take a hybrid approach: 
clone first, and then copy-on-write.) 

Clone Shadow Copies 

A clone shadow copy, also called a split mirror, is a full duplicate of the original data on a volume, 
created either by software or hardware mirroring. Software or hardware keeps a clone 
synchronized with the master copy until the mirror connection is broken in order to create a 
shadow copy. At that moment, the live volume (also called the original volume) and the shadow 
volume become independent. The live volume is writable and still accepts changes, but the 
shadow volume is read-only and stores contents of the live volume at the time it was created. 

Copy-on-Write Shadow Copies 

A copy-on-write shadow copy, also called a differential copy, is a differential, rather than a full, 
duplicate of the original data. Similar to a clone copy, differential copies can be created by 
software or hardware mechanisms. Whenever a change is made to the live data, the block of data 
being modified is copied to a “differences area” associated with the shadow copy before the 
change is written to the live data block. Overlaying the modified data on the live data creates a 
view of the live data at the point in time when the shadow copy was created.  

Note The in-box VSS provider that ships with Windows only supports copy-on-write shadow 
copies. 

8.5.2 VSS Architecture 

VSS (%SystemRoot%\System32\Vssvc.exe) coordinates VSS writers, VSS providers, and VSS 
requestors. A VSS writer is a software component that enables shadow-copy-aware applications, 
such as Microsoft SQL Server, Microsoft Exchange Server, and Active Directory, to receive 
freeze and thaw notifications to ensure that backup copies of their data files are internally 
consistent. Implementing a VSS provider allows an ISV or IHV with unique storage schemes to 
integrate with the shadow copy service. For instance, an IHV with mirrored storage devices might 
define a shadow copy as the frozen half of a split mirrored volume. VSS requestors are the 
applications that request the creation of volume shadow copies and include backup utilities and the 
Windows System Restore feature. Figure 8-24 shows the relationship between the VSS shadow 
copy service, writers, providers, and requestors. 
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8.5.3 VSS Operation 

Regardless of the specific purpose for the copy and the application making use of VSS, shadow 
copy creation follows the same steps, shown in Figure 8-25. First, a requestor sends a command to 
VSS to enumerate writers, gather metadata, and prepare for the copy (1). VSS asks each writer to 
return information on its restore capabilities and an XML description of its backup components (2). 
Next, each writer prepares for the copy in its own appropriate way, which might include 
completing outstanding transactions and flushing caches. A prepare command is sent to all 
involved providers as well (3).  

At this point, VSS initiates the commit phase of the copy (4). VSS instructs each writer to quiesce 
its data and temporarily freeze all write I/O requests (read requests are still passed through). VSS 
then flushes volume file system buffers and requests that the volume file system drivers freeze 
their I/O by sending them the IOCTL_VOLSNAP_FLUSH_AND_HOLD_WRITES device I/O 
control command, ensuring that all the file system metadata is written out to disk consistently (5). 
Once the system is in this state, VSS sends a command telling the provider to perform the actual 
copy creation (6). VSS allows up to 10 seconds for the creation, after which it aborts the operation 
if it is not already completed in this interval. After the provider has created the shadow copy, VSS 
asks the file systems to thaw, or resume write I/O operations, by sending them the 
IOCTL_VOLSNAP_RELEASE_WRITES command, and it releases the writers from their 
temporary freeze. All queued write I/O operations then proceed (7). 

VSS next queries the writers to confirm that I/O operations were successfully held during the 
creation to ensure that the created shadow copy is consistent. If the shadow copy is inconsistent as 
the result of file system damage, the shadow copy is deleted by VSS. In other cases of writer 
failure, VSS simply notifies the requestor. At this point, the requestor can retry the procedure from 
(1), or wait for user action. If the copy was created consistently, VSS tells the requestor the 
location of the copy. 

An optional final step is to make the snapshot device(s) writable, such that interested writers such 
as TxF can perform additional recovery actions on the snapshot device itself. After this recovery 
step, the snapshot is sealed read-only and handed out to the requestor.  

Note VSS also allows the surfacing of shadow copy devices on a different server—called 
transportable shadow copies. 
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Shadow Copy Provider 

The Shadow Copy Provider (\%SystemRoot%\System32\Drivers\Swprov.dll) implements 
software-based differential copies with the aid of the Volume Shadow Copy Driver 
(Volsnap—\%SystemRoot\System32\Drivers\Volsnap.sys). Volsnap is a storage filter driver that 
resides between file system drivers and volume manager drivers (the drivers that present views of 
the sectors that represent a volume) so that the I/O system forwards it I/O operations directed at a 
volume. 

When asked by VSS to create a shadow copy, Volsnap queues I/O operations directed at the target 
volume and creates a differential file in the volume’s System Volume Information directory to 
store volume data that subsequently changes. Volsnap also creates a virtual volume through which 
applications can access the shadow copy. For example, if a volume’s name in the object manager 
namespace is \Device\HarddiskVolume1, the shadow volume would have a name like 
\Device\HarddiskVolumeShadowCopyN, where N is a unique ID. 

Whenever Volsnap sees a write operation directed at a live volume, it reads a copy of the sectors 
that will be overwritten into a paging file—a backed memory section that’s associated with the 
corresponding shadow copy. It services read operations directed at the shadow copy of modified 
sectors from this memory section, and it services reads to nonmodified areas by reading from the 
live volume. Because the backup utility won’t save the paging file or the contents of the 
system-managed System Volume Information directory located on every volume (which includes 
shadow copy differential files), Volsnap uses the defragmentation API to determine the location of 
these files and directories and does not record changes to them.  

Figure 8-26 demonstrates the behavior of applications accessing a volume and a backup 
application accessing the volume’s shadow volume copy. When an application writes to a sector 
after the snapshot time, the Volsnap driver makes a backup copy, like it has for sectors a, b, and c 
of volume C: in the figure. Subsequently, when an application reads from sector c, Volsnap directs 
the read to volume C:, but when a backup application reads from sector c, Volsnap reads the 
sector from the snapshot. When a read occurs for any unmodified sector, such as d, Volsnap routes 
the read to volume C:. 
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Note Volsnap avoids copy-on-write operations for the paging file, hibernation file, and the 
difference data stored in the System Volume Information folder. All other files will get 
copy-onwrite protection. 

  

EXPERIMENT: Looking at Microsoft Shadow Copy Provider Filter Device 
Objects 

You can see the Microsoft Shadow Copy Provider driver’s device objects attached to each volume 
device on a Windows system in a kernel debugger. Every system has at least one volume, and the 
following command displays the device object of the first volume on a system: 

1. lkd> !devobj \device\harddiskvolume1  
2. Device object (84a64030) is for:   
3. HarddiskVolume1 \Driver\volmgr DriverObject 84905030  
4. Current Irp 00000000 RefCount 0 Type 00000007 Flags 00001050  
5. Vpb 84a40818 Dacl 8b1a8674 DevExt 84a640e8 DevObjExt 84a641e0 Dope 84a02be0     

DevNode   
6. 84a64390  
7. ExtensionFlags (0x00000800)   
8. Unknown flags 0x00000800  
9. AttachedDevice (Upper) 84a656c0 \Driver\volsnap   
10. Device queue is not busy.   

The AttachedDevice field in the output for the !devobj command displays the address of any 
device object, and the name of the owning driver, attached to (filtering) the device object being 
examined. For volume device objects, you should see a device object belonging to the Volsnap 
driver, as in the example output. 

8.5.4 Uses in Windows 



 638

Several features in Windows make use of VSS, including Backup, System Restore, Previous 
Versions, and Shadow Copies for Shared Folders. We’ll look at some of these uses and describe 
why VSS is needed and which VSS functionality is applicable to the applications.  

Backup 

A limitation of many backup utilities relates to open files. If an application has a file open for 
exclusive access, a backup utility can’t gain access to the file’s contents. Even if the backup utility 
can access an open file, the utility runs the risk of creating an inconsistent backup. Consider an 
application that updates a file at its beginning and then at its end. A backup utility saving the file 
during this operation might record an image of the file that reflects the start of the file before the 
application’s modification and the end after the modification. If the file is later restored the 
application might deem the entire file corrupt because it might be prepared to handle the case 
where the beginning has been modified and not the end, but not vice versa. These two problems 
illustrate why most backup utilities skip open files altogether. 

EXPERIMENT: Viewing Shadow Volume Device Objects 

You can see the existence of shadow volume device objects in the object manager name space by 
running the Windows backup application (under System Tools in the Accessories folder of the 
Start menu) and selecting enough backup data to cause the backup process to take long enough for 
you to run WinObj and see the objects in the \Device subdirectory, as shown here. 

  

Instead of opening files to back up on the live volume, the backup utility opens them on the 
shadow volume. A shadow volume represents a point-in-time view of a volume, so by relying on 
the shadow copy facility, the backup utility overcomes both the backup problems related to open 
files. 

Previous Versions and System Restore 
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The Windows Previous Versions feature also integrates support for automatically creating volume 
snapshots, typically one per day, that you can access through Explorer (by opening a Properties 
dialog box) using the same interface used by Shadow Copies for Shared Folders. This enables you 
to view, restore, or copy old versions of files and directories that you might have accidentally 
modified or deleted. 

Windows also takes advantage of volume snapshots to unify user and system data-protection 
mechanisms and avoid saving redundant backup data. When an application installation or 
configuration change causes incorrect or undesirable behaviors, you can use System Restore to 
restore system files and data to their state as it existed when a restore point was created.  

When you use the System Restore user interface in Windows Vista to go back to a restore point, 
you’re actually copying earlier versions of modified system files from the snapshot associated 
with the restore point to the live volume. 

EXPERIMENT: Navigating Through Previous Versions 

As you saw earlier, each time Windows creates a new system restore point, this results in a 
shadow copy being taken for that volume. You can navigate through time and see older copies of 
each drive being shadowed with Windows Explorer. To see a list of all previous versions of an 
entire volume, right-click on a partition, such as C:, and select Restore Previous Versions. You 
will see a dialog box similar to the one shown here. 

  

Pick any of the versions shown, and then click the Open button. This opens a new Explorer 
window displaying that volume at the point in time when the snapshot was taken. The path shown 
will include \\localhost\C$\@GMT--<TIME< A>>, which is how Explorer virtualizes the different 
shadow copies taken. (C$ is the local hidden default share that Windows networking uses; for 
more information, see Chapter 12.)  
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Internally, each volume shadow copy shown isn’t a complete copy of the drive, so it doesn’t 
duplicate the entire contents twice, which would double disk space requirements for every single 
copy. Previous Versions uses the copy-on-write mechanism described earlier to create shadow 
copies. For example, if the only file that changed between time A and time B, when a volume 
shadow copy was taken, is New.txt, the shadow copy will contain only New.txt. This allows VSS 
to be used in client scenarios with minimal visible impact on the user, since entire drive contents 
are not duplicated and size constraints remain small.  

Although shadow copies for previous versions are taken daily (or whenever a Windows Update or 
software installation is performed, for example), you can manually request a copy to be taken. 
This can be useful if, for example, you’re about to make major changes to the system or have just 
copied a set of files you want to save immediately for the purpose of creating a previous version. 
You can access these settings by right-clicking Computer on the Start Menu or desktop, selecting 
Properties, and then clicking System Protection. You can also open Control Panel, click System 
And Maintenance, and then click System. The dialog box shown in Figure 8-27 allows you to 
select the volumes on which to enable System Restore (which also affects previous versions) and 
to create an immediate restore point and name it. 

  

EXPERIMENT: Mapping Volume Shadow Device Objects 

Although you can browse previous versions by using Explorer, this doesn’t give you a permanent 
interface through which you can access that view of the drive in an application-independent, 
persistent way. You can use the Vssadmin utility (%System-Root%\System32\Vssadmin.exe) 
included with Windows to view all the shadow copies taken, and you can then take advantage of 
symbolic links to map a copy. This experiment will show you how. 

1. List all shadow copies available on the system by using the list shadows command: 

1. vssadmin list shadows  
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You’ll see output that resembles the following. Each entry is either a previous version copy or a 
shared folder with shadow copies enabled. 

1. vssadmin 1.1 - Volume Shadow Copy Service administrative command-line tool   
2. (C) Copyright 2001-2005 Microsoft Corp.   
3. Contents of shadow copy set ID: {dfe617b7-ef2b-4280-9f4e-ddf94c2ccfac}   
4. Contained 1 shadow copies at creation time: 8/27/2008 1:59:58 PM   
5. Shadow Copy ID: {f455a794-6b0c-49e4-9ae5-e54647fd1f31}   
6. Original Volume: (C:)\\?\Volume{f5f9d9c3-7466-11dd-9ba5-806e6f6e6963}\   
7. Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1  
8. Originating Machine: WIN-SL5V78KD01W   
9. Service Machine: WIN-SL5V78KD01W   
10. Provider: 'Microsoft Software Shadow Copy provider 1.0'  
11. Type: ClientAccessibleWriters   
12. Attributes: Persistent, Client-accessible, No auto release,   
13. Differential, Auto recovered   
14. Contents of shadow copy set ID: {02dad996-e7b0-4d2d-9fb9-7e692be8fe3c}   
15. Contained 1 shadow copies at creation time: 8/29/2008 1:51:14 AM   
16. Shadow Copy ID: {79c9ee14-ca1f-4e46-b3f0-0dc98f8eb0d4}   
17. Original Volume: (C:)\\?\Volume{f5f9d9c3-7466-11dd-9ba5-806e6f6e6963}\   
18. Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2.   
19. ...   

Note that each shadow copy set ID displayed in this output matches the C$ entries shown by 
Explorer in the previous experiment, and the tool also displays the shadow copy volume, which 
corresponds to the shadow copy device objects that you can see with WinObj. 

2. You can now use the Mklink.exe utility to create a directory symbolic link (for more 
information on symbolic links, see Chapter 11), which will let you map a shadow copy into an 
actual location. Use the /d flag to create a directory link, and specify a folder on your drive to map 
to the given volume device object. Make sure to append the path with a backslash (\) as shown 
here: 

1. mklink /d c:\old \\?\gLOBaLrOOT\Device\HarddiskVolumeShadowCopy2\  

3. Finally, with the Subst.exe utility, you can map the c:\old directory to a real volume using the 
command shown here: 

1. Subst g: c:\old  

You can now access the old contents of your drive from any application by using the c:\old path, 
or from any command-prompt utility by using the g:\ path—for example, try dir g: to list the 
contents of your drive. 

Shadow Copies for Shared Folders 
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Windows also takes advantage of Volume Shadow Copy to provide a feature that lets standard 
users access backup versions of volumes on file servers so that they can recover old versions of 
files and folders that they might have deleted or changed. The feature alleviates the burden on 
systems administrators who would otherwise have to load backup media and access previous 
versions on behalf of these users. 

The Properties dialog box for a volume includes a tab named Shadow Copies, shown in Figure 
8-28. An administrator can enable scheduled snapshots of volumes using this tab, as shown in the 
following screen. Administrators can also limit the amount of space consumed by snapshots so 
that the system deletes old snapshots to honor space constraints. 

  

When a client Windows system (running Windows Vista Business, Enterprise, or Ultimate) maps 
a share from a folder on a volume for which snapshots exist, the Previous Versions tab appears in 
the Properties dialog box for folders and files on the share, just like for local folders. The Previous 
Versions tab shows a list of snapshots that exist on the server, instead of the client, allowing the 
user to view or copy a file or folder’s data as it existed in a previous snapshot. 

8.6 Conclusion 

In this chapter, we’ve reviewed the on-disk organization, components, and operation of Windows 
disk storage management. In Chapter 10, we delve into the cache manager, an executive 
component integral to the operation of file system drivers that mount the volume types presented 
in this chapter. However, next, we’ll take a close look at an integral component of the Windows 
kernel: the memory manager. 
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9. Memory Management 

In this chapter, you’ll learn how Windows implements virtual memory and how it manages the 
subset of virtual memory kept in physical memory. We’ll also describe the internal structure and 
components that make up the memory manager, including key data structures and algorithms. 
Before examining these mechanisms, we’ll review the basic services provided by the memory 
manager and key concepts such as reserved memory versus committed memory and shared 
memory. 

9.1 Introduction to the Memory Manager 

By default, the virtual size of a process on 32-bit Windows is 2 GB. If the image is marked 
specifically as large address space aware, and the system is booted with a special option 
(described later in this chapter), a 32-bit process can grow to be 3 GB on 32-bit Windows and to 4 
GB on 64-bit Windows. The process virtual address space size on 64-bit Windows is 7,152 GB on 
IA64 systems and 8,192 GB on x64 systems. (This value could be increased in future releases.) 

As you saw in Chapter 2 (specifically in Table 2-3), the maximum amount of physical memory 
currently supported by Windows ranges from 2 GB to 2,048 GB, depending on which version and 
edition of Windows you are running. Because the virtual address space might be larger or smaller 
than the physical memory on the machine, the memory manager has two primary tasks: 

■ Translating, or mapping, a process’s virtual address space into physical memory so that when a 
thread running in the context of that process reads or writes to the virtual address space, the 
correct physical address is referenced. (The subset of a process’s virtual address space that is 
physically resident is called the working set. Working sets are described in more detail later in this 
chapter.) 

■ Paging some of the contents of memory to disk when it becomes overcommitted—that is, when 
running threads or system code try to use more physical memory than is currently available—and 
bringing the contents back into physical memory when needed.  

In addition to providing virtual memory management, the memory manager provides a core set of 
services on which the various Windows environment subsystems are built. These services include 
memory mapped files (internally called section objects), copy-on-write memory, and support for 
applications using large, sparse address spaces. In addition, the memory manager provides a way 
for a process to allocate and use larger amounts of physical memory than can be mapped into the 
process virtual address space (for example, on 32-bit systems with more than 4 GB of physical 
memory). This is explained in the section “Address Windowing Extensions” later in this chapter. 

Memory Manager Components 
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The memory manager is part of the Windows executive and therefore exists in the file 
Ntoskrnl.exe. No parts of the memory manager exist in the HAL. The memory manager consists 
of the following components: 

■ A set of executive system services for allocating, deallocating, and managing virtual memory, 
most of which are exposed through the Windows API or kernel-mode device driver interfaces 

■ A translation-not-valid and access fault trap handler for resolving hardware-detected memory 
management exceptions and making virtual pages resident on behalf of a process 

■ Several key components that run in the context of six different kernel-mode system threads: 

❏ The working set manager (priority 16), which the balance set manager (a system thread that the 
kernel creates) calls once per second as well as when free memory falls below a certain threshold, 
drives the overall memory management policies, such as working set trimming, aging, and 
modified page writing. 

❏ The process/stack swapper (priority 23) performs both process and kernel thread stack 
inswapping and outswapping. The balance set manager and the threadscheduling code in the 
kernel awaken this thread when an inswap or outswap operation needs to take place. 

❏ The modified page writer (priority 17) writes dirty pages on the modified list back to the 
appropriate paging files. This thread is awakened when the size of the modified list needs to be 
reduced. 

❏ The mapped page writer (priority 17) writes dirty pages in mapped files to disk (or remote 
storage). It is awakened when the size of the modified list needs to be reduced or if pages for 
mapped files have been on the modified list for more than 5 minutes. This second modified page 
writer thread is necessary because it can generate page faults that result in requests for free pages. 
If there were no free pages and there was only one modified page writer thread, the system could 
deadlock waiting for free pages. 

❏ The dereference segment thread (priority 18) is responsible for cache reduction as well as for 
page file growth and shrinkage. (For example, if there is no virtual address space for paged pool 
growth, this thread trims the page cache so that the paged pool used to anchor it can be freed for 
reuse.) 

❏ The zero page thread (priority 0) zeroes out pages on the free list so that a cache of zero pages 
is available to satisfy future demand-zero page faults. (Memory zeroing in some cases is done by a 
faster function called MiZeroInParallel. See the note in the section “Page List Dynamics.”) 

Each of these components is covered in more detail later in the chapter. 

Internal Synchronization 
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Like all other components of the Windows executive, the memory manager is fully reentrant and 
supports simultaneous execution on multiprocessor systems—that is, it allows two threads to 
acquire resources in such a way that they don’t corrupt each other’s data. To accomplish the goal 
of being fully reentrant, the memory manager uses several different internal synchronization 
mechanisms to control access to its own internal data structures, such as spinlocks. 
(Synchronization objects are discussed in Chapter 3.)  

Systemwide resources to which the memory manager must synchronize access include the page 
frame number (PFN) database (controlled by a spinlock), section objects and the system working 
set (controlled by pushlocks), and page file creation (controlled by a guarded mutex). Per-process 
memory management data structures that require synchronization include the working set lock 
(held while changes are being made to the working set list) and the address space lock (held 
whenever the address space is being changed). Both these locks are implemented using pushlocks. 

Examining Memory Usage 

The Memory and Process performance counter objects provide access to most of the details about 
system and process memory utilization. Throughout the chapter, we’ll include references to 
specific performance counters that contain information related to the component being described. 
We’ve included relevant examples and experiments throughout the chapter.  

One word of caution, however: different utilities use varying and sometimes inconsistent or 
confusing names when displaying memory information. The following experiment illustrates this 
point. (We’ll explain the terms used in this example in subsequent sections.)  

EXPERIMENT: Viewing System Memory Information 

The Performance tab in the Windows Task Manager, shown in the following screen shot, displays 
basic system memory information. This information is a subset of the detailed memory 
information available through the performance counters. 

 

The following table shows the meaning of the memory-related values. 
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To see the specific usage of paged and nonpaged pool, use the Poolmon utility, described in the 
“Monitoring Pool Usage” section. 

Finally, the !vm command in the kernel debugger shows the basic memory management 
information available through the memory-related performance counters. This command can be 
useful if you’re looking at a crash dump or hung system. Here’s an example of its output from a 
512-MB Windows Server 2008 system: 

1. lkd> !vm   
2. *** Virtual Memory Usage ***   
3. Physical Memory: 130772 ( 523088 Kb)   
4. Page File: \??\C:\pagefile.sys   
5. Current: 1048576 Kb Free Space: 1039500 Kb   
6. Minimum: 1048576 Kb Maximum: 4194304 Kb   
7. Available Pages: 47079 ( 188316 Kb)   
8. ResAvail Pages: 111511 ( 446044 Kb)   
9. Locked IO Pages: 0 ( 0 Kb)   
10. Free System PTEs: 433746 ( 1734984 Kb)   
11. Modified Pages: 2808 ( 11232 Kb)   
12. Modified PF Pages: 2801 ( 11204 Kb)   
13. NonPagedPool Usage: 5301 ( 21204 Kb)   
14. NonPagedPool Max: 94847 ( 379388 Kb)   
15. PagedPool 0 Usage: 4340 ( 17360 Kb)   
16. PagedPool 1 Usage: 3129 ( 12516 Kb)   
17. PagedPool 2 Usage: 402 ( 1608 Kb)   
18. PagedPool 3 Usage: 349 ( 1396 Kb)   
19. PagedPool 4 Usage: 420 ( 1680 Kb)   
20. PagedPool Usage: 8640 ( 34560 Kb)   
21. PagedPool Maximum: 523264 ( 2093056 Kb)   
22. Shared Commit: 7231 ( 28924 Kb)   
23. Special Pool: 0 ( 0 Kb)   
24. Shared Process: 1767 ( 7068 Kb)   
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25. PagedPool Commit: 8635 ( 34540 Kb)   
26. Driver Commit: 2246 ( 8984 Kb)   
27. Committed pages: 73000 ( 292000 Kb)   
28. Commit limit: 386472 ( 1545888 Kb)   
29. Total Private: 44889 ( 179556 Kb)   
30. 0400 svchost.exe 5436 ( 21744 Kb)   
31. 0980 explorer.exe 4123 ( 16492 Kb)   
32. 0a7c windbg.exe 3713 ( 14852 Kb)  

9.2 Services the Memory Manager Provides 

The memory manager provides a set of system services to allocate and free virtual memory, share 
memory between processes, map files into memory, flush virtual pages to disk, retrieve 
information about a range of virtual pages, change the protection of virtual pages, and lock the 
virtual pages into memory.  

Like other Windows executive services, the memory management services allow their caller to 
supply a process handle indicating the particular process whose virtual memory is to be 
manipulated. The caller can thus manipulate either its own memory or (with the proper 
permissions) the memory of another process. For example, if a process creates a child process, by 
default it has the right to manipulate the child process’s virtual memory. Thereafter, the parent 
process can allocate, deallocate, read, and write memory on behalf of the child process by calling 
virtual memory services and passing a handle to the child process as an argument. This feature is 
used by subsystems to manage the memory of their client processes, and it is also key for 
implementing debuggers because debuggers must be able to read and write to the memory of the 
process being debugged. 

Most of these services are exposed through the Windows API. The Windows API has three groups 
of functions for managing memory in applications: page granularity virtual memory functions 
(Virtualxxx), memory-mapped file functions (CreateFileMapping, CreateFileMappingNuma, 
MapViewOfFile, MapViewOfFileEx, and MapViewOfFileExNuma), and heap functions 
(Heapxxx and the older interfaces Localxxx and Globalxxx, which internally make use of the 
Heapxxx APIs). (We’ll describe the heap manager later in this chapter.)  

The memory manager also provides a number of services (such as allocating and deallocating 
physical memory and locking pages in physical memory for direct memory access [DMA] 
transfers) to other kernel-mode components inside the executive as well as to device drivers. 
These functions begin with the prefix Mm. In addition, though not strictly part of the memory 
manager, some executive support routines that begin with Ex are used to allocate and deallocate 
from the system heaps (paged and nonpaged pool) as well as to manipulate look-aside lists. We’ll 
touch on these topics later in this chapter in the section “Kernel-Mode Heaps (System Memory 
Pools).” 
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Although we’ll be referring to Windows functions and kernel-mode memory management and 
memory allocation routines provided for device drivers, we won’t cover the interface and 
programming details but rather the internal operations of these functions. Refer to the Windows 
Software Development Kit (SDK) and Windows Driver Kit (WDK) documentation on MSDN for 
a complete description of the available functions and their interfaces. 

9.2.1 Large and Small Pages 

The virtual address space is divided into units called pages. That is because the hardware memory 
management unit translates virtual to physical addresses at the granularity of a page. Hence, a 
page is the smallest unit of protection at the hardware level. (The various page protection options 
are described in the section “Protecting Memory” later in the chapter.) There are two page sizes: 
small and large. The actual sizes vary based on hardware architecture, and they are listed in Table 
9-1.  

  

Note IA64 processors support a variety of dynamically configurable page sizes, from 4 KB up to 
256 MB. Windows uses 8 KB and 16 MB for small and large pages, respectively, as a result of 
performance tests that confirmed these values as optimal. Additionally, recent x64 processors 
support a size of 1 GB for large pages, but Windows does not currently use this feature.  

The advantage of large pages is speed of address translation for references to other data within the 
large page. This advantage exists because the first reference to any byte within a large page will 
cause the hardware’s translation look-aside buffer (or TLB, which is described in the section 
“Translation Look-Aside Buffer”) to have in its cache the information necessary to translate 
references to any other byte within the large page. If small pages are used, more TLB entries are 
needed for the same range of virtual addresses, thus increasing recycling of entries as new virtual 
addresses require translation. This, in turn, means having to go back to the page table structures 
when references are made to virtual addresses outside the scope of a small page whose translation 
has been cached. The TLB is a very small cache, and thus large pages make better use of this 
limited resource. 

To take advantage of large pages on systems with more than 255 MB of RAM, Windows maps 
with large pages the core operating system images (Ntoskrnl.exe and Hal.dll) as well as core 
operating system data (such as the initial part of nonpaged pool and the data structures that 
describe the state of each physical memory page). Windows also automatically maps I/O space 
requests (calls by device drivers to MmMapIoSpace) with large pages if the request is of 
satisfactory large page length and alignment. In addition, Windows allows applications to map 
their images, private memory, and page-file-backed sections with large pages. (See the 
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MEM_LARGE_PAGE flag on the VirtualAlloc, VirtualAllocEx, and VirtualAllocExNuma 
functions.) You can also specify other device drivers to be mapped with large pages by adding a 
multistring registry value to  HKLM\SYSTEM\CurrentControlSet\Control\Session Manager 
\Memory Management\LargePageDrivers and specifying the names of the drivers as separately 
null- terminated strings. 

One side-effect of large pages is that because each large page must be mapped with a single 
protection (because hardware memory protection is on a per-page basis), if a large page contains 
both read-only code and read/write data, the page must be marked as read/write, which means that 
the code will be writable. This means device drivers or other kernel-mode code could, as a result 
of a bug, modify what is supposed to be read-only operating system or driver code without 
causing a memory access violation. However, if small pages are used to map the kernel, the 
read-only portions of Ntoskrnl.exe and Hal.dll will be mapped as readonly pages. Although this 
reduces efficiency of address translation, if a device driver (or other kernel-mode code) attempts 
to modify a read-only part of the operating system, the system will crash immediately, with the 
finger pointing at the offending instruction, as opposed to allowing the corruption to occur and the 
system crashing later (in a harder-to-diagnose way) when some other component trips over that 
corrupted data. If you suspect you are experiencing kernel code corruptions, enable Driver 
Verifier (described later in this chapter), which will disable the use of large pages. 

9.2.2 Reserving and Committing Pages 

Pages in a process virtual address space are free, reserved, or committed. Applications can first 
reserve address space and then commit pages in that address space. Or they can reserve and 
commit in the same function call. These services are exposed through the Windows VirtualAlloc, 
VirtualAllocEx, and VirtualAllocExNuma functions.  

Reserved address space is simply a way for a thread to reserve a range of virtual addresses for 
future use. Attempting to access reserved memory results in an access violation because the page 
isn’t mapped to any storage that can resolve the reference. 

Committed pages are pages that, when accessed, ultimately translate to valid pages in physical 
memory. Committed pages are either private and not shareable or mapped to a view of a section 
(which might or might not be mapped by other processes). Sections are described in two 
upcoming sections, “Shared Memory and Mapped Files” and “Section Objects.”  

If the pages are private to the process and have never been accessed before, they are created at the 
time of first access as zero-initialized pages (or demand zero). Private committed pages can later 
be automatically written to the paging file by the operating system if memory demands dictate. 
Committed pages that are private are inaccessible to any other process unless they’re accessed 
using cross-process memory functions, such as ReadProcessMemory or WriteProcessMemory. If 
committed pages are mapped to a portion of a mapped file, they might need to be brought in from 
disk when accessed unless they’ve already been read earlier, either by the process accessing the 
page or by another process that had the same file mapped and had previously accessed the page, or 
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if they’ve been prefetched by the system. (See the section “Shared Memory and Mapped Files” 
later in this chapter.) 

Pages are written to disk through normal modified page writing as pages are moved from the 
process working set to the modified list and ultimately to disk (or remote storage). (Working sets 
and the modified list are explained later in this chapter.) Mapped file pages can also be written 
back to disk as a result of an explicit call to FlushViewOfFile or by the mapped page writer as 
memory demands dictate. 

You can decommit pages and/or release address space with the VirtualFree or VirtualFreeEx 
function. The difference between decommittal and release is similar to the difference between 
reservation and committal—decommitted memory is still reserved, but released memory is neither 
committed nor reserved. (It’s freed.) 

Using the two-step process of reserving and committing memory can reduce memory usage by 
deferring committing pages until needed but keeping the convenience of virtual contiguity. 
Reserving memory is a relatively fast and inexpensive operation under Windows because it 
doesn’t consume any  committed pages (a precious system resource) or process page file quota (a 
limit on the number of committed pages a process can consume—not necessarily page file space). 
All that needs to be updated or constructed is the relatively small internal data structures that 
represent the state of the process address space. (We’ll explain these data structures, called virtual 
address descriptors, or VADs, later in the chapter.) 

Reserving and then committing memory is useful for applications that need a potentially large 
virtually contiguous memory buffer; rather than committing pages for the entire region, the 
address space can be reserved and then committed later when needed. A use of this technique in 
the operating system is the user-mode stack for each thread. When a thread is created, a stack is 
reserved. (1 MB is the default; you can override this size with the CreateThread and 
CreateRemoteThread function calls or change it on an imagewide basis by using the /STACK 
linker flag.) By default, the initial page in the stack is  committed and the next page is marked as 
a guard page (which isn’t committed) that traps references beyond the end of the committed 
portion of the stack and expands it. 

9.2.3 Locking Memory 

 In general, it’s better to let the memory manager decide which pages remain in physical memory. 
However, there might be special circumstances where it might be necessary for an application or 
device driver to lock pages in physical memory. Pages can be locked in memory in two ways:  

■ Windows applications can call the VirtualLock function to lock pages in their process working 
set. The number of pages a process can lock can’t exceed its minimum working set size minus 
eight pages. Therefore, if a process needs to lock more pages, it can increase its working set 
minimum with the SetProcessWorkingSetSizeEx function (referred to in the section “Working Set 
Management”). 
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■ Device drivers can call the kernel-mode functions MmProbeAndLockPages, MmLockPagable- 
CodeSection, MmLockPagableDataSection, or MmLockPagableSectionByHandle. Pages locked 
using this mechanism remain in memory until explicitly unlocked. No quota is imposed on the 
number of pages a driver can lock in memory because (for the last three APIs) the resident 
available page charge is obtained when the driver first loads to ensure that it can never cause a 
system crash due to overlocking. For the first API, charges must be obtained or the API will return 
a failure status. 

9.2.4 Allocation Granularity 

Windows aligns each region of reserved process address space to begin on an integral boundary 
defined by the value of the system allocation granularity, which can be retrieved from the 
Windows GetSystemInfo or GetNativeSystemInfo function. This value is 64 KB, a granularity 
that is used by the memory manager to efficiently allocate metadata (for example, VADs, bitmaps, 
and so on) to support various process operations. In addition, if support were added for future 
processors with larger page sizes (for example, up to 64 KB) or virtually indexed caches that 
require systemwide physical-to-virtual page alignment, the risk of requiring changes to 
applications that made assumptions about allocation alignment would be reduced.  

Note Windows kernel-mode code isn’t subject to the same restrictions; it can reserve memory on a 
single-page granularity (although this is not exposed to device drivers for the reasons detailed 
earlier). This level of granularity is primarily used to pack TEB allocations more densely, and 
because this mechanism is internal only, this code can easily be changed if a future platform 
requires different values. Also, for the purposes of supporting 16-bit and MS-DOS applications on 
x86 systems only, the memory manager provides the MEM_DOS_LIM flag to the 
MapViewOfFileEx API, which is used to force the use of single-page granularity. 

Finally, when a region of address space is reserved, Windows ensures that the size and base of the 
region is a multiple of the system page size, whatever that might be. For example, because x86 
systems use 4-KB pages, if you tried to reserve a region of memory 18 KB in size, the actual 
amount reserved on an x86 system would be 20 KB. If you specified a base address of 3 KB for an 
18-KB region, the actual amount reserved would be 24 KB. Note that the internal memory 
manager structure describing the allocation (this structure will be described later) would then also 
be rounded to 64-KB alignment/length, thus making the remainder of it inaccessible. 

9.2.5 Shared Memory and Mapped Files 

As is true with most modern operating systems, Windows provides a mechanism to share memory 
among processes and the operating system. Shared memory can be defined as memory that is 
visible to more than one process or that is present in more than one process virtual address space. 
For example, if two processes use the same DLL, it would make sense to load the referenced code 
pages for that DLL into physical memory only once and share those pages between all processes 
that map the DLL, as illustrated in Figure 9-1. 
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Each process would still maintain its private memory areas in which to store private data, but the 
program instructions and unmodified data pages could be shared without harm. As we’ll explain 
later, this kind of sharing happens automatically because the code pages in executable images are 
mapped as execute-only and writable pages are mapped as copy-on-write. (See the section 
“Copy-on-Write” for more information.) 

The underlying primitives in the memory manager used to implement shared memory are called 
section objects, which are called file mapping objects in the Windows API. The internal structure 
and implementation of section objects are described in the section “Section Objects” later in this 
chapter. 

This fundamental primitive in the memory manager is used to map virtual addresses, whether in 
main memory, in the page file, or in some other file that an application wants to access as if it 
were in memory. A section can be opened by one process or by many; in other words, section 
objects don’t necessarily equate to shared memory.  

A section object can be connected to an open file on disk (called a mapped file) or to committed 
memory (to provide shared memory). Sections mapped to committed memory are called 
pagefilebacked sections because the pages are written to the paging file if memory demands 
dictate. (Because Windows can run with no paging file, page-file-backed sections might in fact be 
“backed” only by physical memory.) As with any other empty page that is made visible to user 
mode (such as private committed pages), shared committed pages are always zero-filled when 
they are first accessed to ensure that no sensitive data is ever leaked.  

To create a section object, call the Windows CreateFileMapping or CreateFileMappingNuma 
function, specifying the file handle to map it to (or INVALID_HANDLE_VALUE for a 
page-filebacked section) and optionally a name and security descriptor. If the section has a name, 
other processes can open it with OpenFileMapping. Or you can grant access to section objects 
through handle inheritance (by specifying that the handle be inheritable when opening or creating 
the handle) or handle duplication (by using DuplicateHandle). Device drivers can also manipulate 
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section objects with the ZwOpenSection, ZwMapViewOfSection, and ZwUnmapViewOfSection 
functions. 

A section object can refer to files that are much larger than can fit in the address space of a process. 
(If the paging file backs a section object, sufficient space must exist in the paging file and/or RAM 
to contain it.) To access a very large section object, a process can map only the portion of the 
section object that it requires (called a view of the section) by calling the MapViewOfFile, 
MapViewOfFileEx, or MapViewOfFileExNuma function and then specifying the range to map. 
Mapping views permits processes to conserve address space because only the views of the section 
object needed at the time must be mapped into memory.  

Windows applications can use mapped files to conveniently perform I/O to files by simply making 
them appear in their address space. User applications aren’t the only consumers of section objects: 
the image loader uses section objects to map executable images, DLLs, and device drivers into 
memory, and the cache manager uses them to access data in cached files. (For information on how 
the cache manager integrates with the memory manager, see Chapter 10.) How shared memory 
sections are implemented, both in terms of address translation and the internal data structures, is 
explained later in this chapter. 

EXPERIMENT: Viewing Memory Mapped Files 

You can list the memory mapped files in a process by using Process Explorer from Windows 
Sysinternals (www.microsoft.com/technet/sysinternals). To view the memory mapped files by 
using Process Explorer, configure the lower pane to show the DLL view. (Click on View, Lower 
Pane View, DLLs.) Note that this is more than just a list of DLLs—it represents all memory 
mapped files in the process address space. Some of these are DLLs, one is the image file (EXE) 
being run, and additional entries might represent memory mapped data files. For example, the 
following display from Process Explorer shows a Microsoft Word process that has memory 
mapped the Word document being edited into its address space: 

  

You can also search for memory mapped files by clicking on Find, DLL. This can be useful when 
trying to determine which process(es) are using a DLL that you are trying to replace. 
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9.2.6 Protecting Memory 

As explained in Chapter 1, Windows provides memory protection so that no user process can 
inadvertently or deliberately corrupt the address space of another process or the operating system 
itself. Windows provides this protection in four primary ways. 

First, all systemwide data structures and memory pools used by kernel-mode system components 
can be accessed only while in kernel mode—user-mode threads can’t access these pages. If they 
attempt to do so, the hardware generates a fault, which in turn the memory manager reports to the 
thread as an access violation.  

Second, each process has a separate, private address space, protected from being accessed by any 
thread belonging to another process. The only exceptions are if the process decides to share pages 
with other processes or if another process has virtual memory read or write access to the process 
object and thus can use the ReadProcessMemory or WriteProcessMemory function. Each time a 
thread references an address, the virtual memory hardware, in concert with the memory manager, 
intervenes and translates the virtual address into a physical one. By controlling how virtual 
addresses are translated, Windows can ensure that threads running in one process don’t 
inappropriately access a page belonging to another process. 

Third, in addition to the implicit protection virtual-to-physical address translation offers, all 
processors supported by Windows provide some form of hardware-controlled memory protection 
(such as read/write, read-only, and so on); the exact details of such protection vary according to 
the processor. For example, code pages in the address space of a process are marked read-only and 
are thus protected from modification by user threads.  

Table 9-2 lists the memory protection options defined in the Windows API. (See the VirtualPro- 
tect, VirtualProtectEx, VirtualQuery, and VirtualQueryEx functions.) 

And finally, shared memory section objects have standard Windows access control lists (ACLs) 
that are checked when processes attempt to open them, thus limiting access of shared memory to 
those processes with the proper rights. Security also comes into play when a thread creates a 
section to contain a mapped file. To create the section, the thread must have at least read access to 
the underlying file object or the operation will fail. 

Once a thread has successfully opened a handle to a section, its actions are still subject to the 
memory manager and the hardware-based page protections described earlier. A thread can change 
the page-level protection on virtual pages in a section if the change doesn’t violate the permissions 
in the ACL for that section object. For example, the memory manager allows a thread to change 
the pages of a read-only section to have copy-on-write access but not to have read/write access. 
The copy-on-write access is permitted because it has no effect on other processes sharing the data. 
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9.2.7 No Execute Page Protection 

No execute page protection (also referred to as data execution prevention, or DEP) causes an 
attempt to transfer control to an instruction in a page marked as “no execute” to generate an access 
fault. This can prevent certain types of malware from exploiting bugs in the system through the 
execution of code placed in a data page such as the stack. DEP can also catch poorly written 
programs that don’t correctly set permissions on pages from which they intend to execute code. If 
an attempt is made in kernel mode to execute code in a page marked as no execute, the system will 
crash with the ATTEMPTED_EXECUTE_OF_NOEXECUTE_MEMORY bugcheck code. (See 
Chapter 14 for an explanation of these codes.) If this occurs in user mode, a 
STATUS_ACCESS_VIOLATION (0xc0000005) exception is delivered to the thread attempting 
the illegal reference. If a process allocates memory that needs to be executable, it must explicitly 
mark such pages by specifying the PAGE_EXECUTE, PAGE_EXECUTE_READ, PAGE_ 
EXECUTE_READWRITE, or PAGE_EXECUTE_WRITECOPY flags on the page granularity 
memory allocation functions. 
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On 32-bit x86 systems, the flag in the page table entry to mark a page as nonexecutable is 
available only when the processor is running in Physical Address Extension (PAE) mode. (See the 
section “Physical Address Extension (PAE)” later in this chapter.) Thus, support for hardware 
DEP on 32-bit systems requires loading the PAE kernel (\%SystemRoot%\System32 
\Ntkrnlpa.exe), even if that system does not require extended physical addressing (for example, 
physical addresses greater than 4 GB). The operating system loader does this automatically unless 
explicitly configured not to by setting the BCD option pae to ForceDisable.  

On 64-bit versions of Windows, execution protection is always applied to all 64-bit processes and 
device drivers and can be disabled only by setting the nx BCD option to AlwaysOff. Execution 
protection for 32-bit programs depends on system configuration settings, described shortly. On 
64-bit Windows, execution protection is applied to thread stacks (both user and kernel mode), 
user-mode pages not specifically marked as executable, kernel paged pool, and kernel session pool 
(for a description of kernel memory pools, see the section “Kernel-Mode Heaps (System Memory 
Pools).” However, on 32-bit Windows, execution protection is applied only to thread stacks and 
user-mode pages, not to paged pool and session pool. 

The application of execution protection for 32-bit processes depends on the value of the BCD nx 
option. The settings can be changed by going to the Data Execution Prevention tab under 
Computer, Properties, Advanced System Settings, Performance Settings. (See Figure 9-2.) When 
you configure no execute protection in the Performance Options dialog box, the BCD nx option is 
set to the appropriate value. Table 9-3 lists the variations of the values and how they correspond to 
the DEP settings tab. Thirty-two-bit applications that are excluded from execution protection are 
listed as registry values under the key HKLM\SOFTWARE\Microsoft\Windows NT\Current- 
Version\AppCompatFlags\Layers, with the value name being the full path of the executable and 
the data set to “DisableNXShowUI”. 

On Windows Vista (both 64-bit and 32-bit versions) execution protection for 32-bit processes is 
configured by default to apply only to core Windows operating system executables (the nx BCD 
option is set to OptIn) so as not to break 32-bit applications that might rely on being able to 
execute code in pages not specifically marked as executable, such as self-extracting or packed 
applications. On Windows Server 2008 systems, execution protection for 32-bit applications is 
configured by default to apply to all 32-bit programs (the nx BCD option is set to OptOut). 
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Note To obtain a complete list of which programs are protected, install the Windows Application 
Compatibility Toolkit (downloadable from www.microsoft.com) and run the Compatibility 
Administrator Tool. Click System Database, Applications, and then Windows Components. The 
pane at the right shows the list of protected executables. 

  

Even if you force DEP to be enabled, there are still other methods through which applications can 
disable DEP or their own images. For example, regardless of the execution protection options that 
are enabled, the image loader (see Chapter 3 for more information about the image loader) will 
verify the signature of the executable against known copy-protection mechanisms (such as 
SafeDisc and SecuROM) and disable execution protection to provide compatibility with older 
copy-protected software such as computer games.  

Additionally, to provide compatibility with older versions of the Active Template Library (ATL) 
framework (version 7.1 or earlier), the Windows kernel provides an ATL thunk emulation 
environment. This environment detects ATL thunk code sequences that have caused the DEP 
exception and emulates the expected operation. Application developers can request that ATL 
thunk emulation not be applied by using the latest Microsoft C++ compiler and  specifying the 
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/NXCOMPAT flag (which sets the IMAGE_DLLCHARACTERISTICS_NX_COMPAT flag in 
the PE header), which tells the system that the executable fully supports DEP. Note that ATL 
thunk emulation is permanently disabled if the AlwaysOn value is set. 

Finally, if the system is in OptIn or OptOut mode and executing a 32-bit process, the 
SetProcessDEPPolicy function allows a process to dynamically disable DEP or to permanently 
enable it. (Once enabled through this API, DEP cannot be disabled programmatically for the 
lifetime of the process.) This function can also be used to dynamically disable ATL thunk 
emulation in case the image wasn’t compiled with the /NXCOMPAT flag. On 64-bit processes or 
systems booted with AlwaysOff or AlwaysOn, the function always returns a failure. The 
GetProcessDEPPolicy function returns the 32-bit per-process DEP policy (it fails on 64-bit 
systems, where the policy is always the same—enabled), while the GetSystemDEPPolicy can be 
used to return a value corresponding to the policies in Table 9-3. 

EXPERIMENT: looking at DEP Protection on Processes 

Process Explorer can show you the current DEP status for all the processes on your system, 
including whether the process is opted-in or benefiting from permanent protection. To look at the 
DEP status for processes, right-click any column in the process tree, choose Select Columns, and 
then select DEP Status on the Process Image tab. Three values are possible: 

■ DEP (permanent) This means that the process has DEP enabled because it is a “necessary 
Windows program or service.” 

■ DEP This means that the process opted-in to DEP, either as part of a systemwide policy to 
opt-in all 32-bit processes or because of an API call such as SetProcessDEPPolicy. 

■ Nothing If the column displays no information for this process, DEP is disabled, either because 
of a systemwide policy or an explicit API call or shim. 

The following Process Explorer window shows an example of a system on which DEP is enabled 
for all programs and services. 

  

Software Data Execution Prevention 
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For older processors that do not support hardware no execute protection, Windows supports 
limited software data execution prevention (DEP). One aspect of software DEP reduces exploits of 
the exception handling mechanism in Windows. (See Chapter 3 for a description of structured 
exception handling.) If the program’s image files are built with safe structured exception handling 
(a feature in the Microsoft Visual C++ compiler that is enabled with the /SAFESEH flag), before 
an exception is dispatched, the system verifies that the exception handler is registered in the 
function table (built by the compiler) located within the image file. If the program’s image files 
are not built with safe structured exception handling, software DEP ensures that before an 
exception is dispatched, the exception handler is located within a memory region marked as 
executable. 

Two other methods for software DEP that the system implements are stack cookies and pointer 
encoding. The first relies on the compiler to insert special code at the beginning and end of each 
potentially exploitable function. The code saves a special numerical value (the cookie) on the 
stack on entry and validates the cookie’s value before returning to the caller saved on the stack 
(which would have now been corrupted to point to a piece of malicious code). If the cookie value 
is mismatched, the application is terminated and not allowed to continue executing. The cookie 
value is computed for each boot when executing the first user-mode thread, and it is saved in the 
KUSER_SHARED_DATA structure. The image loader reads this value and initializes it when a 
process starts executing in user mode. (See Chapter 3 for more information on the shared data 
section and the image loader.)  

The cookie value that is calculated is also saved for use with the EncodeSystemPointer and 
DecodeSystemPointer APIs, which implement pointer encoding. When an application or a DLL 
has static pointers that are dynamically called, it runs the risk of having malicious code overwrite 
the pointer values with code that the malware controls. By encoding all pointers with the cookie 
value and then decoding them, when malicious code sets a nonencoded pointer, the application 
will still attempt to decode the pointer, resulting in a corrupted value and causing the program to 
crash. The EncodePointer and DecodePointer APIs provide similar protection but with a 
per-process cookie (created on demand) instead of a per-system cookie. 

Note The system cookie is a combination of the system time at generation, the stack value of the 
saved system time, the number of page faults, and the current interrupt time. 

9.2.8 Copy-on-Write 

Copy-on-write page protection is an optimization the memory manager uses to conserve physical 
memory. When a process maps a copy-on-write view of a section object that contains read/write 
pages, instead of making a process private copy at the time the view is mapped, the memory 
manager defers making a copy of the pages until the page is written to. For example, as shown in 
Figure 9-3, two processes are sharing three pages, each marked copy-on-write, but neither of the 
two processes has attempted to modify any data on the pages. 
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If a thread in either process writes to a page, a memory management fault is generated. The 
memory manager sees that the write is to a copy-on-write page, so instead of reporting the fault as 
an access violation, it allocates a new read/write page in physical memory, copies the contents of 
the original page to the new page, updates the corresponding pagemapping information (explained 
later in this chapter) in this process to point to the new location, and dismisses the exception, thus 
causing the instruction that generated the fault to be reexecuted. This time, the write operation 
succeeds, but as shown in Figure 9-4, the newly copied page is now private to the process that did 
the writing and isn’t visible to the other process still sharing the copy-on-write page. Each new 
process that writes to that same shared page will also get its own private copy. 

  

One application of copy-on-write is to implement breakpoint support in debuggers. For example, 
by default, code pages start out as execute-only. If a programmer sets a breakpoint while 
debugging a program, however, the debugger must add a breakpoint instruction to the code. It 
does this by first changing the protection on the page to PAGE_EXECUTE_READWRITE and 
then changing the instruction stream. Because the code page is part of a mapped section, the 
memory manager creates a private copy for the process with the breakpoint set, while other 
processes continue using the unmodified code page. 

Copy-on-write is one example of an evaluation technique known as lazy evaluation that the 
memory manager uses as often as possible. Lazy-evaluation algorithms avoid performing an 
expensive operation until absolutely required—if the operation is never required, no time is 
wasted on it. 

To examine the rate of copy-on-write faults, see the performance counter Memory: Write 
Copies/sec. 
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9.2.9 Address Windowing Extensions 

Although the 32-bit version of Windows can support up to 128 GB of physical memory (as shown 
in Table 2-3), each 32-bit user process has by default only a 2-GB virtual address space. (This can 
be configured up to 3 GB when using the increaseuserva BCD option, described in the upcoming 
section “x86 User Address Space Layouts.”) For 32-bit processes that require more fine-grained, 
high-performance control over their physical pages than MapViewOfFile can provide, Windows 
provides a set of functions called Address Windowing Extensions (AWE) that can be used to 
allocate and access more physical memory than can be represented in a 32-bit process’s limited 
address space. For example, on a 32-bit Windows Server 2008 system with 8 GB of physical 
memory, a database server application could use AWE to allocate and use perhaps 6 GB of 
memory as a database cache. An allocation like this can also be done by memory mapping the file 
and then mapping views as needed, at the expense of 64-KB granularity (instead of 4-KB) and 
without requiring a special privilege.  

Allocating and using memory via the AWE functions is done in three steps:  

1. Allocating the physical memory to be used 

2. Creating a region of virtual address space to act as a window to map views of the physical 
memory 

3. Mapping views of the physical memory into the window 

To allocate physical memory, an application can call the Windows functions 
AllocateUserPhysicalPages or AllocateUserPhysicalPagesNuma. (These functions require the 
Lock pages in memory user right.) The application then uses the Windows VirtualAlloc or 
VirtualAllocExNuma function with the MEM_PHYSICAL flag to create a window in the private 
portion of the process’s address space that can then be mapped to any portion of the physical 
memory previously allocated. The AWE-allocated memory can then be used with nearly all the 
Windows APIs. (For example, the Microsoft DirectX functions can’t use AWE memory.) 

For example, if an application creates a 256-MB window in its address space and allocates 4 GB 
of physical memory (on a system with more than 4 GB of physical memory), the application can 
use the MapUserPhysicalPages or MapUserPhysicalPagesScatter Windows function to access any 
portion of the physical memory by mapping the memory into the 256-MB window. The size of the 
application’s virtual address space window determines the amount of physical memory that the 
application can access with a given mapping. Figure 9-5 shows an AWE window in a server 
application address space mapped to a portion of physical memory previously allocated by 
AllocateUserPhysicalPages or AllocateUserPhysicalPagesNuma. 
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The AWE functions exist on all editions of Windows and are usable regardless of how much 
physical memory a system has. However, AWE is most useful on systems with more than 2 GB of 
physical memory because it provides a way for a 32-bit process to control physical page usage 
when dealing with more than 2 GB of memory. Another use is for security purposes: because 
AWE memory is never paged out, the data in AWE memory can never have a copy in the paging 
file that someone could examine by rebooting into an alternate operating system. (VirtualLock 
provides the same guarantee for pages in general.) 

Finally, there are some restrictions on memory allocated and mapped by the AWE functions: 

■ Pages can’t be shared between processes. 

■ The same physical page can’t be mapped to more than one virtual address in the same process. 

■ Page protection is limited to read/write, read-only, and no access. 

For a description of the page table data structures used to map memory on systems with more than 
4 GB of physical memory, see the section “Physical Address Extension (PAE).” 

9.3 Kernel-Mode Heaps (System Memory Pools) 

At system initialization, the memory manager creates two types of dynamically sized memory 
pools that the kernel-mode components use to allocate system memory:  

■ Nonpaged pool Consists of ranges of system virtual addresses that are guaranteed to reside in 
physical memory at all times and thus can be accessed at any time (from any IRQL level and from 
any process context) without incurring a page fault. One of the reasons nonpaged pool is required 
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is because of the rule described in Chapter 2: page faults can’t be satisfied at DPC/dispatch level 
or above. 

■ Paged pool A region of virtual memory in system space that can be paged into and out of the 
system. Device drivers that don’t need to access the memory from DPC/dispatch level or above 
can use paged pool. It is accessible from any process context.  

Both memory pools are located in the system part of the address space and are mapped in the 
virtual address space of every process. The executive provides routines to allocate and deallocate 
from these pools; for information on these routines, see the functions that start with 
ExAllocatePool in the WDK documentation. 

Systems start with four paged pools (combined to make the overall system paged pool) and one 
nonpaged pool; more are created, up to a maximum of 64, depending on the number of NUMA 
nodes on the system. Having more than one paged pool reduces the frequency of system code 
blocking on simultaneous calls to pool routines. Additionally, the different pools created are 
mapped across different virtual address ranges that correspond to different NUMA nodes on the 
system. (The different data structures, such as the large page look-aside lists, to describe pool 
allocations are also mapped across different NUMA nodes. More information on NUMA 
optimizations will follow later.) 

Nonpaged pool starts at an initial size based on the amount of physical memory on the system and 
then grows as needed. For nonpaged pool, the initial size is 3 percent of system RAM, if this is 
less than 40 MB, in which case the system will instead use 40 MB as long as 10 percent of RAM 
results in more than 40 MB; otherwise 10 percent of RAM is chosen as a minimum. 

9.3.1 Pool Sizes 

Windows dynamically chooses the maximum size of the pools and allows a given pool to grow 
from its initial size to the maximums shown in Table 9-4. 

  

Four of these computed sizes are stored in kernel variables, three of which are exposed as 
performance counters, and one is computed only as a performance counter value. These variables 
and counters are listed in Table 9-5. 
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EXPERIMENT: Determining the Maximum Pool Sizes 

You can obtain the pool maximums by using either Process Explorer or live kernel debugging 
(explained in Chapter 1). To view pool maximums with Process Explorer, click on View, System 
Information. The pool maximums are displayed in the Kernel Memory section as shown here: 

  

Note that for Process Explorer to retrieve this information, it must have access to the symbols for 
the kernel running on your system. (For a description of how to configure Process Explorer to use 
symbols, see the experiment “Viewing Process Details with Process Explorer” in Chapter 1.) 

To view the same information by using the kernel debugger, you can use the !vm command as 
shown here: 

1. lkd> !vm   
2. *** Virtual Memory Usage ***   
3. Physical Memory: 851388 ( 3405552 Kb)   
4. Page File: \??\C:\pagefile.sys   
5. Current: 4194304 Kb Free Space: 4109736 Kb   
6. Minimum: 4194304 Kb Maximum: 4194304 Kb   
7. Available Pages: 517820 ( 2071280 Kb)   
8. ResAvail Pages: 780018 ( 3120072 Kb)   
9. Locked IO Pages: 0 ( 0 Kb)   
10. Free System PTEs: 279002 ( 1116008 Kb)   
11. Modified Pages: 26121 ( 104484 Kb)   
12. Modified PF Pages: 26107 ( 104428 Kb)   
13. NonPagedPool Usage: 10652 ( 42608 Kb)   
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14. NonPagedPool Max: 523064 ( 2092256 Kb)   
15. PagedPool 0 Usage: 9040 ( 36160 Kb)   
16. PagedPool 1 Usage: 4007 ( 16028 Kb)   
17. PagedPool 2 Usage: 1255 ( 5020 Kb)   
18. PagedPool 3 Usage: 946 ( 3784 Kb)   
19. PagedPool 4 Usage: 666 ( 2664 Kb)   
20. PagedPool Usage: 15914 ( 63656 Kb)   
21. PagedPool Maximum: 523264 ( 2093056 Kb)  

On this 4-GB system, nonpaged and paged pool were far from their maximums. You can also 
examine the values of the kernel variables listed in Table 9-6: 

1. lkd> ? poi(MmMaximumNonPagedPoolInBytes)   
2. Evaluate expression: 2142470144 = 7fb38000  
3. lkd> ? poi(MmSizeOfPagedPoolInBytes)   
4. Evaluate expression: 2143289344 = 7fc00000  

From this example, you can see that the maximum size of both nonpaged and paged pool is 2 GB, 
typical values on 32-bit systems with large amounts of RAM. On the system used for this example, 
current nonpaged pool usage was 40 MB and paged pool usage was 60 MB, so both pools were far 
from full. 

9.3.2 Monitoring Pool Usage 

The Memory performance counter object has separate counters for the size of nonpaged pool 
and paged pool (both virtual and physical). In addition, the Poolmon utility (in the WDK) allows 
you to monitor the detailed usage of nonpaged and paged pool. 

When you run Poolmon, you should see a display like the one shown in Figure 9-6. 

The highlighted lines you might see represent changes to the display. (You can disable the 
highlighting feature by typing a slash (/) while running Poolmon. Type / again to reenable 
highlighting.) Type ? while Poolmon is running to bring up its help screen. You can configure 
which pools you want to monitor (paged, nonpaged, or both) and the sort order. Also, the 
command-line options are shown, which allow you to monitor specific tags (or every tag but one 
tag). For example, the command poolmon –iCM will monitor only CM tags (allocations from the 
configuration manager, which manages the registry). The columns have the meanings shown in 
Table 9-6. 
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In this example, CM25-tagged allocations are taking up the most space in paged pool, and 
Cont-tagged allocations (contiguous physical memory allocations) are taking up the most space in 
nonpaged pool. 

For a description of the meaning of the pool tags used by Windows, see the file 
\ProgramFiles\Debugging Tools for Windows\Triage\Pooltag.txt. (This file is installed as part of 
the Debugging Tools for Windows, described in Chapter 1.) Because third-party device driver 
pool tags are not listed in this file, you can use the –c switch on the 32-bit version of Poolmon that 
comes with the WDK to generate a local pool tag file (Localtag.txt). This file will contain pool 
tags used by drivers found on your system, including third-party drivers. (Note that if a device 
driver binary has been deleted after it was loaded, its pool tags will not be recognized.) 

Alternatively, you can search the device drivers on your system for a pool tag by using the 
Strings.exe tool from Sysinternals. For example, the command 

1. strings %SYSTEMROOT%\system32\drivers\*.sys | findstr /i "abcd"  

will display drivers that contain the string “abcd”. Note that device drivers do not necessarily have 
to be located in %SystemRoot%\System32\Drivers—they can be in any folder. To list the full path 
of all loaded drivers, open the Run dialog box from the Start menu, and then type Msinfo32. Click 
Software Environment, and then click System Drivers. As already noted, if a device driver has 
been loaded and then deleted from the system, it will not be listed here.  

An alternative to view pool usage by device driver is to enable the pool tracking feature of Driver 
Verifier, explained later in this chapter. While this makes the mapping from pool tag to device 
driver unnecessary, it does require a reboot (to enable Driver Verifier on the desired drivers). 
After rebooting with pool tracking enabled, you can either run the graphical Driver Verifier 
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Manager (%SystemRoot%\System32\Verifier.exe) or use the Verifier /Log command to send the 
pool usage information to a file. 

Finally, if you are looking at a crash dump, you can view pool usage with the kernel 
debugger !poolused command. The command !poolused 2 shows nonpaged pool usage sorted by 
pool tag using the most amount of pool. The command !poolused 4 lists paged pool usage, again 
sorted by pool tag using the most amount of pool. The following example shows the partial output 
from these two commands: 

  

EXPERIMENT: Troubleshooting a Pool leak 

In this experiment, you will fix a real paged pool leak on your system so that you can put to use 
the techniques described in the previous section to track down the leak. The leak will be generated 
by the NotMyFault tool from Sysinternals. When you run NotMyFault.exe, it loads the device 
driver Myfault.sys and presents the following dialog box: 

  

1. Click the Leak Paged button. This causes NotMyFault to begin sending requests to the Myfault 
device driver to allocate paged pool. (Do not click the Do Bug button or you will experience a 
system crash; this button is used in Chapter 14 to demonstrate various types of crashes.) 
NotMyFault will continue sending requests until you click the Stop Paged button. Note that paged 
pool is not normally released even when you close a program that has caused it to occur (by 
interacting with a buggy device driver); the pool is permanently leaked until you reboot the 
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system. However, to make testing easier, the Myfault device driver detects that the process was 
closed and frees its allocations. 

2. While the pool is leaking, first open Task Manager and click on the Performance tab. You 
should notice Kernel Memory (MB): Paged climbing. You can also check this with Process 
Explorer’s System Information display. (Click on View and then System Information.) 

3. To determine the pool tag that is leaking, run Poolmon and press the B key to sort by the 
number of bytes. Press P twice so that Poolmon is showing only paged pool. You should notice 
the pool tag “Leak” climbing to the top of the list. (Poolmon shows changes to pool allocations by 
highlighting the lines that change.) 

4. Now press the Stop Paged button so that you don’t exhaust paged pool on your system. 

5. Using the technique described in the previous section, run Strings (from Sysinternals) to look 
for driver binaries that contain the pool tag “Leak”: Strings %SystemRoot%\system32 
\drivers\*.sys | findstr Leak This should display a match on the file Myfault.sys, thus confirming it 
as the driver using the “Leak” pool tag. 

9.3.3 Look-Aside Lists 

Windows also provides a fast memory allocation mechanism called lookaside lists. The basic 
difference between pools and look-aside lists is that while general pool allocations can vary in size, 
a look-aside list contains only fixed-sized blocks. Although the general pools are more flexible in 
terms of what they can supply, look-aside lists are faster because they don’t use any spinlocks. 

Executive components and device drivers can create look-aside lists that match the size of 
frequently allocated data structures by using the ExInitializeNPagedLookasideList and 
ExInitializePagedLookasideList functions (documented in the WDK). To minimize the overhead 
of multiprocessor synchronization, several executive subsystems (such as the I/O manager, cache 
manager, and object manager) create separate look-aside lists for each processor for their 
frequently accessed data structures. The executive also creates a general per-processor paged and 
nonpaged look-aside list for small allocations (256 bytes or less).  

If a look-aside list is empty (as it is when it’s first created), the system must allocate from paged or 
nonpaged pool. But if it contains a freed block, the allocation can be satisfied very quickly. (The 
list grows as blocks are returned to it.) The pool allocation routines automatically tune the number 
of freed buffers that look-aside lists store according to how often a device driver or executive 
subsystem allocates from the list—the more frequent the allocations, the more blocks are stored on 
a list. Look-aside lists are automatically reduced in size if they aren’t being allocated from. (This 
check happens once per second when the balance set manager system thread wakes up and calls 
the function ExAdjustLookasideDepth.) 

EXPERIMENT: Viewing the System look-aside lists 
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You can display the contents and sizes of the various system look-aside lists with the kernel 
debugger !lookaside command. The following excerpt is from the output of this command: 

  

9.4 Heap Manager 

Most applications allocate smaller blocks than the 64-KB minimum allocation granularity possible 
using page granularity functions such as VirtualAlloc and VirtualAllocExNuma. Allocating such a 
large area for relatively small allocations is not optimal from a memory usage and performance 
standpoint. To address this need, Windows provides a component called the heap manager, which 
manages allocations inside larger memory areas reserved using the page granularity memory 
allocation functions. The allocation granularity in the heap manager is relatively small: 8 bytes on 
32-bit systems, and 16 bytes on 64-bit systems. The heap manager has been designed to optimize 
memory usage and performance in the case of these smaller allocations.  

The heap manager exists in two places: Ntdll.dll and Ntoskrnl.exe. The subsystem APIs (such as 
the Windows heap APIs) call the functions in Ntdll, and various executive components and device 
drivers call the functions in Ntoskrnl. Its native interfaces (prefixed with Rtl) are available only for 
use in internal Windows components or kernel-mode device drivers. The documented Windows 
API interfaces to the heap (prefixed with Heap) are forwarders to the native functions in Ntdll.dll. 
In addition, legacy APIs (prefixed with either Local or Global) are provided to support older 
Windows applications, which also internally call the heap manager, using some of its specialized 
interfaces to support legacy behavior. The C runtime (CRT) also uses the heap manager when 
using functions such as malloc and free. The most common Windows heap functions are: 
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■ HeapCreate or HeapDestroy Creates or deletes, respectively, a heap. The initial reserved and 
committed size can be specified at creation. 

■ HeapAlloc Allocates a heap block. 

■ HeapFree Frees a block previously allocated with HeapAlloc. 

■ HeapReAlloc Changes the size of an existing allocation (grows or shrinks an existing block). 

■ HeapLock or HeapUnlock Controls mutual exclusion to the heap operations. 

■ HeapWalk Enumerates the entries and regions in a heap. 

9.4.1 Types of Heaps 

Each process has at least one heap: the default process heap. The default heap is created at process 
startup and is never deleted during the process’s lifetime. It defaults to 1 MB in size, but it can be 
made bigger by specifying a starting size in the image file by using the /HEAP linker flag. This 
size is just the initial reserve, however—it will expand automatically as needed. (You can also 
specify the initial committed size in the image file.)  

The default heap can be explicitly used by a program or implicitly used by some Windows internal 
functions. An application can query the default process heap by making a call to the Windows 
function GetProcessHeap. Processes can also create additional private heaps with the HeapCreate 
function. When a process no longer needs a private heap, it can recover the virtual address space 
by calling HeapDestroy. An array with all heaps is maintained in each process, and a thread can 
query them with the Windows function GetProcessHeaps.  

A heap can manage allocations either in large memory regions reserved from the memory 
manager via VirtualAlloc or from memory mapped file objects mapped in the process address 
space. The latter approach is rarely used in practice, but it’s suitable for scenarios where the 
content of the blocks needs to be shared between two processes or between a kernel-mode and a 
user-mode component. The Win32 GUI subsystem driver (Win32k.sys) uses such a heap for 
sharing GDI and User objects with user mode. If a heap is built on top of a memory mapped file 
region, certain constraints apply with respect to the component that can call heap functions. First, 
the internal heap structures use pointers, and therefore do not allow relocation to different 
addresses. Second, the synchronization across multiple processes or between a kernel component 
and a user process is not supported by the heap functions. Also, in the case of a shared heap 
between user mode and kernel mode, the user-mode mapping should be read-only to prevent 
user-mode code from corrupting the heap’s internal structures, which would result in a system 
crash. The kernel-mode driver is also responsible for not putting any sensitive data in a shared 
heap to avoid leaking it to user mode. 

9.4.2 Heap Manager Structure 



 671

As shown in Figure 9-7, the heap manager is structured in two layers: an optional front-end layer 
and the core heap. The core heap handles the basic functionality and is mostly common across the 
user-mode and kernel-mode heap implementations. The core functionality includes the 
management of blocks inside segments, the management of the segments, policies for extending 
the heap, committing and decommitting memory, and management of the large blocks. 

For user-mode heaps only, an optional front-end heap layer can exist on top of the existing core 
functionality. The only front-end supported on Windows is the Low Fragmentation Heap (LFH). 
Only one front-end layer can be used for one heap at one time. 

 

9.4.3 Heap Synchronization 

The heap manager supports concurrent access from multiple threads by default. However, if a 
process is single threaded or uses an external mechanism for synchronization, it can tell the heap 
manager to avoid the overhead of synchronization by specifying HEAP_NO_SERIALIZE either 
at heap creation or on a per-allocation basis.  

A process can also lock the entire heap and prevent other threads from performing heap operations 
for operations that would require consistent states across multiple heap calls. For instance, 
enumerating the heap blocks in a heap with the Windows function HeapWalk requires locking the 
heap if multiple threads can perform heap operations simultaneously. If heap synchronization is 
enabled, there is one lock per heap that protects all internal heap structures. In heavily 
multithreaded applications (especially when running on multiprocessor systems), the heap lock 
might become a significant contention point. In that case, performance might be improved by 
enabling the front-end heap, described in an upcoming section. 
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9.4.4 The Low Fragmentation Heap 

Many applications running in Windows have relatively small heap memory usage (usually less 
than 1 MB). For this class of applications, the heap manager’s best-fit policy helps keep a low 
memory footprint for each process. However, this strategy does not scale for large processes and 
multiprocessor machines. In these cases, memory available for heap usage might be reduced as a 
result of heap fragmentation. Performance can suffer in scenarios where only certain sizes are 
often used concurrently from different threads scheduled to run on different processors. This 
happens because several processors need to modify the same memory location (for example, the 
head of the look-aside list for that particular size) at the same time, thus causing significant 
contention for the corresponding cache line. 

The LFH avoids fragmentation by managing allocated blocks in predetermined different 
block-size ranges called buckets. When a process allocates memory from the heap, the LFH 
chooses the bucket that maps to the smallest block large enough to hold the required size. (The 
smallest block is 8 bytes.) The first bucket is used for allocations between 1 and 8 bytes, the 
second for allocations between 9 and 16 bytes, and so on, until the thirty-second bucket, which is 
used for allocations between 249 and 256 bytes, followed by the thirty-third bucket, which is used 
for allocations between 257 and 272 bytes, and so on. Finally, the one hundred twenty-eighth 
bucket, which is the last, is used for allocations between 15,873 and 16,384 bytes. Table 9-7 
summarizes the different buckets, their granularity, and the range of sizes that they map to. 

  

The LFH addresses these issues by using the core heap manager and look-aside lists. The 
Windows heap manager implements an automatic tuning algorithm that can enable the LFH by 
default under certain conditions, such as lock contention or the presence of popular size 
allocations that have shown better performance with the LFH enabled. For large heaps, a 
significant percentage of allocations is frequently grouped in a relatively small number of buckets 
of certain sizes. The allocation strategy used by LFH is to optimize the usage for these patterns by 
efficiently handling same-size blocks. 

To address scalability, the LFH expands the frequently accessed internal structures to a number of 
slots that is two times larger than the current number of processors on the machine. The 
assignment of threads to these slots is done by an LFH component called the affinity manager. 
Initially, the LFH starts using the first slot for heap allocations; however, if a contention is 
detected when accessing some internal data, the LFH switches the current thread to use a different 
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slot. Further contentions will spread threads on more slots. These slots are controlled for each size 
bucket to improve locality and minimize the overall memory consumption. 

Even if the LFH is enabled as a front-end heap, the less frequent allocation sizes may still continue 
to use the core heap functions to allocate memory, while the most popular allocation classes will 
be performed from the LFH. The LFH can also be disabled by using the HeapSetInformation API 
with the HeapCompatibilityInformation class.  

9.4.5 Heap Security Features 

As the heap manager has evolved, it has taken an increased role in early detection of heap 
usage errors and in mitigating effects of potential heap-based exploits. These measures exist to 
lessen the security effect of potential vulnerabilities in applications. The metadata used by the 
heap for internal management is packed with a high degree of randomization to make it difficult 
for an attempted exploit to patch the internal structures to prevent crashes or conceal the attack 
attempt. These blocks are also subject to an integrity check mechanism on the header to detect 
simple corruptions such as buffer overruns. Finally, the heap also uses a small degree of 
randomization of the base address (or handle). By using the HeapSetInformation API with the 
HeapEnableTerminationOnCorruption class, processes can opt in for an automatic termination in 
case of detected inconsistencies to avoid executing unknown code. 

As an effect of block metadata randomization, using the debugger to dump a block header is 
not that useful anymore. For example, the size of the block and whether it is busy or not are not 
easy to spot from a regular dump. The same applies to LFH blocks that have a different type of 
metadata stored in the header, partially randomized as well. To dump these details, the !heap –i 
command in the debugger does all the work to retrieve the metadata fields from a block, flagging 
checksum or free list inconsistencies as well if they exist. The command works for both the LFH 
and regular heap blocks. The total size of the blocks, the user requested size, the segment owning 
the block, as well as the header partial checksum are available in the output, as shown in the 
following sample. Because the randomization algorithm uses the heap granularity, the !heap –i 
command should be used only in the proper context of the heap containing the block. In the 
example, the heap handle is 0x001a0000. If the current heap context was different, the decoding of 
the header would be incorrect. To set the proper context, the same !heap –i command with the 
heap handle as an argument needs to be executed first. 
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9.4.6 Heap Debugging Features 

The heap manager leverages the 8 bytes used to store internal metadata as a consistency 
checkpoint, which makes potential heap usage errors more obvious, and also includes several 
features to help detect bugs by using the following heap functions:  

■ Enable tail checking The end of each block carries a signature that is checked when the block is 
released. If a buffer overrun destroyed the signature entirely or partially, the heap will report this 
error. 

■ Enable free checking A free block is filled with a pattern that is checked at various points when 
the heap manager needs to access the block (such as at removal from the free list to allocate the 
block). If the process continued to write to the block after freeing it, the heap manager will detect 
changes in the pattern and the error will be reported. 

■ Parameter checking This function consists of extensive checking of the parameters passed to the 
heap functions. 

■ Heap validation The entire heap is validated at each heap call. 

■ Heap tagging and stack traces support This function supports specifying tags for allocation 
and/or captures user-mode stack traces for the heap calls to help narrow the possible causes of a 
heap error. 

The first three options are enabled by default if the loader detects that a process is started under 
the control of a debugger. (A debugger can override this behavior and turn off these features.) The 
heap debugging features can be specified for an executable image by setting various debugging 
flags in the image header using the Gflags tool. (See the section “Windows Global Flags” in 
Chapter 3.) Or, heap debugging options can be enabled using the !heap command in the standard 
Windows debuggers. (See the debugger help for more information.) 

Enabling heap debugging options affects all heaps in the process. Also, if any of the heap 
debugging options are enabled, the LFH will be disabled automatically and the core heap will be 
used (with the required debugging options enabled). The LFH is also not used for heaps that are 
not expandable (because of the extra overhead added to the existing heap structures) or for heaps 
that do not allow serialization. 

9.4.7 Pageheap 

Because the tail and free checking options described in the preceding sections might be 
discovering corruptions that occurred well before the problem was detected, an additional heap 
debugging capability, called pageheap, is provided that directs all or part of the heap calls to a 
different heap manager. Pageheap is enabled using the Gflags tool (which is part of the Debugging 
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Tools for Windows). When enabled, the heap manager places allocations at the end of pages so 
that if a buffer overrun occurs, it will cause an access violation, making it easier to detect the 
offending code. Optionally, pageheap allows placing the blocks at the beginning of the pages to 
detect buffer underrun problems. (This is a rare occurrence.) The pageheap also can protect freed 
pages against any access to detect references to heap blocks after they have been freed.  

Note that using the pageheap can result in running out of address space because of the significant 
overhead added for small allocations. Also, performance can suffer as a result of the increase of 
references to demand zero pages, loss of locality, and additional overhead caused by frequent calls 
to validate heap structures. A process can reduce the impact by specifying that the pageheap be 
used only for blocks of certain sizes, address ranges, and/or originating DLLs. 

For more information on pageheap, see the Debugging Tools for Windows Help file. 

9.5 Virtual address Space layouts 

This section describes the components in the user and system address space, followed by the 
specific layouts on 32-bit and 64-bit systems. This information helps you to understand the limits 
on process and system virtual memory on both platforms.  

Three main types of data are mapped into the virtual address space in Windows: per-process 
private code and data, sessionwide code and data, and systemwide code and data.  

As explained in Chapter 1, each process has a private address space that cannot be accessed by 
other processes (unless they have permission to open the process for read or write access). Threads 
within the process can never access virtual addresses outside this private address space, unless 
they map to shared memory sections and/or use the cross-process memory functions that allow 
access to another process’s address space. The information that describes the process virtual 
address space, called page tables, is described in the section on address translation. Page tables are 
marked as kernel-mode-only accessible pages so that user threads in a process cannot modify their 
own address space layout. 

Session space contains information global to each session. (For a description of sessions, see 
Chapter 2.) A session consists of the processes and other system objects (such as the window 
station, desktops, and windows) that represent a single user’s logon session. Each session has a 
session-specific paged pool area used by the kernel-mode portion of the Windows subsystem 
(Win32k.sys) to allocate session-private GUI data structures. In addition, each session has its own 
copy of the Windows subsystem process (Csrss.exe) and logon process (Winlogon.exe). The 
session manager process (Smss.exe) is responsible for creating new sessions, which includes 
loading a session-private copy of Win32k.sys, creating the sessionprivate object manager 
namespace, and creating the session-specific instances of the Csrss and Winlogon processes. To 
virtualize sessions, all sessionwide data structures are mapped into a region of system space called 
session space. When a process is created, this range of addresses is mapped to the pages associated 
with the session that the process belongs to. 
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Finally, system space contains global operating system code and data structures visible by 
kernel-mode code regardless of which process is currently executing. System space consists of the 
following components: 

■ System code Contains the operating system image, HAL, and device drivers used to boot the 
system. 

■ System mapped views Used to map Win32k.sys, the loadable kernel-mode part of the Windows 
subsystem, as well as kernel-mode graphics drivers it uses. (See Chapter 2 for more information 
on Win32k.sys.) 

■ Hyperspace A special region used to map the process working set list, invalidating page table 
entries in other page tables (such as when a page is removed from the standby list), and process 
creation to set up a new process’s address space. 

■ System working set list The working set list data structures that describe the system working set. 

■ System cache Virtual address space used to map files open in the system cache. (See Chapter 10 
for detailed information about the cache manager.) 

■ Paged pool Pageable system memory heap.  

■ System page table entries (PTEs) Pool of system PTEs used to map system pages such as I/O 
space, kernel stacks, and memory descriptor lists. You can see how many system PTEs are 
available by examining the value of the Memory: Free System Page Table Entries counter in the 
Reliability and Performance Monitor. 

■ Nonpaged pool Nonpageable system memory heap. 

■ Crash dump information Reserved to record information about the state of a system crash. 

■ HAL usage System memory reserved for HAL-specific structures. 

Note Internally, the system working set is called the system cache working set. This term is 
misleading, however, because the system working set includes not only the system cache but also 
the paged pool, pageable system code and data, and pageable driver code and data. 

Now that we’ve described the basic components of the virtual address space in Windows, let’s 
examine the specific layout on the x86, IA64, and x64 platforms. 

9.5.1 x86 Address Space Layouts 

By default, each user process on 32-bit versions of Windows has a 2-GB private address space; 
the operating system takes the remaining 2 GB. However, the system can be configured with the 
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increaseuserva BCD boot option to permit user address spaces up to 3 GB. Two possible address 
space layouts are shown in Figure 9-8.  

The ability for a 32-bit process to grow beyond 2 GB was added to accommodate the need for 
32-bit applications to keep more data in memory than could be done with a 2-GB address space. 
Of course, 64-bit systems provide a much larger address space.  

  

For a process to grow beyond 2 GB of address space, the image file must have the 
IMAGE_FILE_LARGE_ADDRESS_AWARE flag set in the image header. Otherwise, Windows 
reserves the additional address space for that process so that the application won’t see virtual 
addresses greater than 0x7FFFFFFF. Access to the additional virtual memory is opt-in because 
some applications have assumed that they’d be given at most 2 GB of the address space. Since the 
high bit of a pointer referencing an address below 2 GB is always zero, these applications would 
use the high bit in their pointers as a flag for their own data, clearing it, of course, before 
referencing the data. If they ran with a 3-GB address space, they would inadvertently truncate 
pointers that have values greater than 2 GB, causing program errors, including possible data 
corruption. You set this flag by specifying the linker flag /LARGEADDRESSAWARE when 
building the executable. This flag has no effect when running the application on a system with a 
2-GB user address space.  
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Several system images are marked as large address space aware so that they can take advantage of 
systems running with large process address spaces. These include: 

■ Lsass.exe The Local Security Authority Subsystem 

■ Inetinfo.exe Internet Information Server 

■ Chkdsk.exe The Check Disk utility 

■ Smss.exe The Session Manager 

■ Dllhst3g.exe A special version of Dllhost.exe (for COM+ applications) 

■ Dispdiag.exe The display diagnostic dump utility 

■ Esentutl.exe The Active Directory Database Utility tool 

EXPERIMENT: Checking If an application Is large address aware 

You can use the Dumpbin utility from the Windows SDK to check other executables to see if they 
support large address spaces. Use the /HEADERS flag to display the results. Here’s a sample 
output of Dumpbin on the Session Manager: 

1. c:\>dumpbin /headers c:\Windows\system32\smss.exe | more   
2. Microsoft (R) COFF/PE Dumper Version 9.00.21022.08  
3. Copyright (C) Microsoft Corporation. All rights reserved.   
4. Dump of file c:\Windows\system32\smss.exe   
5. PE signature found   
6. File Type: EXECUTABLE IMAGE   
7. FILE HEADER VALUES   
8. 14C machine (x86)   
9. 4 number of sections   
10. 47918AFD time date stamp Sat Jan 19 00:30:37 2008  
11. 0 file pointer to symbol table   
12. 0 number of symbols   
13. E0 size of optional header   
14. 122 characteristics   
15. Executable   
16. Application can handle large (>2GB) addresses   
17. 32 bit word machine   

Finally, because memory allocations using VirtualAlloc, VirtualAllocEx, and 
VirtualAllocExNuma start with low virtual addresses and grow higher by default, unless a process 
allocates a lot of virtual memory or it has a very fragmented virtual address space, it will never get 
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back very high virtual addresses. Therefore, for testing purposes, you can force memory 
allocations to start from high addresses by using the MEM_TOP_DOWN flag or by adding a 
DWORD registry value, HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory 
Management\AllocationPreference, and setting it to 0x100000.  

Figure 9-9 shows two screen shots of the TestLimit utility (shown in previous experiments) 
leaking memory on a 32-bit Windows machine booted with and without the increaseuserva option 
set to 3 GB. Note that in the second screen shot, TestLimit was able to leak almost 3 GB, as 
expected. 

 

9.5.2 x86 System Address Space Layout 

Although 32-bit versions of Windows implement a dynamic system address space layout by using 
a virtual address allocator (we’ll describe this functionality later in this section), there are still 
specifically reserved areas, as shown in Figure 9-8. Figure 9-10 shows the different system 
structures in memory, but their size is not proportional because it is not fixed. 

9.5.3 x86 Session Space 

For systems with multiple sessions, the code and data unique to each session is mapped into 
system address space but shared by the processes in that session. Figure 9-11 shows the general 
layout of session space. 
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The sizes of the components of session space, just like the rest of kernel system address space, is 
dynamically configured and resized by the memory manager on demand. 

EXPERIMENT: Viewing Sessions 

You can display which processes are members of which sessions by examining the session ID. 
This can be viewed with Task Manager, Process Explorer, or the kernel debugger. Using the 
kernel debugger, you can list the active sessions with the !session command as follows: 

1. lkd> !session   
2. Sessions on machine: 2  
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3. Valid Sessions: 0 1  
4. Current Session 1  

Then you can set the active session using the !session –s command and display the address of the 
session data structures and the processes in that session with the !sprocess command: 

1. lkd> !session -s 1  
2. Sessions on machine: 2  
3. Implicit process is now 8631dd90  
4. Using session 1  
5. lkd> !sprocess   
6. Dumping Session 1  
7. _MM_SESSION_SPACE 975c6000  
8. _MMSESSION 975c6d00  
9. PROCESS 8631dd90 SessionId: 1 Cid: 0244 Peb: 7ffdf000 ParentCid: 023c   
10. DirBase: ce2aa0a0 ObjectTable: 97a0c208 HandleCount: 563.   
11. Image: csrss.exe   
12. PROCESS 8633d4e0 SessionId: 1 Cid: 0288 Peb: 7ffd5000 ParentCid: 023c   
13. DirBase: ce2aa040 ObjectTable: 97a5f380 HandleCount: 131.   
14. Image: winlogon.exe   
15. To view the details of the session, dump the MM_SESSION_SPACE structure using  

    the dt   
16. command, as follows:   
17. lkd> dt nt!_MM_SESSION_SPACE 975c6000  
18. +0x000 ReferenceCount : 25  
19. +0x004 u :    
20. +0x008 SessionId : 1  
21. +0x00c ProcessReferenceToSession : 30  
22. +0x010 ProcessList : _LIST_ENTRY [ 0x8631de5c - 0x86dea0ec ]   
23. +0x018 LastProcessSwappedOutTime : _LARGE_INTEGER 0x0  
24. +0x020 SessionPageDirectoryIndex : 0xc1b09  
25. +0x024 NonPagablePages : 0x42  
26. +0x028 CommittedPages : 0x13fa   
27. +0x02c PagedPoolStart : 0x80000000  
28. +0x030 PagedPoolEnd : 0xffbfffff   
29. +0x034 SessionObject : 0x84adfb80  
30. +0x038 SessionObjectHandle : 0x8000049c   
31. +0x03c ResidentProcessCount : 17  
32. +0x040 ImageLoadingCount : 0  
33. +0x044 SessionPoolAllocationFailures : [4] 0  
34. +0x054 ImageList : _LIST_ENTRY [ 0x863192e8 - 0x88a763c0 ]   
35. +0x05c LocaleId : 0x409  
36. +0x060 AttachCount : 0  
37. +0x064 AttachGate : _KGATE   
38. +0x074 WsListEntry : _LIST_ENTRY [ 0x81f49008 - 0x8ca69074 ]   
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39. +0x080 Lookaside : [25] _GENERAL_LOOKASIDE   
40. +0xd00 Session : _MMSESSION   
41. +0xd38 PagedPoolInfo : _MM_PAGED_POOL_INFO   
42. +0xd70 Vm : _MMSUPPORT   
43. +0xdb8 Wsle : 0x80e30058 _MMWSLE   
44. +0xdbc DriverUnload : 0x81720c71 void +ffffffff81720c71  
45. +0xdc0 PagedPool : _POOL_DESCRIPTOR   
46. +0x1df4 PageTables : 0x8631a000 _MMPTE   
47. +0x1df8 SpecialPool : _MI_SPECIAL_POOL   
48. +0x1e20 SessionPteLock : _KGUARDED_MUTEX   
49. +0x1e40 PoolBigEntriesInUse : 639  
50. +0x1e44 PagedPoolPdeCount : 0x10  
51. +0x1e48 SpecialPoolPdeCount : 0  
52. +0x1e4c DynamicSessionPdeCount : 0  
53. +0x1e50 SystemPteInfo : _MI_SYSTEM_PTE_TYPE   
54. +0x1e7c PoolTrackTableExpansion : (null)   
55. +0x1e80 PoolTrackTableExpansionSize : 0  
56. +0x1e84 PoolTrackBigPages : 0x8a037000  
57. +0x1e88 PoolTrackBigPagesSize : 0x800  
58. +0x1e8c SessionPoolPdes : _RTL_BITMAP   

EXPERIMENT: Viewing Session Space utilization 

You can view session space memory utilization with the !vm 4 command in the kernel debugger. 
For example, the following output was taken from a 32-bit Windows Vista system with two active 
sessions: 

1. lkd> !vm 4  
2. .   
3. .   
4. Terminal Server Memory Usage By Session:   
5. Session ID 0 @ 8ca69000:  
6. Paged Pool Usage: 5316K   
7. Commit Usage: 7504K   
8. Session ID 1 @ 975c6000:  
9. Paged Pool Usage: 19152K   
10. Commit Usage: 21524K  

9.5.4 System Page Table Entries 

System page table entries (PTEs) are used to dynamically map system pages such as I/O space, 
kernel stacks, and the mapping for memory descriptor lists. System PTEs aren’t an infinite 
resource. On 32-bit Windows, the number of available system PTEs is such that the system can 
theoretically describe 2 GB of contiguous system virtual address space. On 64-bit Windows, 
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system PTEs can describe up to 128 GB of contiguous virtual address space. 
EXPERIMENT: Viewing System PTE Information 
You can see how many system PTEs are available by examining the value of the Memory: Free 
System Page Table Entries counter in the Reliability and Performance Monitor or by using 
the !sysptes or !vm command in the debugger. You can also dump the _MI_SYSTEM_PTE 
_TYPE structure associated with the MiSystemPteInfo global variable. This will also show you 
how many PTE allocation failures occurred on the system—a high count indicates a problem and 
possibly a system PTE leak. 

1. lkd> !sysptes   
2. System PTE Information   
3. Total System Ptes 46576  
4. starting PTE: c0400000  
5. free blocks: 461 total free: 4196 largest free block: 129  
6. lkd> ? nt!MiSystemPteInfo   
7. Evaluate expression: -2114679136 = 81f48ea0  
8. lkd> dt _MI_SYSTEM_PTE_TYPE 81f48ea0  
9. nt!_MI_SYSTEM_PTE_TYPE   
10. +0x000 Bitmap : _RTL_BITMAP   
11. +0x008 Hint : 0x31a62  
12. +0x00c BasePte : 0xc0400000 _MMPTE   
13. +0x010 FailureCount : 0x81f48ec4 -> 3  
14. +0x014 Vm : 0x81f4e7e0 _MMSUPPORT   
15. +0x018 TotalSystemPtes : 12784  
16. +0x01c TotalFreeSystemPtes : 4234  
17. +0x020 CachedPteCount : 497  
18. +0x024 PteFailures : 3  
19. +0x028 GlobalMutex : (null)   
20. If you are seeing lots of system PTE failures, you can enable system PTE tracking by   
21. creating a new DWORD value in the HKLM\SYSTEM\CurrentControlSet\Control\Session   
22. Manager\Memory Management key called TrackPtes and setting its value to 1. You can   
23. then use !syspte 4 to show a list of allocators, as shown here:   
24. lkd>!sysptes 4  
25. 0x1ca2 System PTEs allocated to mapping locked pages   
26. VA MDL PageCount Caller/CallersCaller   
27. ecbfdee8 f0ed0958 2 netbt!DispatchIoctls+0x56a/netbt!NbtDispatchDevCtrl+0xcd   
28. f0a8d050 f0ed0510 1 netbt!DispatchIoctls+0x64e/netbt!NbtDispatchDevCtrl+0xcd   
29. ecef5000 1 20 nt!MiFindContiguousMemory+0x63  
30. ed447000 0 2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95  
31. ee1ce000 0 2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95  
32. ed9c4000 1 ca nt!MiFindContiguousMemory+0x63  
33. eda8e000 1 ca nt!MiFindContiguousMemory+0x63  
34. efb23d68 f8067888 2 mrxsmb!BowserMapUsersBuffer+0x28  
35. efac5af4 f8b15b98 2 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566  
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36. f0ac688c f848ff88 1 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566  
37. efac7b7c f82fc2a8 2 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566  
38. ee4d1000 1 38 nt!MiFindContiguousMemory+0x63  
39. efa4f000 0 2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95  
40. efa53000 0 2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95  
41. eea89000 0 1 TDI!DllInitialize+0x4f/nt!MiResolveImageReferences+0x4bc   
42. ee798000 1 20 VIDEOPRT!pVideoPortGetDeviceBase+0x1f1  
43. f0676000 1 10 hal!HalpGrowMapBuffers+0x134/hal!HalpAllocateAdapterEx+0x1ff   
44. f0b75000 1 1 cpqasm2+0x2af67/cpqasm2+0x7847  
45. f0afa000 1 1 cpqasm2+0x2af67/cpqasm2+0x6d82  

9.5.5 64-Bit Address Space Layouts 

The theoretical 64-bit virtual address space is 16 exabytes (18,446,744,073,709,551,616 bytes, or 
approximately 17.2 billion GB). Unlike on x86 systems, where the default address space is 
divided in two parts (half for a process and half for the system), the 64-bit address is divided into a 
number of different size regions whose components match conceptually the portions of user, 
system, and session space. The various sizes of these regions, listed in Table 9-8, represent current 
implementation limits that could easily be extended in future releases. Clearly, 64 bits provides a 
tremendous leap in terms of address space sizes. 

  

Also, on 64-bit Windows, another useful feature of having an image that is large address space 
aware is that while running on 64-bit Windows (under Wow64), such an image will actually 
receive all 4 GB of user address space available—after all, if the image can support 3-GB pointers, 
4-GB pointers should not be any different, because unlike the switch from 2 GB to 3 GB, there are 
no additional bits involved. Figure 9-12 shows TestLimit, running as a 32-bit application, 
reserving address space on a 64-bit Windows machine, followed by the 64-bit version of 
TestLimit leaking memory on the same machine. 
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The detailed IA64 and x64 address space layouts vary slightly. The IA64 address space layout is 
shown in Figure 9-13, and the x64 address space layout is shown in Figure 9-14. 
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9.5.6 64-Bit Virtual Addressing Limitations 

As discussed previously, 64 bits of virtual address space allow for a possible maximum of 16 
exabytes (EB) of virtual memory, a notable improvement over the 4 GB offered by 32-bit 
addressing. With such a copious amount of memory, it is obvious that today’s computers, as well 
as tomorrow’s foreseeable machines (at least in the consumer market), are not even close to 
requiring support for that much memory.  

For these reasons, as well as to simplify current chip architecture, the x64 systems that AMD and 
Intel support on today’s x64 processors support only 48 bits of virtual address space, requiring the 
other 16 bits to be set to the same value as the “valid,” or “implemented,” bits, resulting in 
canonical addresses. The bottom half of the address space starts at 0x0000000000000000, with 
only 12 of those zeroes being part of an actual address (resulting in an end at 
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0x00007FFFFFFFFFFF). The top half of the address space starts at 0xFFFF800000000000, 
ending at 0xFFFFFFFFFFFFFFFF. As newer processors support more of the addressing bits, the 
lower half of memory will expand upward, toward 0x7FFFFFFFFFFFFFFF, while the upper half 
of memory will expand downward, toward 0x8000000000000000 (a similar split to today’s 
memory space but with 32 more bits).  

In Windows, a number of mechanisms have made, and continue to make, assumptions about 
usable bits in the address space: pushlocks, fast references, Patchguard DPC contexts, and singly 
linked lists are common examples of data structures that use bits within a pointer for 
nonaddressing purposes. Singly linked lists, combined with the lack of a CPU instruction in the 
original x64 CPUs required to “port” the data structure to 64-bit Windows, have caused an 
interesting memory addressing limit on 64-bit Windows. 

Here is the SLIST_HEADER, the data structure Windows uses to represent an entry inside a list: 

1. typedef union _SLIST_HEADER {   
2. ULONGLONG Alignment;   
3. struct {   
4. SLIST_ENTRY Next;   
5. USHORT Depth;   
6. USHORT Sequence;   
7. } DUMMYSTRUCTNAME;   
8. } SLIST_HEADER, *PSLIST_HEADER;  

Note that this is an 8-byte structure, guaranteed to be aligned as such, composed of three elements: 
the pointer to the next entry (32 bits, or 4 bytes) and depth and sequence numbers, each 16 bits (or 
2 bytes). To create lock-free push and pop operations, the implementation makes use of an 
instruction present on Pentium processors or higher—CMPXCHG8B (Compare and Exchange 8 
bytes), which allows the atomic modification of 8 bytes of data. By using this native CPU 
instruction, which also supports the LOCK prefix (guaranteeing atomicity on a multiprocessor 
system), the need for a spinlock to combine two 32-bit accesses is eliminated, and all operations 
on the list become lock free (increasing speed and scalability).  

On 64-bit computers, addresses are 64 bits, so the pointer to the next entry should logically be 64 
bits. If the depth and sequence numbers remain within the same parameters, the system must 
provide a way to modify at minimum 64+32 bits of data—or better yet, 128 bits, in order to 
increase the entropy of the depth and sequence numbers. However, the first x64 processors did not 
implement the essential CMPXCHG16B instruction to allow this. The implementation, therefore, 
was written to pack as much information as possible into only 64 bits, which was the most that 
could be modified atomically at once. The 64-bit SLIST_HEADER thus looks like this: 

1. struct { // 8-byte header   
2. ULONGLONG Depth:16;   
3. ULONGLONG Sequence:9;   
4. ULONGLONG NextEntry:39;   
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5. } Header8;  

The first change is the reduction of the space for the sequence number to 9 bits instead of 16 bits, 
reducing the maximum sequence number the list can achieve. This leaves only 39 bits for the 
pointer, still far from 64 bits. However, by forcing the structure to be 16-byte aligned when 
allocated, 4 more bits can be used because the bottom bits can now always be assumed to be 0. 
This gives 43 bits for addresses, but there is one more assumption that can be made. Because the 
implementation of linked lists is used either in kernel mode or user mode but cannot be used 
across address spaces, the top bit can be ignored, just as on 32-bit machines. The code will assume 
the address to be kernel mode if called in kernel mode and vice versa. This allows us to address up 
to 44 bits of memory in the NextEntry pointer and is the defining constraint of the addressing limit 
in Windows.  

Forty-four bits is a much better number than 32. It allows 16 TB of virtual memory to be 
described and thus splits Windows into two even chunks of 8 TB for user-mode and kernelmode 
memory. Nevertheless, this is still 16 times smaller than the CPU’s own limit (48 bits is 256 TB), 
and even farther still from the maximum that 64 bits can describe. So, with scalability in mind, 
some other bits do exist in the SLIST_HEADER that define the type of header being dealt with. 
This means that when the day comes when all x64 CPUs support 128-bit Compare and Exchange, 
Windows can easily take advantage of it (and to do so before then would mean distributing two 
different kernel images). Here’s a look at the full 8-byte header: 

1. struct { // 8-byte header   
2. ULONGLONG Depth:16;   
3. ULONGLONG Sequence:9;   
4. ULONGLONG NextEntry:39;   
5. ULONGLONG HeaderType:1; // 0: 8-byte; 1: 16-byte   
6. ULONGLONG Init:1; // 0: uninitialized; 1: initialized   
7. ULONGLONG Reserved:59;   
8. ULONGLONG Region:3;   
9. } Header8;  

Note how the HeaderType bit is overlaid with the Depth bits and allows the implementation to 
deal with 16-byte headers whenever support becomes available. For the sake of completeness, 
here is the definition of the 16-byte header:  

1. struct { // 16-byte header   
2. ULONGLONG Depth:16;   
3. ULONGLONG Sequence:48;   
4. ULONGLONG HeaderType:1; // 0: 8-byte; 1: 16-byte   
5. ULONGLONG Init:1; // 0: uninitialized; 1: initialized   
6. ULONGLONG Reserved:2;   
7. ULONGLONG NextEntry:60; // last 4 bits are always 0’s   
8. } Header16;  
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Notice how the NextEntry pointer has now become 60 bits, and because the structure is still 
16-byte aligned, with the 4 free bits, leads to the full 64 bits being addressable. 

9.5.7 Dynamic System Virtual Address Space Management 

Thirty-two-bit versions of Windows manage the system address space through an internal kernel 
virtual allocator mechanism that we’ll describe in this section. Currently, 64-bit versions of 
Windows have no need to use the allocator for virtual address space management (and thus bypass 
the cost), because each region is statically defined as shown in Table 9-8 earlier. 

When the system initializes, the MiInitializeDynamicVa function sets up the basic dynamic ranges 
(the ranges currently supported are described in Table 9-9) and sets the available virtual address to 
all available kernel space. It then initializes the address space ranges for boot loader images, 
process space (hyperspace), and the HAL through the MiIntializeSystemVaRange function, which 
is used to set hard-coded address ranges. Later, when nonpaged pool is initialized, this function is 
used again to reserve the virtual address ranges for it. Finally, whenever a driver loads, the address 
range is relabeled to a driver image range (instead of a boot loaded range). 

After this point, the rest of the system virtual address space can be dynamically requested and 
released through MiObtainSystemVa (and its analogous MiObtainSessionVa) and 
MiReturnSystemVa. Operations such as expanding the system cache, the system PTEs, nonpaged 
pool, paged pool, and/or special pool; mapping memory with large pages; creating the PFN 
database; and creating a new session all result in dynamic virtual address allocations for a specific 
range. 

  

Although the ability to dynamically reserve virtual address space on demand allows better 
management of virtual memory, it would be useless without the ability to free this memory. As 
such, when paged pool or the system cache can be shrunk, or when special pool and large page 
mappings are freed, the associated virtual address is freed. (Another case is when the boot registry 
is released.) This allows dynamic management of memory depending on each component’s use. 
Additionally, components can reclaim memory through MiReclaimSystemVa, which requests 
virtual addresses associated with the system cache to be flushed out (through the dereference 
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segment thread) if available virtual address space has dropped below 128 MB. (Reclaiming can 
also be satisfied if initial nonpaged pool has been freed.) 

EXPERIMENT: Determining the Virtual address Type for an address 

Each time the kernel virtual address space allocator obtains virtual memory ranges for use by a 
certain type of virtual address, it updates the MiSystemVaType array, which contains the virtual 
address type for the newly allocated range. 

By taking any given kernel address and calculating its PDE index from the beginning of system 
space, you can dump the appropriate byte field in this array to obtain the virtual address type. For 
example, the following commands will display the virtual address types for Win32k.sys, the 
process object for WinDbg, the handle table for WinDbg, the kernel, a file system cache segment, 
and hyperspace: 

1. lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((win32k -   
2. poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE)) ))])   
3. _MI_SYSTEM_VA_TYPE MiVaSessionGlobalSpace (11)   
4. lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((864753b0  
5. poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE)) ))])   
6. _MI_SYSTEM_VA_TYPE MiVaNonPagedPool (5)   
7. lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((8b2001d0  
8. poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE)) ))])   
9. _MI_SYSTEM_VA_TYPE MiVaPagedPool (6)   
10. lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((nt -   
11. poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE)) ))])   
12. _MI_SYSTEM_VA_TYPE MiVaBootLoaded (3)   
13. lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((0xb3c8000

0 -   
14. poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE)) ))])   
15. _MI_SYSTEM_VA_TYPE MiVaSystemCache (8)   
16. lkd> ?? nt!_MI_SYSTEM_VA_TYPE (((char*)@@(nt!MiSystemVaType))[@@((c0400000  
17. poi(nt!MmSystemRangeStart))/(1000*1000/@@(sizeof(nt!MMPTE)) ))])   
18. _MI_SYSTEM_VA_TYPE MiVaProcessSpace (2)   

In addition to better proportioning and better management of virtual addresses dedicated to 
different kernel memory consumers, the dynamic virtual address allocator also has advantages 
when it comes to memory footprint reduction. Instead of having to manually preallocate static 
page table entries and page tables, paging-related structures are allocated on demand. On both 
32-bit and 64-bit systems, this reduces boot-time memory usage because unused addresses won’t 
have their page tables allocated. It also means that on 64-bit systems, the large address space 
regions that are reserved don’t need to have their page tables mapped in memory, which allows 
them to have arbitrarily large limits, especially on systems that have little physical RAM to back 
the resulting paging structures. 
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EXPERIMENT: Querying System Virtual address usage 

You can look at the current usage and peak usage of each system virtual address type by using the 
kernel debugger. For each system virtual address type described in Table 9-9, the 
MiSystemVaTypeCount, MiSystemVaTypeCountFailures, and MiSystemVaTypeCountPeak 
arrays in the kernel contain the sizes, count failures, and peak sizes for each type. Here’s how you 
can dump the usage for the system, followed by the peak usage (you can use a similar technique 
for the failure counts):  

1. lkd> dd /c 1 MiSystemVaTypeCount l c   
2. 81f4f880 00000000  
3. 81f4f884 00000028  
4. 81f4f888 00000008  
5. 81f4f88c 0000000c   
6. 81f4f890 0000000b   
7. 81f4f894 0000001a   
8. 81f4f898 0000002f   
9. 81f4f89c 00000000  
10. 81f4f8a0 000001b6  
11. 81f4f8a4 00000030  
12. 81f4f8a8 00000002  
13. 81f4f8ac 00000006  
14. lkd> dd /c 1 MiSystemVaTypeCountPeak l c   
15. 81f4f840 00000000  
16. 81f4f844 00000038  
17. 81f4f848 00000000  
18. 81f4f84c 00000000  
19. 81f4f850 0000003d   
20. 81f4f854 0000001e   
21. 81f4f858 00000032  
22. 81f4f85c 00000000  
23. 81f4f860 00000238  
24. 81f4f864 00000031  
25. 81f4f868 00000000  
26. 81f4f86c 00000006  

Although theoretically, the different virtual address ranges assigned to components can grow 
arbitrarily in size as long as enough system virtual address space is available, the kernel allocator 
implements the ability to set limits on each virtual address type for the purposes of both reliability 
and stability. Although no limits are imposed by default, system administrators can use the 
registry to modify these limits for the virtual address types that are currently marked as limitable 
(see Table 9-9). 

If the current request during the MiObtainSystemVa call exceeds the available limit, a failure is 
marked (see the previous experiment) and a reclaim operation is requested regardless of available 
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memory. This should help alleviate memory load and might allow the virtual address allocation to 
work during the next attempt. (Recall, however, that reclaiming affects only system cache and 
nonpaged pool). 

EXPERIMENT: Setting System Virtual address limits 

The MiSystemVaTypeCountLimit array contains limitations for system virtual address usage that 
can be set for each type. Currently, the memory manager allows only certain virtual address types 
to be limited, and it provides the ability to use an undocumented system call to set limits for the 
system dynamically during run time. (These limits can also be set through the registry, as 
described at http://msdn.microsoft.com/enus/library/bb870880(VS.85).aspx. These limits can be 
set for those types marked in Table 9-9. 

You can use the MemLimit utility from Winsider Seminars & Solutions (www.winsiderss.com 
/tools/memlimit.html) to query and set the different limits for these types, and also to see the 
current and peak virtual address space usage. Here’s how you can query the current limits with the 
–q flag: 

1. C:\ >memlimit.exe -q   
2. MemLimit v1.00 - Query and set hard limits on system VA space consumption   
3. Copyright (C) 2008 Alex Ionescu   
4. www.alex-ionescu.com   
5. System Va Consumption:   
6. Type Current Peak Limit   
7. Non Paged Pool 102400 KB 0 KB 0 KB   
8. Paged Pool 59392 KB 83968 KB 0 KB   
9. System Cache 534528 KB 536576 KB 0 KB   
10. System PTEs 73728 KB 75776 KB 0 KB   
11. Session Space 75776 KB 90112 KB 0 KB  

As an experiment, use the following command to set a limit of 100 MB for paged pool: 

1. memlimit.exe -p 100M  

And now try running the testlimit –h experiment from Chapter 3 again, which attempted to create 
16 million handles. Instead of reaching the 16 million handle count, the process will fail, because 
the system will have run out of address space available for paged pool allocations. 

Finally, as of Windows Vista and Windows Server 2008, the system virtual address space limits 
apply only to 32-bit systems, where 1 to 2 GB of kernel address space can lead to exhaustion. 
Sixty-four-bit systems have 8 TB of kernel address space, so limiting virtual address space usage 
is currently not a concern. 

9.5.8 System Virtual Address Space Quotas 



 693

The system virtual address space limits described in the previous section allow for limiting 
systemwide virtual address space usage of certain kernel components, but they work only on 
32-bit systems when applied to the system as a whole. To address more specific quota 
requirements that system administrators might have, the memory manager also collaborates with 
the process manager to enforce either systemwide or user-specific quotas for each process. 

The PagedPoolQuota, NonPagedPoolQuota, PagingFileQuota, and WorkingSetPagesQuota values 
in the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management key 
can be configured to specify how much memory of each type a given process can use. This 
information is read at initialization, and the default system quota block is generated and then 
assigned to all system processes (user processes will get a copy of the default system quota block 
unless per-user quotas have been configured as explained next). 

To enable per-user quotas, subkeys under the registry key HKLM\SYSTEM\CurrentControl-Set 
\Session Manager\Quota System can be created, each one representing a given user SID. The 
values mentioned previously can then be created under this specific SID subkey, enforcing the 
limits only for the processes created by that user. Table 9-10 shows how to configure these values, 
which can be configured at run time or not, and which privileges are required. 

  

9.5.9 User Address Space Layout 

Just as address space in the kernel is dynamic, the user address space in Windows Vista and later 
versions is also built dynamically—the addresses of the thread stacks, process heaps, and loaded 
images (such as DLLs and an application’s executable) are dynamically computed (if the 
application and its images support it) through a mechanism known as Address Space Layout 
Randomization, or ASLR. 

At the operating system level, user address space is divided into a few well-defined regions of 
memory, shown in Figure 9-15. The executable and DLLs themselves are present as memory 



 694

mapped image files, followed by the heap(s) of the process and the stack(s) of its thread(s). Apart 
from these regions (and some reserved system structures such as the TEBs and PEB), all other 
memory allocations are run-time dependent and generated. ASLR is involved with the location of 
all these regions and, combined with DEP, provides a mechanism for making remote exploitation 
of a system through memory manipulation harder to achieve—by having code and data at dynamic 
locations, an attacker cannot typically hardcode a meaningful offset. 

  

EXPERIMENT: analyzing user Virtual address Space 

The Vmmap utility from Sysinternals can show you a detailed view of the virtual memory being 
utilized by any process on your machine, divided into categories for each type of allocation, 
summarized as follows: 

■ Image Displays memory allocations used to map the process and its dependencies (such as 
dynamic libraries) and any other memory mapped image files 

■ Private Displays memory allocations marked as private, such as internal data structures, other 
than the stack and heap 

■ Shareable Displays memory allocations marked as shareable, typically including shared memory 
(but not memory mapped files, which are either Image or Mapped File) 

■ Mapped File Displays memory allocations for memory mapped data files 

■ Heap Displays memory allocated for the heap(s) that this process owns 

■ Stack Displays memory allocated for the stack of each thread in this process 
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■ System Displays kernel memory allocated for the process (such as the process object) 

The following screen shot shows a typical view of Explorer as seen through Vmmap. 

  

Depending on the type of memory allocation, Vmmap can show additional information, such as 
file names (for mapped files), heap IDs (for heap allocations), and thread IDs (for stack 
allocations). Furthermore, each allocation’s cost is shown both in committed memory and working 
set memory. The size and protection of each allocation is also displayed. 

ASLR begins at the image level, with the executable for the process and its dependent DLLs. Any 
image file that has specified ASLR support in its PE header 
(IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE), typically specified by using the 
/DYNAMICBASE linker flag in Microsoft Visual Studio, and contains a relocation section will be 
processed by ASLR. When such an image is found, the system selects an image offset valid 
globally for the current boot. This offset is selected from a bucket of 256 values, all of which are 
64-KB aligned. 

Note You can control ASLR behavior by creating a key called MoveImages under 
HKLM\SYSTEM\CurrentControlSet\Session Manager\Memory Management. Setting this value 
to 0 will disable ASLR, while a value of 0xFFFFFFFF (–1) will enable ASLR regardless of the 
IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE flag. (Images must still be relocatable, 
however.)  

Image Randomization 

For executables, the load offset is calculated by computing a delta value each time an executable 
is loaded. This value is a pseudo-random 8-bit number from 0x10000 to 0xFE0000, calculated by 
taking the current processor’s time stamp counter (TSC), shifting it by four places, and then 
performing a division modulo 254 and adding 1. This number is then multiplied by the allocation 
granularity of 64 KB discussed earlier. By adding 1, the memory manager ensures that the value 
can never be 0, so executables will never load at the address in the PE header if ASLR is being 
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used. This delta is then added to the executable’s preferred load address, creating one of 256 
possible locations within 16 MB of the image address in the PE header. 

For DLLs, computing the load offset begins with a per-boot, systemwide value called the image 
bias, which is computed by MiInitializeRelocations and stored in MiImageBias. This value 
corresponds to the time stamp counter (TSC) of the current CPU when this function was called 
during the boot cycle, shifted and masked into an 8-bit value, which provides 256 possible values. 
Unlike executables, this value is computed only once per boot and shared across the system to 
allow DLLs to remain shared in physical memory and relocated only once. Otherwise, if every 
DLL was loaded at a different location inside different processes, each DLL would have a private 
copy loaded in physical memory. 

Once the offset is computed, the memory manager initializes a bitmap called the MiImageBitMap. 
This bitmap is used to represent ranges from 0x50000000 to 0x78000000 (stored in 
MiImageBitMapHighVa), and each bit represents one unit of allocation (64 KB, as mentioned 
earlier). Whenever the memory manager loads a DLL, the appropriate bit is set to mark its 
location in the system; when the same DLL is loaded again, the memory manager shares its 
section object with the already relocated information.  

As each DLL is loaded, the system scans the bitmap from top to bottom for free bits. The 
MiImageBias value computed earlier is used as a start index from the top to randomize the load 
across different boots as suggested. Because the bitmap will be entirely empty when the first DLL 
(which is always Ntdll.dll) is loaded, its load address can easily be calculated: 0x78000000 – 
MiImageBias * 0x10000. Each subsequent DLL will then load in a 64-KB chunk below. Because 
of this, if the address of Ntdll.dll is known, the addresses of other DLLs could easily be computed. 
To mitigate this possibility, the order in which known DLLs are mapped by the Session Manager 
during initialization is also randomized when Smss loads. 

Finally, if no free space is available in the bitmap (which would mean that most of the region 
defined for ASLR is in use, the DLL relocation code defaults back to the executable case, loading 
the DLL at a 64-KB chunk within 16 MB of its preferred base address.  

Stack Randomization 

The next step in ASLR is to randomize the location of the initial thread’s stack (and, subsequently, 
of each new thread). This randomization is enabled unless the flag StackRandomization Disabled 
was enabled for the process and consists of first selecting one of 32 possible stack locations 
separated by either 64 KB or 256 KB. This base address is selected by finding the first appropriate 
free memory region and then choosing the xth available region, where x is once again generated 
based on the current processor’s TSC shifted and masked into a 5-bit value (which allows for 32 
possible locations). 

Once this base address has been selected, a new TSC-derived value is calculated, this one 9 bits 
long. The value is then multiplied by 4 to maintain alignment, which means it can be as large as 
2,048 bytes (half a page). It is added to the base address to obtain the final stack base. 
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Heap Randomization 

Finally, ASLR randomizes the location of the initial process heap (and subsequent heaps) when 
created in user mode. The RtlCreateHeap function uses another pseudo-random, TSC-derived 
value to determine the base address of the heap. This value, 5 bits this time, is multiplied by 64 
KB to generate the final base address, starting at 0, giving a possible range of 0x00000000 to 
0x001F0000 for the initial heap. Additionally, the range before the heap base address is manually 
deallocated in an attempt to force an access violation if an attack is doing a brute-force sweep of 
the entire possible heap address range. 

EXPERIMENT: looking at aSlR Protection on Processes 

You can use Process Explorer from Sysinternals to look over your processes (and, just as 
important, the DLLs they load) to see if they support ASLR. To look at the ASLR status for 
processes, right-click on any column in the process tree, choose Select Columns, and then check 
ASLR Enabled on the Process Image tab. The following screen shot displays an example of a 
system on which you can notice that ASLR is enabled for all in-box Windows programs and 
services but that some third-party applications and services are not yet built with ASLR support. 

  

9.6 Address Translation 

Now that you’ve seen how Windows structures the virtual address space, let’s look at how it maps 
these address spaces to real physical pages. User applications and system code reference virtual 
addresses. This section starts with a detailed description of 32-bit x86 address translation and 
continues with a brief description of the differences on the 64-bit IA64 and x64 platforms. In the 
next section, we’ll describe what happens when such a translation doesn’t resolve to a physical 
memory address (paging) and explain how Windows manages physical memory via working sets 
and the page frame database. 

9.6.1 x86 Virtual Address Translation 
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Using data structures the memory manager creates and maintains called page tables, the CPU 
translates virtual addresses into physical addresses. Each virtual address is associated with a 
system-space structure called a page table entry (PTE), which contains the physical address to 
which the virtual one is mapped. For example, Figure 9-16 shows how three consecutive virtual 
pages are mapped to three physically discontiguous pages on an x86 system.  There may not even 
be any PTEs for regions that have been marked as reserved or committed but never accessed, 
because the page table itself might be allocated only when the first page fault occurs. 

  

The dashed line connecting the virtual pages to the PTEs in Figure 9-16 represents the indirect 
relationship between virtual pages and physical memory. 

Note Kernel-mode code (such as device drivers) can reference physical memory addresses by 
mapping them to virtual addresses. For more information, see the memory descriptor list (MDL) 
support routines described in the WDK documentation. 

By default, Windows on an x86 system uses a two-level page table structure to translate virtual to 
physical addresses. (x86 systems running the PAE kernel use a three-level page table—this section 
assumes non-PAE systems.) A 32-bit virtual address mapped by a normal 4-KB page is 
interpreted as three separate components—the page directory index, the page table index, and the 
byte index—that are used as indexes into the structures that describe page mappings, as illustrated 
in Figure 9-17. The page size and the PTE width dictate the width of the page directory and page 
table index fields. For example, on x86 systems, the byte index is 12 bits because pages are 4,096 
bytes (212 = 4,096). 
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The page directory index is used to locate the page table in which the virtual address’s PTE is 
located. The page table index is used to locate the PTE, which, as mentioned earlier, contains the 
physical address to which a virtual page maps. The byte index finds the proper address within that 
physical page. Figure 9-18 shows the relationship of these three values and how they are used to 
map a virtual address into a physical address. 

  

The following basic steps are involved in translating a virtual address: 

1. The memory management hardware locates the page directory for the current process. On each 
process context switch, the hardware is told the address of a new process page directory by the 
operating system setting a special CPU register (CR3 in Figure 9-18). 

2. The page directory index is used as an index into the page directory to locate the page directory 
entry (PDE) that describes the location of the page table needed to map the virtual address. The 
PDE contains the page frame number (PFN) of the page table (if it is resident—page tables can be 
paged out or not yet created). In both of these cases, the page table is first made resident before 
proceeding. For large pages, the PDE points directly to the PFN of the target page, and the rest of 
the address is treated as the byte offset within this frame. 

3. The page table index is used as an index into the page table to locate the PTE that describes the 
physical location of the virtual page in question. 

4. The PTE is used to locate the page. If the page is valid, it contains the PFN of the page in 
physical memory that contains the virtual page. If the PTE indicates that the page isn’t valid, the 
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memory management fault handler locates the page and tries to make it valid. (See the section on 
page fault handling.) If the page should not be made valid (for example, because of a protection 
fault), the fault handler generates an access violation or a bug check. 

5. When the PTE is pointed to a valid page, the byte index is used to locate the address of the 
desired data within the physical page. 

Now that you have the overall picture, let’s look at the detailed structure of page directories, page 
tables, and PTEs. 

Page Directories 

Each process has a single page directory, a page the memory manager creates to map the location 
of all page tables for that process. The physical address of the process page directory is stored in 
the kernel process (KPROCESS) block, but it is also mapped virtually at address 0xC0300000 on 
x86 systems (0xC0600000 on systems running the PAE kernel image). Most code running in 
kernel mode references virtual addresses, not physical ones. (For more detailed information about 
KPROCESS and other process data structures, refer to Chapter 5.) 

The CPU knows the location of the page directory page because a special register (CR3 on x86 
systems) inside the CPU that is loaded by the operating system contains the physical address of 
the page directory. Each time a context switch occurs to a thread that is in a different process than 
that of the currently executing thread, this register is loaded from the KPROCESS block of the 
target process being switched to by the context-switch routine in the kernel. Context switches 
between threads in the same process don’t result in reloading the physical address of the page 
directory because all threads within the same process share the same process address space. 

The page directory is composed of page directory entries (PDEs), each of which is 4 bytes long (8 
bytes on systems running the PAE kernel image) and describes the state and location of all the 
possible page tables for that process. (If the page table does not yet exist, the VAD tree is 
consulted to determine whether an access should materialize it.) (As described later in the chapter, 
page tables are created on demand, so the page directory for most processes points only to a small 
set of page tables.) The format of a PDE isn’t repeated here because it’s mostly the same as a 
hardware PTE. 

On x86 systems running in non-PAE mode, 1,024 page tables are required to describe the full 
4-GB virtual address space. The process page directory that maps these page tables contains 1,024 
PDEs. Therefore, the page directory index needs to be 10 bits wide (210 = 1,024). On x86 systems 
running in PAE mode, there are 512 entries in a page table (because the PTE size is 8 bytes and 
page tables are 4 KB in size). Because there are 4 page directories, the result is a maximum of 
2,048 page tables. 

EXPERIMENT: Examining the Page Directory and PDEs 
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You can see the physical address of the currently running process’s page directory by examining 
the DirBase field in the !process kernel debugger output: 

1. lkd> !process   
2. PROCESS 87248070 SessionId: 1 Cid: 088c Peb: 7ffdf000 ParentCid: 06d0  
3. DirBase: ce2a8980 ObjectTable: a72ba408 HandleCount: 95.   
4. Image: windbg.exe   
5. VadRoot 86ed30a0 Vads 85 Clone 0 Private 3474. Modified 187. Locked 1.   
6. DeviceMap 98fd1008  
7. Token affe1c48  
8. ElapsedTime 00:18:17.182  
9. UserTime 00:00:00.000  
10. KernelTime 00:00:00.000  

You can see the page directory’s virtual address by examining the kernel debugger output for the 
PTE of a particular virtual address, as shown here: 

1. lkd> !pte 50001  
2. VA 00050001  
3. PDE at 00000000C0600000 PTE at 00000000C0000280  
4. contains 0000000056C74867 contains 80000000C0EBD025  
5. pfn 56c74 ---DA--UWEV pfn c0ebd ----A--UR-V   

The PTE part of the kernel debugger output is defined in the section “Page Tables and Page Table 
Entries.” 

Because Windows provides a private address space for each process, each process has its own set 
of process page tables to map that process’s private address space. However, the page tables that 
describe system space are shared among all processes (and session space is shared only among 
processes in a session). To avoid having multiple page tables describing the same virtual memory, 
when a process is created, the page directory entries that describe system space are initialized to 
point to the existing system page tables. If the process is part of a session, session space page 
tables are also shared by pointing the session space page directory entries to the existing session 
page tables. 

Page Tables and Page Table Entries 

The process page directory entries point to individual page tables. Page tables are composed of an 
array of PTEs. The virtual address’s page table index field (as shown in Figure 9-17) indicates 
which PTE within the page table maps the data page in question. On x86 systems, the page table 
index is 10 bits wide (9 on PAE), allowing you to reference up to 1,024 4-byte PTEs (512 8-byte 
PTEs on PAE systems). However, because 32-bit Windows provides a 4-GB private virtual 
address space, more than one page table is needed to map the entire address space. To calculate 
the number of page tables required to map the entire 4-GB process virtual address space, divide 4 
GB by the virtual memory mapped by a single page table. Recall that each page table on an x86 
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system maps 4 MB (2 MB on PAE) of data pages. Thus, 1,024 page tables (4 GB/4 MB)—or 
2,048 page tables (4 GB/2 MB) for PAE—are required to map the full 4-GB address space. 

You can use the !pte command in the kernel debugger to examine PTEs. (See the experiment 
“Translating Addresses.”) We’ll discuss valid PTEs here and invalid PTEs in a later section. Valid 
PTEs have two main fields: the page frame number (PFN) of the physical page containing the data 
or of the physical address of a page in memory, and some flags that describe the state and 
protection of the page, as shown in Figure 9-19. 

  

As you’ll see later, the bits labeled Reserved in Figure 9-19 are used only when the PTE is valid. 
(The bits are interpreted by software.) Table 9-11 briefly describes the hardwaredefined bits in a 
valid PTE. 

  

On x86 systems, a hardware PTE contains a Dirty bit and an Accessed bit. The Accessed bit is 
clear if a physical page represented by the PTE hasn’t been read or written since the last time it 
was cleared; the processor sets this bit when the page is read or written if and only if the bit is 
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clear at the time of access. The memory manager sets the Dirty bit when a page is first written, 
compared to the backing store copy. In addition to those two bits, the x86 memory management 
implementation uses a Write bit to provide page protection. When this bit is clear, the page is 
read-only; when it is set, the page is read/write. If a thread attempts to write to a page with the 
Write bit clear, a memory management exception occurs, and the memory manager’s access fault 
handler (described in the next section) must determine whether the thread can write to the page 
(for example, if the page was really marked copyon-write) or whether an access violation should 
be generated. 

The additional Write bit implemented in software (as described above) is used to optimize 
flushing of the PTE cache (called the translation lookaside buffer, described in the next section). 

Byte Within Page 

Once the memory manager has found the physical page in question, it must find the requested data 
within that page. This is where the byte index field comes in. The byte index field tells the CPU 
which byte of data in the page you want to reference. On x86 systems, the byte index is 12 bits 
wide, allowing you to reference up to 4,096 bytes of data (the size of a page). So, adding the byte 
offset to the physical page number retrieved from the PTE completes the translation of a virtual 
address to a physical address.  

9.6.2 Translation Look-Aside Buffer 

As you’ve learned so far, each hardware address translation requires two lookups: one to find the 
right page table in the page directory and one to find the right entry in the page table. Because 
doing two additional memory lookups for every reference to a virtual address would result in 
unacceptable system performance, all CPUs cache address translations so that repeated accesses to 
the same addresses don’t have to be retranslated. The processor  provides such a cache in the 
form of an array of associative memory called the translation lookaside buffer, or TLB. 
Associative memory, such as the TLB, is a vector whose cells can be read simultaneously and 
compared to a target value. In the case of the TLB, the vector contains the virtual-to-physical page 
mappings of the most recently used pages, as shown in Figure 9-20, and the type of page 
protection, size, attributes, and so on applied to each page. Each entry in the TLB is like a cache 
entry whose tag holds portions of the virtual address and whose data portion holds a physical page 
number, protection field, valid bit, and usually a dirty bit indicating the condition of the page to 
which the cached PTE corresponds. If a PTE’s global bit is set (used for system space pages that 
are globally visible to all processes), the TLB entry isn’t invalidated on process context switches. 
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Virtual addresses that are used frequently are likely to have entries in the TLB, which provides 
extremely fast virtual-to-physical address translation and, therefore, fast memory access. If a 
virtual address isn’t in the TLB, it might still be in memory, but multiple memory accesses are 
needed to find it, which makes the access time slightly slower. If a virtual page has been paged out 
of memory or if the memory manager changes the PTE, the memory manager is required to 
explicitly invalidate the TLB entry. If a process accesses it again, a page fault occurs, and the 
memory manager brings the page back into memory (if needed) and re-creates its PTE entry 
(which then results in an entry for it in the TLB). 

9.6.3 Physical Address Extension (PAE) 

The Intel x86 Pentium Pro processor introduced a memory-mapping mode called Physical 
Address Extension (PAE). With the proper chipset, the PAE mode allows 32-bit operating systems 
access to up to 64 GB of physical memory on current Intel x86 processors and up to 1,024 GB of 
physical memory when running on x64 processors in legacy mode (although Windows currently 
limits this to 64 GB due to the size of the PFN database required to map so much memory). When 
the processor executes in PAE mode, the memory management unit (MMU) divides virtual 
addresses mapped by normal pages into four fields, as shown in Figure 9-21. 
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The MMU still implements page directories and page tables, but a third level, the page directory 
pointer table, exists above them. PAE mode can address more memory than the standard 
translation mode not because of the extra level of translation but because PDEs and PTEs are 64 
bits wide rather than 32 bits. A 32-bit system represents physical addresses internally with 24 bits, 
which gives the ability to support a maximum of 224+12 bytes, or 64 GB, of memory. One way in 
which 32-bit applications can take advantage of such large memory configurations is described in 
the earlier section “Address Windowing Extensions.” However, even if applications are not using 
such functions, the memory manager will use all available physical memory for multiple 
processes’ working sets, file cache, and trimmed private data through the use of the system cache, 
standby, and modified lists (described in the section “Page Frame Number Database”). 

As explained in Chapter 2, there is a special version of the 32-bit Windows kernel with support for 
PAE called Ntkrnlpa.exe. This PAE kernel is loaded on 32-bit systems that have hardware support 
for nonexecutable memory (described earlier in the section “No Execute Page Protection”) or on 
systems that have more than 4 GB of RAM on an edition of Windows that supports more than 4 
GB of RAM (for example, Windows Server 2008 Enterprise  Edition). To force the loading of 
this PAE-enabled kernel, you can set the pae BCD option to ForceEnable.  

Note that the PAE kernel is present on all 32-bit Windows systems, even systems with small 
memory without hardware no-execute support. The reason for this is to facilitate device driver 
testing. Because the PAE kernel presents 64-bit addresses to device drivers and other system code, 
booting with pae even on a small memory system allows device driver developers to test parts of 
their drivers with large addresses. The other relevant BCD option is nolowmem, which discards 
memory below 4 GB (assuming you have at least 5 GB of physical memory) and relocates device 
drivers above this range. This guarantees that drivers will be presented with physical addresses 
greater than 32 bits, which makes any possible driver sign extension bugs easier to find. 

EXPERIMENT: Translating addresses 
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To clarify how address translation works, this experiment shows a real example of translating a 
virtual address on an x86 PAE system (which is typical on today’s processors, which support 
hardware no-execute protection, not because PAE itself is actually in use), using the available 
tools in the kernel debugger to examine page directories, page tables, and PTEs. In this example, 
we’ll work with a process that has virtual address 0x50001 currently mapped to a valid physical 
address. In later examples, you’ll see how to follow address translation for invalid addresses with 
the kernel debugger.  

First let’s convert 0x50001 to binary and break it into the three fields that are used to translate an 
address. In binary, 0x50001 is 101.0000.0000.0000.0001. Breaking it into the component fields 
yields the following: 

  

To start the translation process, the CPU needs the physical address of the process page directory, 
stored in the CR3 register while a thread in that process is running. You can display this address 
by examining the CR3 register itself or by dumping the KPROCESS block for the process in 
question with the !process command, as shown here:  

1. lkd> !process   
2. PROCESS 87248070 SessionId: 1 Cid: 088c Peb: 7ffdf000 ParentCid: 06d0  
3. DirBase: ce2a8980 ObjectTable: a72ba408 HandleCount: 95.   
4. Image: windbg.exe   
5. VadRoot 86ed30a0 Vads 85 Clone 0 Private 3559. Modified 187. Locked 1.   
6. DeviceMap 98fd1008  
7. Token affe1c48  

In this case, the page directory is stored at physical address 0xce2a8980. As shown in the 
preceding illustration, the page directory index field in this example is 0. Therefore, the PDE is at 
physical address 0xce2a8980.  
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The kernel debugger !pte command displays the PDE and PTE that describe a virtual address, as 
shown here: 

1. lkd> !pte 50001  
2. VA 00050001  
3. PDE at 00000000C0600000 PTE at 00000000C0000280  
4. contains 0000000056C74867 contains 80000000C0EBD025  
5. pfn 56c74 ---DA--UWEV pfn c0ebd ----A--UR-V   

In the first column the kernel debugger displays the PDE, and in the second column it displays the 
PTE. Notice that the PDE address is shown as a virtual address, not a physical address—as noted 
earlier, the process page directory starts at virtual address 0xC0600000 on x86 systems with PAE 
(in this case, the PAE kernel is loaded because the CPU supports no-execute protection). Because 
we’re looking at the first PDE in the page directory, the PDE address is the same as the page 
directory address.  

The PTE is at virtual address 0xC0000280. You can compute this address by multiplying the page 
table index (0x50 in this example) by the size of a PTE: 0x50 multiplied by 8 (on a non-PAE 
system, this would be 4) equals 0x280. Because the memory manager maps page tables starting at 
0xC0000000, adding 280 yields the virtual address shown in the kernel debugger output: 
0xC0000280. The page table page is at PFN 0x56c74, and the data page is at PFN 0xc0ebd. 

The PTE flags are displayed to the right of the PFN number. For example, the PTE that describes 
the page being referenced has flags of --A--UR-V. Here, A stands for accessed (the page has been 
read), U for user-mode page (as opposed to a kernel-mode page), R for read-only page (rather than 
writable), and V for valid. (The PTE represents a valid page in physical memory.) 

9.6.4 IA64 Virtual Address Translation 

The virtual address space for IA64 is divided into eight regions by the hardware. Each region can 
have its own set of page tables. Windows uses five of the regions, three of which have page tables. 
Table 9-12 lists the regions and how they are used. 
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Address translation by 64-bit Windows on the IA64 platform uses a three-level page table scheme. 
Each process has a page directory pointer structure that contains 1,024 pointers to page directories. 
Each page directory contains 1,024 pointers to page tables, which in turn point to physical pages. 
Figure 9-22 shows the format of an IA64 hardware PTE.  

 

9.6.5 x64 Virtual Address Translation 

64-bit Windows on the x64 architecture uses a four-level page table scheme. Each process has a 
top-level extended page directory (called the page map level 4) that contains 512 pointers to a 
third-level structure called a page parent directory. Each page parent directory contains 512 
pointers to second-level page directories, each of which contain 512 pointers to the individual 
page tables. Finally, the page tables (each of which contain 512 page table entries) point to pages 
in memory. Current implementations of the x64 architecture limit virtual addresses to 48 bits. The 
components that make up this 48-bit virtual address are shown in Figure 9-23. The connections 
between these structures are shown in Figure 9-24. Finally, the format of an x64 hardware page 
table entry is shown in Figure 9-25. 
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9.7 Page Fault Handling 

Earlier, you saw how address translations are resolved when the PTE is valid. When the PTE valid 
bit is clear, this indicates that the desired page is for some reason not (currently) accessible to the 
process. This section describes the types of invalid PTEs and how references to them are resolved. 

Note Only the 32-bit x86 PTE formats are detailed in this book. PTEs for 64-bit systems contain 
similar information, but their detailed layout is not presented. 

A reference to an invalid page is called a page fault. The kernel trap handler (introduced in the 
section “Trap Dispatching” in Chapter 3) dispatches this kind of fault to the memory manager 
fault handler (MmAccessFault) to resolve. This routine runs in the context of the thread that 
incurred the fault and is responsible for attempting to resolve the fault (if possible) or raise an 
appropriate exception. These faults can be caused by a variety of conditions, as listed in Table 
9-13. 
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The following section describes the four basic kinds of invalid PTEs that are processed by the 
access fault handler. Following that is an explanation of a special case of invalid PTEs, prototype 
PTEs, which are used to implement shareable pages. 

9.7.1 Invalid PTEs 

The following list details the four kinds of invalid PTEs and their structure. Some of the flags are 
the same as those for a hardware PTE as described in Table 9-11. 

■ Page file The desired page resides within a paging file. An in-page operation is initiated, as 
illustrated in Figure 9-26. 

  

■ Demand zero The desired page must be satisfied with a page of zeros. The pager looks at the 
zero page list. If the list is empty, the pager takes a page from the free list and zeroes it. If the free 
list is also empty, it takes a page from one of the standby lists and zeroes it. The PTE format is the 
same as the page file PTE shown in the previous entry, but the page file number and offset are 
zeros. 
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■ Transition The desired page is in memory on either the standby, modified, or modified-no-write 
list or not on any list. The page will be removed from the list (if it is on one) and added to the 
working set as shown in Figure 9-27. 

  

■ Unknown The PTE is zero, or the page table doesn’t yet exist. In both cases, this flag means that 
you should examine the virtual address descriptors (VADs) to determine whether this virtual 
address has been committed. If so, page tables are built to represent the newly committed address 
space. (See the discussion of VADs later in the chapter.) 

9.7.2 Prototype PTEs 

If a page can be shared between two processes, the memory manager uses a software structure 
called prototype page table entries (prototype PTEs) to map these potentially shared pages. For 
page-file-backed sections, an array of prototype PTEs is created when a section object is first 
created; for mapped files, portions of the array are created on demand as each view is mapped. 
These prototype PTEs are part of the segment structure, described at the end of this chapter. 

When a process first references a page mapped to a view of a section object (recall that the VADs 
are created only when the view is mapped), the memory manager uses the information in the 
prototype PTE to fill in the real PTE used for address translation in the process page table. When a 
shared page is made valid, both the process PTE and the prototype PTE point to the physical page 
containing the data. To track the number of process PTEs that reference a valid shared page, a 
counter in its PFN database entry is incremented. Thus, the memory manager can determine when 
a shared page is no longer referenced by any page table and thus can be made invalid and moved 
to a transition list or written out to disk.  

When a shareable page is invalidated, the PTE in the process page table is filled in with a special 
PTE that points to the prototype PTE entry that describes the page, as shown in Fig ure 9-28. 
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Thus, when the page is later accessed, the memory manager can locate the prototype PTE using 
the information encoded in this PTE, which in turn describes the page being referenced. A shared 
page can be in one of six different states as described by the prototype PTE entry: 

■ Active/valid The page is in physical memory as a result of another process that accessed it. 

■ Transition The desired page is in memory on the standby or modified list (or not on any list). 

■ Modified-no-write The desired page is in memory and on the modified-no-write list. (See Table 
9-20.) 

■ Demand zero The desired page should be satisfied with a page of zeros.  

■ Page file The desired page resides within a page file. 

■ Mapped file The desired page resides within a mapped file. 

Although the format of these prototype PTE entries is the same as that of the real PTE entries 
described earlier, these prototype PTEs aren’t used for address translation—they are a layer 
between the page table and the page frame number database and never appear directly in page 
tables. 

By having all the accessors of a potentially shared page point to a prototype PTE to resolve faults, 
the memory manager can manage shared pages without needing to update the page tables of each 
process sharing the page. For example, a shared code or data page might be paged out to disk at 
some point. When the memory manager retrieves the page from disk, it needs only to update the 
prototype PTE to point to the page’s new physical location—the PTEs in each of the processes 
sharing the page remain the same (with the valid bit clear and still pointing to the prototype PTE). 
Later, as processes  reference the page, the real PTE will get updated. 

Figure 9-29 illustrates two virtual pages in a mapped view. One is valid, and the other is invalid. 
As shown, the first page is valid and is pointed to by the process PTE and the prototype PTE. The 
second page is in the paging file—the prototype PTE contains its exact location. The process PTE 
(and any other processes with that page mapped) points to this prototype PTE. 
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9.7.3 In-Paging I/O 

Inpaging I/O occurs when a read operation must be issued to a file (paging or mapped) to satisfy a 
page fault. Also, because page tables are pageable, the processing of a page fault can incur 
additional I/O if necessary when the system is loading the page table page that contains the PTE or 
the prototype PTE that describes the original page being referenced.  

The in-page I/O operation is synchronous—that is, the thread waits on an event until the I/O 
completes—and isn’t interruptible by asynchronous procedure call (APC) delivery. The pager uses 
a special modifier in the I/O request function to indicate paging I/O. Upon completion of paging 
I/O, the I/O system triggers an event, which wakes up the pager and allows it to continue in-page 
processing. 

While the paging I/O operation is in progress, the faulting thread doesn’t own any critical memory 
management synchronization objects. Other threads within the process are allowed to issue virtual 
memory functions and handle page faults while the paging I/O takes place. But a number of 
interesting conditions that the pager must recognize when the I/O completes are exposed: 

■ Another thread in the same process or a different process could have faulted the same page 
(called a collided page fault and described in the next section). 

■ The page could have been deleted (and remapped) from the virtual address space.  

■ The protection on the page could have changed. 

■ The fault could have been for a prototype PTE, and the page that maps the prototype PTE could 
be out of the working set. 

The pager handles these conditions by saving enough state on the thread’s kernel stack before the 
paging I/O request such that when the request is complete, it can detect these conditions and, if 
necessary, dismiss the page fault without making the page valid. When and if the faulting 
instruction is reissued, the pager is again invoked and the PTE is reevaluated in its new state. 
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9.7.4 Collided Page Faults 

The case when another thread in the same process or a different process faults a page that is 
currently being in-paged is known as a collided page fault. The pager detects and handles collided 
page faults optimally because they are common occurrences in multithreaded systems. If another 
thread or process faults the same page, the pager detects the collided page fault, noticing that the 
page is in transition and that a read is in progress. (This information is in the PFN database entry.) 
In this case, the pager may issue a wait operation on the event specified in the PFN database entry, 
or it can choose to issue a parallel I/O to protect the file systems from deadlocks (the first I/O to 
complete “wins,” and the others are discarded). This event was initialized by the thread that first 
issued the I/O needed to resolve the fault.  

When the I/O operation completes, all threads waiting on the event have their wait satisfied. The 
first thread to acquire the PFN database lock is responsible for performing the in-page completion 
operations. These operations consist of checking I/O status to ensure that the I/O operation 
completed successfully, clearing the read-in-progress bit in the PFN database, and updating the 
PTE. 

When subsequent threads acquire the PFN database lock to complete the collided page fault, the 
pager recognizes that the initial updating has been performed because the read-inprogress bit is 
clear and checks the in-page error flag in the PFN database element to ensure that the in-page I/O 
completed successfully. If the in-page error flag is set, the PTE isn’t updated and an in-page error 
exception is raised in the faulting thread. 

9.7.5 Clustered Page Faults 

The memory manager prefetches large clusters of pages to satisfy page faults and populate the 
system cache. The prefetch operations read data directly into the system’s page cache instead of 
into a working set in virtual memory, so the prefetched data does not consume virtual address 
space, and the size of the fetch operation is not limited to the amount of virtual address space that 
is available. (Also, no expensive TLB-flushing Inter-Processor Interrupt is needed if the page will 
be repurposed.) The prefetched pages are put on the standby list and marked as in transition in the 
PTE. If a prefetched page is subsequently referenced, the memory manager adds it to the working 
set. However, if it is never referenced, no system resources are required to release it. If any pages 
in the prefetched cluster are already in memory, the memory manager does not read them again. 
Instead, it uses a dummy page to represent them so that an efficient single large I/O can still be 
issued, as Figure 9-30 shows. 
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In the figure, the file offsets and virtual addresses that correspond to pages A, Y, Z, and B are 
logically contiguous, although the physical pages themselves are not necessarily contiguous. 
Pages A and B are nonresident, so the memory manager must read them. Pages Y and Z are 
already resident in memory, so it is not necessary to read them. (In fact, they might already have 
been modified since they were last read in from their backing store, in which case it would be a 
serious error to overwrite their contents.) However, reading pages A and B in a single operation is 
more efficient than performing one read for page A and a second read for page B. Therefore, the 
memory manager issues a single read request that comprises all four pages (A, Y, Z, and B) from 
the backing store. Such a read request includes as many pages as make sense to read, based on the 
amount of available memory, the current system usage, and so on. 

When the memory manager builds the memory descriptor list (MDL) that describes the request, it 
supplies valid pointers to pages A and B. However, the entries for pages Y and Z point to a single 
systemwide dummy page X. The memory manager can fill the dummy page X with the potentially 
stale data from the backing store because it does not make X visible. However, if a component 
accesses the Y and Z offsets in the MDL, it sees the dummy page X instead of Y and Z. 

The memory manager can represent any number of discarded pages as a single dummy page, and 
that page can be embedded multiple times in the same MDL or even in multiple concurrent MDLs 
that are being used for different drivers. Consequently, the contents of the locations that represent 
the discarded pages can change at any time. 

9.7.6 Page Files 

Page files are used to store modified pages that are still in use by some process but have had to be 
written to disk (because they were unmapped or memory pressure resulted in a trim). Page file 
space is reserved when the pages are initially committed, but the actual optimally clustered page 
file locations cannot be chosen until pages are written out to disk. The important point is that the 
system commit limit is charged for private pages as they are created. Thus, the Process: Page File 
Bytes performance counter is actually the total process private committed memory, of which none, 
some, or all may be in the paging file. (In fact, it’s the same as the Process: Private Bytes 
performance counter.) 
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The memory manager keeps track of private committed memory usage on a global basis, termed 
commitment, and on a per-process basis as page file quota. (Again, this memory usage doesn’t 
represent page file usage—it represents private committed memory usage.) Commitment and page 
file quota are charged whenever virtual addresses that require new private physical pages are 
committed. Once the global commit limit has been reached (physical memory and the page files 
are full), allocating virtual memory will fail until processes free committed memory (for example, 
when a process exits or calls VirtualFree). 

When the system boots, the Session Manager process (described in Chapter 13) reads the list of 
page files to open by examining the registry value HKLM\SYSTEM\CurrentControlSet\Control 
\Session Manager\Memory Management\PagingFiles. This multistring registry value contains the 
name, minimum size, and maximum size of each paging file. Windows supports up to 16 paging 
files. On x86 systems running the normal kernel, each page file can be a maximum of 4,095 MB. 
On x86 systems running the PAE kernel and x64 systems, each page file can be 16 terabytes (TB) 
while the maximum is 32 TB on IA64 systems. Once open, the page files can’t be deleted while 
the system is running because the System process (described in Chapter 2) maintains an open 
handle to each page file. The fact that the paging files are open explains why the built-in 
defragmentation tool cannot defragment the paging file while the system is up. To defragment 
your paging file, use the freeware Pagedefrag tool from Sysinternals. It uses the same approach as 
other third-party defragmentation tools—it runs its defragmentation process early in the boot 
process before the page files are opened by the Session Manager. 

Because the page file contains parts of process and kernel virtual memory, for security reasons the 
system can be configured to clear the page file at system shutdown. To enable this, set the registry 
value HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management 
\ClearPageFileAtShutdown to 1. Otherwise, after shutdown, the page file will contain whatever 
data happened to have been paged out while the system was up. This data could then be accessed 
by someone who gained physical access to the machine.  

If no paging files are specified, the system virtual memory commit limit is based on available 
memory. If the minimum and maximum paging file sizes are both zero, this indicates a system 
managed paging file, which causes the system to choose the page file size as shown in Table 9-14. 

  

EXPERIMENT: Viewing System Page Files 

To view the list of page files, look in the registry at HKLM\SYSTEM\CurrentControlSet\Control 
\Session Manager\Memory Management\PagingFiles. This entry contains the paging file 
configuration settings modified through the System utility in Control Panel. Open the properties 
window for your computer, click Advanced System Settings, click the Settings button in the 
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Performance area, click the Advanced tab, and finally, click the Change button in the Virtual 
Memory section.  

To add a new page file, Control Panel uses the (internal only) NtCreatePagingFile system service 
defined in Ntdll.dll. Page files are always created as noncompressed files, even if the directory 
they are in is compressed. To keep new page files from being deleted, a handle is duplicated into 
the System process so that when the creating process closes the handle to the new page file, 
another process can still open the page file. 

The performance counters listed in Table 9-15 allow you to examine private committed memory 
usage on a systemwide or per-page-file basis. There’s no way to determine how much of a 
process’s private committed memory is resident and how much is paged out to paging files. 

  

Note that these counters can assist you in choosing a page file size. Although most users do it, 
basing page file size as a function of RAM makes no sense (except for saving a crash dump) 
because the more memory you have, the less likely you are to need to page data out. To determine 
how much page file space your system really needs based on the mix of applications that have run 
since the system booted, examine the peak commit charge in Process Explorer’s System 
Information display. This number represents the peak amount of page file space since the system 
booted that would have been needed if the system had to page out the majority of private 
committed virtual memory (which rarely happens).  

If the page file on your system is too big, the system will not use it any more or less—in other 
words, increasing the size of the page file does not change system performance, it simply means 
the system can have more committed virtual memory. If the page file is too small for the mix of 
applications you are running, you might get the “system running low on virtual memory” error 
message. In this case, first check to see whether a process has a memory leak by examining the 
process private bytes count. If no process appears to have a leak, check the system paged pool 
size—if a device driver is leaking paged pool, this might also explain the error. (See the 
“Troubleshooting a Pool Leak” experiment in the “Kernel-Mode Heaps (System Memory Pools)” 
section for how to troubleshoot a pool leak.) 

EXPERIMENT: Viewing Page File usage with Task Manager 
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You can also view committed memory usage with Task Manager by clicking its Performance tab. 
You’ll see the following counters related to page files: 

  

Note that the Memory Usage bar is actually the sum of all the process’s private working sets and 
not the system commit total—that number is actually displayed as the Page File number in the 
System area. The first number represents potential page file usage, not actual page file usage. It is 
how much page file space would be used if the majority of the private committed virtual memory 
in the system had to be paged out all at once. The second number isplayed is the commit limit, 
which displays the maximum virtual memory usage that the system can support before running out 
of virtual memory (it includes virtual memory backed in physical memory as well as by the paging 
files). 

Process Explorer’s System Information display shows an additional piece of information about 
system commit usage, namely the percentage of the peak as compared to the limit and the current 
usage as compared to the limit: 
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9.8 Stacks 

Whenever a thread runs, it must have access to a temporary storage location in which to store 
function parameters, local variables, and the return address after a function call. This part of 
memory is called a stack. On Windows, the memory manager provides two stacks for each thread, 
the user stack and the kernel stack, as well as per-processor stacks called DPC stacks. We have 
already described how the stack can be used to generate stack traces and how exceptions and 
interrupts store structures on the stack, and we have also talked about how system calls, traps, and 
interrupts cause the thread to switch from a user stack to its kernel stack. Now, we’ll look at some 
extra services the memory manager provides to efficiently use stack space. 

User Stacks 

When a thread is created, the memory manager automatically reserves a predetermined amount of 
memory, which by default is 1 MB. This amount can be configured in the call to the CreateThread 
or CreateRemoteThread function or when compiling the application, by using the 
/STACKRESERVE switch in the Microsoft C/C++ compiler, which will store the information in 
the image header. Although 1 MB is reserved, only the first 64 KB (unless the PE header of the 
image specifies otherwise) of the stack will be committed, along with a guard page. When a 
thread’s stack grows large enough to touch the guard page, an exception will occur, causing an 
attempt to allocate another guard. Through this mechanism, a user stack doesn’t immediately 
consume all 1 MB of committed memory but instead grows with demand. (However, it will never 
shrink back.) 

EXPERIMENT: Creating the Maximum Number of Threads 

With only 2 GB of user address space available to each 32-bit process, the relatively large 
memory that is reserved for each thread’s stack allows for an easy calculation of the maximum 
number of threads that a process can support: a little less than 2,048, for a total of nearly 2 GB of 
memory (unless the increaseuserva BCD option is used and the image is large address space 
aware). By forcing each new thread to use the smallest possible stack reservation size, 64 KB, the 
limit can grow to about 30,400 threads, which you can test for yourself by using the TestLimit 
utility from Sysinternals. Here is some sample output: 

1. C:\>testlimit -t   
2. Testlimit - tests Windows limits   
3. By Mark Russinovich   
4. Creating threads...   
5. Created 30399 threads. Lasterror: 8  

If you attempt this experiment on a 64-bit Windows installation (with 8 TB of user address space 
available), you would expect to see potentially hundreds of thousands of threads created (as long 
as sufficient memory were available). Interestingly, however, TestLimit will actually create fewer 
threads than on a 32-bit machine, which has to do with the fact that Testlimit.exe is a 32-bit 
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application and thus runs under the Wow64 environment. (See Chapter 3 for more information on 
Wow64.) Each thread will therefore have not only its 32-bit Wow64 stack but also its 64-bit stack, 
thus consuming more than twice the memory, while still keeping only 2 GB of address space. To 
properly test the thread-creation limit on 64-bit Windows, use the Testlimit64.exe binary instead. 

Note that you will need to terminate TestLimit with Process Explorer or Task Manager—using 
Ctrl+C to break the application will not function because this operation itself creates a new thread, 
which will not be possible once memory is exhausted. 

Kernel Stacks 

Although user stack sizes are typically 1 MB, the amount of memory dedicated to the kernel stack 
is significantly smaller: 12 KB, followed by another guard PTE (for a total of 16 KB of virtual 
address space). Code running in the kernel is expected to have less recursion than user code, as 
well as contain more efficient variable use and keep stack buffer sizes low. Additionally, because 
kernel stacks live in system address space, their memory usage has a bigger impact of the system: 
the 2,048 threads really consumed only 1 GB of pageable virtual memory due to their user stacks. 
On the other hand, they consumed 360 MB of actual physical memory with their kernel stacks. 

Although kernel code is usually not recursive, interactions between graphics system calls handled 
by Win32k.sys and its subsequent callbacks into user mode can cause recursive re-entries in the 
kernel on the same kernel stack. As such, Windows provides a mechanism for dynamically 
expanding and shrinking the kernel stack from its initial size of 16 KB. As each additional 
graphics call is performed from the same thread, another 16-KB kernel stack is allocated 
(anywhere in system address space; the memory manager provides the ability to jump stacks when 
nearing the guard page). Whenever each call returns to the caller (unwinding), the memory 
manager frees the additional kernel stack that had been allocated, as shown in Figure 9-31. 

This mechanism allows reliable support for recursive system calls, as well as efficient use of 
system address space, and is also provided for use by driver developers when performing 
recursive callouts through the KeExpandKernelStackAndCallout API, as necessary.  

  

EXPERIMENT: Viewing Kernel Stack usage 
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You can use the MemInfo tool from Winsider Seminars & Solutions to display the physical 
memory currently being occupied by kernel stacks. The –u flag displays physical memory usage 
for each component, as shown here: 

1. C:\>MemInfo.exe -u | findstr /i "Kernel Stack"  
2. Kernel Stack: 980 ( 3920 kb)  

Note the kernel stack after repeating the previous TestLimit experiment: 

1. C:\>MemInfo.exe -u | findstr /i "Kernel Stack"  
2. Kernel Stack: 92169 ( 368676 kb)  

Running TestLimit a couple more times would easily exhaust physical memory on a 32-bit system, 
and this limitation results in one of the primary limits on systemwide 32-bit thread count. 

DPC Stack 

Finally, Windows keeps a per-processor DPC stack available for use by the system whenever 
DPCs are executing, an approach that isolates the DPC code from the current thread’s kernel stack 
(which is unrelated to the DPC’s actual operation because DPCs run in arbitrary thread context). 
The DPC stack is also configured as the initial stack for handling the SYSENTER or SYSCALL 
instruction during a system call. Because the CPU is responsible for switching the stack, it doesn’t 
know how to access the current thread’s kernel stack, as this is an internal Windows 
implementation detail, so Windows configures the per-processor DPC stack as the stack pointer. 

9.9 Virtual address Descriptors 

The memory manager uses a demand-paging algorithm to know when to load pages into memory, 
waiting until a thread references an address and incurs a page fault before retrieving the page from 
disk. Like copy-on-write, demand paging is a form of lazy evaluation—waiting to perform a task 
until it is required. 

The memory manager uses lazy evaluation not only to bring pages into memory but also to 
construct the page tables required to describe new pages. For example, when a thread commits a 
large region of virtual memory with VirtualAlloc or VirtualAllocExNuma, the memory manager 
could immediately construct the page tables required to access the entire range of allocated 
memory. But what if some of that range is never accessed? Creating page tables for the entire 
range would be a wasted effort. Instead, the memory manager waits to create a page table until a 
thread incurs a page fault, and then it creates a page table for that page. This method significantly 
improves performance for processes that reserve and/or commit a lot of memory but access it 
sparsely. 

With the lazy-evaluation algorithm, allocating even large blocks of memory is a fast operation. 
When a thread allocates memory, the memory manager must respond with a range of addresses for 
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the thread to use. To do this, the memory manager maintains another set of data structures to keep 
track of which virtual addresses have been reserved in the process’s address space and which have 
not. These data structures are known as virtual address descriptors (VADs). 

Process VADs 

For each process, the memory manager maintains a set of VADs that describes the status of the 
process’s address space. VADs are structured as a self-balancing AVL tree algorithm (named after 
their inventors, Adelson-Velskii and Landis) that better balances the VAD tree, resulting in, on 
average, fewer comparisons when searching for a VAD corresponding with a virtual address. A 
diagram of a VAD tree is shown in Figure 9-32. 

  

When a process reserves address space or maps a view of a section, the memory manager creates a 
VAD to store any information supplied by the allocation request, such as the range of addresses 
being reserved, whether the range will be shared or private, whether a child process can inherit the 
contents of the range, and the page protection applied to pages in the range. 

When a thread first accesses an address, the memory manager must create a PTE for the page 
containing the address. To do so, it finds the VAD whose address range contains the accessed 
address and uses the information it finds to fill in the PTE. If the address falls outside the range 
covered by the VAD or in a range of addresses that are reserved but not committed, the memory 
manager knows that the thread didn’t allocate the memory before attempting to use it and 
therefore generates an access violation. 

EXPERIMENT: Viewing Virtual address Descriptors 

You can use the kernel debugger’s !vad command to view the VADs for a given process. First 
find the address of the root of the VAD tree with the !process command. Then specify that address 
to the !vad command, as shown in the following example of the VAD tree for a process running 
Notepad.exe: 

1. lkd> !process 0 1 notepad.exe   
2. PROCESS 8718ed90 SessionId: 1 Cid: 1ea68 Peb: 7ffdf000 ParentCid: 0680  
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3. DirBase: ce2aa880 ObjectTable: ee6e01b0 HandleCount: 48.   
4. Image: notepad.exe   
5. VadRoot 865f10e0 Vads 51 Clone 0 Private 210. Modified 0. Locked 0.   
6. lkd> !vad 865f10e0  
7. VAD level start end commit   
8. 8a05bf88 ( 6) 10 1f 0 Mapped READWRITE   
9. 88390ad8 ( 5) 20 20 1 Private READWRITE   
10. 87333740 ( 6) 30 33 0 Mapped READONLY   
11. 86d09d10 ( 4) 40 41 0 Mapped READONLY   
12. 882b49a0 ( 6) 50 50 1 Private READWRITE   
13. 877bf260 ( 5) 60 61 0 Mapped READONLY   
14. 86c0bb10 ( 6) 70 71 0 Mapped READONLY   
15. 86fd1800 ( 3) 80 81 0 Mapped READONLY   
16. 8a125d00 ( 5) 90 91 0 Mapped READONLY   
17. 8636e878 ( 6) a0 a0 0 Mapped READWRITE   
18. 871a3998 ( 4) b0 1af 51 Private READWRITE   
19. a20235f0 ( 5) 200 20f 1 Private READWRITE   
20. 86e7b308 ( 2) 210 24f 19 Private READWRITE   
21. 877f1618 ( 4) 250 317 0 Mapped READONLY   
22. 87333380 ( 5) 340 37f 26 Private READWRITE   
23. 87350cd8 ( 3) 3a0 3af 3 Private READWRITE   
24. 86c09cc0 ( 5) 3b0 4b2 0 Mapped READONLY   
25. 86e759d8 ( 4) 510 537 4 Mapped Exe EXECUTE_WRITECOPY   
26. 8688c2e8 ( 1) 540 8bf 0 Mapped READONLY   
27. 867e2a68 ( 4) 8c0 14bf 0 Mapped READONLY   
28. 8690ad20 ( 5) 14c0 156f 0 Mapped READONLY   
29. 873851a8 ( 3) 15e0 15ef 8 Private READWRITE   
30. 86390d20 ( 4) 15f0 196f 0 Mapped READONLY   
31. 86c6b660 ( 5) 1970 19ef 1 Private READWRITE   
32. 87873318 ( 2) 1a00 1bff 0 Mapped LargePagSec READONLY   
33. 88bd9bc0 ( 5) 1c00 1fff 0 Mapped READONLY   
34. 86d9c558 ( 4) 2000 20ff 12 Private READWRITE   
35. 86c7f318 ( 6) 2100 24ff 0 Mapped READONLY   
36. 88394ab0 ( 5) 73b40 73b81 4 Mapped Exe EXECUTE_WRITECOPY   
37. 8690b1b0 ( 3) 74da0 74f3d 15 Mapped Exe EXECUTE_WRITECOPY   
38. 88b917e8 ( 5) 75100 7513e 5 Mapped Exe EXECUTE_WRITECOPY   
39. 86c180a0 ( 4) 761f0 762b7 3 Mapped Exe EXECUTE_WRITECOPY   
40. 86660fd0 ( 5) 763f0 764b2 2 Mapped Exe EXECUTE_WRITECOPY   
41. 865f10e0 ( 0) 765a0 76665 16 Mapped Exe EXECUTE_WRITECOPY   
42. 86c4a058 ( 4) 76890 76902 5 Mapped Exe EXECUTE_WRITECOPY   
43. b138eb10 ( 5) 769a0 769a8 2 Mapped Exe EXECUTE_WRITECOPY   
44. 877debb8 ( 3) 769b0 769fa 3 Mapped Exe EXECUTE_WRITECOPY   
45. 8718c0c0 ( 4) 76a00 76b43 8 Mapped Exe EXECUTE_WRITECOPY   
46. 88a9ad08 ( 2) 76b50 76b6d 2 Mapped Exe EXECUTE_WRITECOPY   
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47. 8a112960 ( 5) 76b70 76bec 17 Mapped Exe EXECUTE_WRITECOPY   
48. 863b6a58 ( 4) 76bf0 76c7c 4 Mapped Exe EXECUTE_WRITECOPY   
49. 863d6400 ( 3) 76c80 76d1c 3 Mapped Exe EXECUTE_WRITECOPY   
50. 86bc1d18 ( 5) 76d20 76dfa 4 Mapped Exe EXECUTE_WRITECOPY   
51. 8717fd20 ( 4) 76e00 76e57 3 Mapped Exe EXECUTE_WRITECOPY   
52. a2065008 ( 5) 76e60 7796e 25 Mapped Exe EXECUTE_WRITECOPY   
53. 8a0216b0 ( 1) 77970 77a96 11 Mapped Exe EXECUTE_WRITECOPY   
54. 87079410 ( 4) 77b20 77bc9 8 Mapped Exe EXECUTE_WRITECOPY   
55. 87648ba0 ( 3) 7f6f0 7f7ef 0 Mapped READONLY   
56. 86c5e858 ( 4) 7ffb0 7ffd2 0 Mapped READONLY   
57. 8707fe88 ( 2) 7ffde 7ffde 1 Private READWRITE   
58. 86e5e848 ( 3) 7ffdf 7ffdf 1 Private READWRITE   
59. Total VADs: 51 average level: 5 maximum depth: 6  

Rotate VADs 

A video card driver must typically copy data from the user-mode graphics application to various 
other system memory, including the video card memory and the AGP port’s memory, both of 
which have different caching attributes as well as addresses. In order to quickly allow these 
different views of memory to be mapped into a process, and to support the different cache 
attributes, the memory manager implements rotate VADs, which allow video  drivers to transfer 
data directly by using the GPU and to rotate unneeded memory in and out of the process view 
pages on demand. Figure 9-33 shows an example of how the same virtual address can rotate 
between video RAM and virtual memory. 

  

9.10 NuMa 

Each new release of Windows provides new enhancements to the memory manager to better make 
use of Non Uniform Memory Architecture (NUMA) machines, such as large server systems (but 
also Intel i7 and AMD Opteron SMP workstations). The NUMA support in the memory manager 
adds intelligent knowledge of node information such as location, topology, and access costs to 
allow applications and drivers to take advantage of NUMA capabilities, while abstracting the 
underlying hardware details.  
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When the memory manager is initializing, it calls the MiComputeNumaCosts function to perform 
various page and cache operations on different nodes and then computes the time it took for those 
operations to complete. Based on this information, it builds a node graph of access costs (the 
distance between a node and any other node on the system). When the system requires pages for a 
given operation, it consults the graph to choose the most optimal node (that is, the closest). If no 
memory is available on that node, it chooses the next closest node, and so on. 

Although the memory manager ensures that, whenever possible, memory allocations come from 
the ideal processor’s node (the ideal node) of the thread making the allocation, it also provides 
functions that allow applications to choose their own node, such as the VirtualAllocExNuma, 
CreateFileMappingNuma, MapViewOfFileExNuma, and AllocateUserPhysicalPagesNuma APIs. 

The ideal node isn’t used only when applications allocate memory but also during kernel operation 
and page faults. For example, when a thread is running on a nonideal processor and takes a page 
fault, the memory manager won’t use the current node but will instead allocate memory from the 
thread’s ideal node. Although this might result in slower access time while the thread is still 
running on this CPU, overall memory access will be optimized as the thread migrates back to its 
ideal node. In any case, if the ideal node is out of resources, the closest node to the ideal node is 
chosen and not a random other node. Just like usermode applications, however, drivers can specify 
their own node when using APIs such as MmAllocatePagesforMdlEx or MmAllocateContiguous- 
MemorySpecifyCacheNode. 

Various memory manager pools and data structures are also optimized to take advantage of 
NUMA nodes. The memory manager tries to evenly use physical memory from all the nodes on 
the system to hold the nonpaged pool. When a nonpaged pool allocation is made, the memory 
manager looks at the ideal node and uses it as an index to choose a virtual memory address range 
inside nonpaged pool that corresponds to physical memory belonging to this node. In addition, 
per-NUMA node pool freelists are created to efficiently leverage these types of memory 
configurations. Apart from nonpaged pool, the system cache and system PTEs are also similarly 
allocated across all nodes, as well as the memory manager’s lookaside lists. 

Finally, when the system needs to zero pages, it does so in parallel across different NUMA nodes 
by creating threads with NUMA affinities that correspond to the nodes in which the physical 
memory is located. The logical prefetcher and SuperFetch (described later) also use the ideal node 
of the target process when prefetching, while soft page faults cause pages to migrate to the ideal 
node of the faulting thread. 

9.11 Section Objects 

As you’ll remember from the section on shared memory earlier in the chapter, the section object, 
which the Windows subsystem calls a file mapping object, represents a block of memory that two 
or more processes can share. A section object can be mapped to the paging file or to another file 
on disk. 
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The executive uses sections to load executable images into memory, and the cache manager uses 
them to access data in a cached file. (See Chapter 10 for more information on how the cache 
manager uses section objects.) You can also use section objects to map a file into a process 
address space. The file can then be accessed as a large array by mapping different views of the 
section object and reading or writing to memory rather than to the file (an activity called mapped 
file I/O). When the program accesses an invalid page (one not in physical memory), a page fault 
occurs and the memory manager automatically brings the page into memory from the mapped file 
(or page file). If the application modifies the page, the memory manager writes the changes back 
to the file during its normal paging operations (or the application can flush a view by using the 
Windows FlushViewOfFile function).  

Section objects, like other objects, are allocated and deallocated by the object manager. The object 
manager creates and initializes an object header, which it uses to manage the objects; the memory 
manager defines the body of the section object. The memory manager also implements services 
that user-mode threads can call to retrieve and change the attributes stored in the body of section 
objects. The structure of a section object is shown in Fig ure 9-34. 

  

Table 9-16 summarizes the unique attributes stored in section objects. 

  

EXPERIMENT: Viewing Section Objects 

With the Object Viewer (Winobj.exe from Sysinternals), you can see the list of sections that have 
global names. You can list the open handles to section objects with any of the tools described in 
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the “Object Manager” section in Chapter 3 that list the open handle table. (As explained in 
Chapter 3, these names are stored in the object manager directory \Sessions\x\BaseNamedObjects, 
where x is the appropriate Session directory. 

You can use Process Explorer from Sysinternals to view mapped files. Select DLLs from the 
Lower Pane View entry of the View menu. Files marked as “Data” in the Mapping column are 
mapped files (rather than DLLs and other files the image loader loads as modules). Here’s an 
example: 

  

The data structures maintained by the memory manager that describe mapped sections are shown 
in Figure 9-35. These structures ensure that data read from mapped files is consistent, regardless 
of the type of access (open file, mapped file, and so on). 

For each open file (represented by a file object), there is a single section object pointers structure. 
This structure is the key to maintaining data consistency for all types of file access as well as to 
providing caching for files. The section object pointers structure points to one or two control areas. 
One control area is used to map the file when it is accessed as a data file, and one is used to map 
the file when it is run as an executable image. 

A control area in turn points to subsection structures that describe the mapping information for 
each section of the file (read-only, read-write, copy-on-write, and so on). The control area also 
points to a segment structure allocated in paged pool, which in turn points to the prototype PTEs 
used to map to the actual pages mapped by the section object. As described earlier in the chapter, 
process page tables point to these prototype PTEs, which in turn map the pages being referenced. 
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Although Windows ensures that any process that accesses (reads or writes) a file will always see 
the same, consistent data, there is one case in which two copies of pages of a file can reside in 
physical memory (but even in this case, all accessors get the latest copy and data consistency is 
maintained). This duplication can happen when an image file has been accessed as a data file 
(having been read or written) and then run as an executable image (for example, when an image is 
linked and then run—the linker had the file open for data access, and then when the image was run, 
the image loader mapped it as an executable). Internally, the following actions occur: 

1. If the executable file was created using the file mapping APIs (or the cache manager), a data 
control area is created to represent the data pages in the image file being read or written. 

2. When the image is run and the section object is created to map the image as an executable, the 
memory manager finds that the section object pointers for the image file point to a data control 
area and flushes the section. This step is necessary to ensure that any modified pages have been 
written to disk before accessing the image through the image control area. 

3. The memory manager then creates a control area for the image file. 

4. As the image begins execution, its (read-only) pages are faulted in from the image file (or 
copied directly over from the data file if the corresponding data page is resident).  

Because the pages mapped by the data control area might still be resident (on the standby list), this 
is the one case in which two copies of the same data are in two different pages in memory. 
However, this duplication doesn’t result in a data consistency issue because, as mentioned, the 
data control area has already been flushed to disk, so the pages read from the image are up to date 
(and these pages are never written back to disk). 

EXPERIMENT: Viewing Control areas 
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To find the address of the control area structures for a file, you must first get the address of the file 
object in question. You can obtain this address through the kernel debugger by dumping the 
process handle table with the !handle command and noting the object address of a file object. 
Although the kernel debugger !file command displays the basic information in a file object, it 
doesn’t display the pointer to the section object pointers structure. Then, using the dt command, 
format the file object to get the address of the section object pointers structure. This structure 
consists of three pointers: a pointer to the data control area, a pointer to the shared cache map 
(explained in Chapter 10), and a pointer to the image control area. From the section object pointers 
structure, you can obtain the address of a control area for the file (if one exists) and feed that 
address into the !ca command. 

For example, if you open a PowerPoint file and display the handle table for that process 
using !handle, you will find an open handle to the PowerPoint file as shown below. (For 
information on using !handle, see the “Object Manager” section in Chapter 3.)  

1. lkd> !handle 1 f 86f57d90 File   
2. .   
3. .   
4. 0324: Object: 865d2768 GrantedAccess: 00120089 Entry: c848e648  
5. Object: 865d2768 Type: (8475a2c0) File   
6. ObjectHeader: 865d2750 (old version)   
7. HandleCount: 1 PointerCount: 1  
8. Directory Object: 00000000 Name: \Users\Administrator\Documents\Downloads\   
9. SVR-T331_WH07 (1).pptx {HarddiskVolume3}   
10. Taking the file object address (865d2768 ) and formatting it with dt results in this:   
11. lkd> dt nt!_FILE_OBJECT 865d2768  
12. +0x000 Type : 5  
13. +0x002 Size : 128  
14. +0x004 DeviceObject : 0x84a62320 _DEVICE_OBJECT   
15. +0x008 Vpb : 0x84a60590 _VPB   
16. +0x00c FsContext : 0x8cee4390  
17. +0x010 FsContext2 : 0xbf910c80  
18. +0x014 SectionObjectPointer : 0x86c45584 _SECTION_OBJECT_POINTERS   
19. Then taking the address of the section object pointers structure (0x86c45584) and     

    formatting   
20. it with dt results in this:   
21. lkd> dt 0x86c45584 nt!_SECTION_OBJECT_POINTERS   
22. +0x000 DataSectionObject : 0x863d3b00  
23. +0x004 SharedCacheMap : 0x86f10ec0  
24. +0x008 ImageSectionObject : (null)   
25. Finally, use !ca to display the control area using the address:   
26. lkd> !ca 0x863d3b00  
27. ControlArea @ 863d3b00  
28. Segment b1de9d48 Flink 00000000 Blink 8731f80c   
29. Section Ref 1 Pfn Ref 48 Mapped Views 2  
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30. User Ref 0 WaitForDel 0 Flush Count 0  
31. File Object 86cf6188 ModWriteCount 0 System Views 2  
32. WritableRefs 0  
33. Flags (c080) File WasPurged Accessed   
34. No name for file   
35. Segment @ b1de9d48  
36. ControlArea 863d3b00 ExtendInfo 00000000  
37. Total Ptes 100  
38. Segment Size 100000 Committed 0  
39. Flags (c0000) ProtectionMask   
40. Subsection 1 @ 863d3b48  
41. ControlArea 863d3b00 Starting Sector 0 Number Of Sectors 100  
42. Base Pte bf85e008 Ptes In Subsect 100 Unused Ptes 0  
43. Flags d Sector Offset 0 Protection 6  
44. Accessed   
45. Flink 00000000 Blink 8731f87c MappedViews 2  
46. Another technique is to display the list of all control areas with the !memusage       

    command.   
47. The following excerpt is from the output of this command:   
48. lkd> !memusage   
49. loading PFN database   
50. loading (100% complete)   
51. Compiling memory usage data (99% Complete).   
52. Zeroed: 2654 ( 10616 kb)   
53. Free: 584 ( 2336 kb)   
54. Standby: 402938 (1611752 kb)   
55. Modified: 12732 ( 50928 kb)   
56. ModifiedNoWrite: 3 ( 12 kb)   
57. Active/Valid: 431478 (1725912 kb)   
58. Transition: 1186 ( 4744 kb)   
59. Bad: 0 ( 0 kb)   
60. Unknown: 0 ( 0 kb)   
61. TOTAL: 851575 (3406300 kb)   
62. Building kernel map   
63. Finished building kernel map   
64. Scanning PFN database - (100% complete)   
65. Usage Summary (in Kb):   
66. Control Valid Standby Dirty Shared Locked PageTables name   
67. 86d75f18 0 64 0 0 0 0 mapped_file( netcfgx.dll )   
68. 8a124ef8 0 4 0 0 0 0 No Name for File   
69. 8747af80 0 52 0 0 0 0 mapped_file( iebrshim.dll )   
70. 883a2e58 24 8 0 0 0 0 mapped_file( WINWORD.EXE )   
71. 86d6eae0 0 16 0 0 0 0 mapped_file( oem13.CAT )   
72. 84b19af8 8 0 0 0 0 0 No Name for File   
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73. b1672ab0 4 0 0 0 0 0 No Name for File   
74. 88319da8 0 20 0 0 0 0 mapped_file( Microsoft-Windows-   
75. MediaPlayer-Package~31bf3856ad364e35~x86~en-US~6.0.6001.18000.cat )   
76. 8a04db00 0 48 0 0 0 0 mapped_file( eapahost.dll )   
77. The Control column points to the control area structure that describes the mapped file.  
78. You can display control areas, segments, and subsections with the kernel debugger !ca  
79. command. For example, to dump the control area for the mapped file Winword.exe in   
80. this example, type the !ca command followed by the Control number, as shown here:   
81. lkd> !ca 883a2e58  
82. ControlArea @ 883a2e58  
83. Segment ee613998 Flink 00000000 Blink 88a985a4  
84. Section Ref 1 Pfn Ref 8 Mapped Views 1  
85. User Ref 2 WaitForDel 0 Flush Count 0  
86. File Object 88b45180 ModWriteCount 0 System Views ffff   
87. WritableRefs 80000006  
88. Flags (40a0) Image File Accessed   
89. File: \PROGRA~1\MICROS~1\Office12\WINWORD.EXE   
90. Segment @ ee613998  
91. ControlArea 883a2e58 BasedAddress 2f510000  
92. Total Ptes 57  
93. Segment Size 57000 Committed 0  
94. Image Commit 1 Image Info ee613c80  
95. ProtoPtes ee6139c8  
96. Flags (20000) ProtectionMask   
97. Subsection 1 @ 883a2ea0  
98. ControlArea 883a2e58 Starting Sector 0 Number Of Sectors 2  
99. Base Pte ee6139c8 Ptes In Subsect 1 Unused Ptes 0  
100. Flags 2 Sector Offset 0 Protection 1  
101. Subsection 2 @ 883a2ec0  
102. ControlArea 883a2e58 Starting Sector 2 Number Of Sectors a   
103. Base Pte ee6139d0 Ptes In Subsect 2 Unused Ptes 0  
104. Flags 6 Sector Offset 0 Protection 3  
105. Subsection 3 @ 883a2ee0  
106. ControlArea 883a2e58 Starting Sector c Number Of Sectors 1  
107. Base Pte ee6139e0 Ptes In Subsect 1 Unused Ptes 0  
108. Flags a Sector Offset 0 Protection 5  
109. Subsection 4 @ 883a2f00  
110. ControlArea 883a2e58 Starting Sector d Number Of Sectors 28b   
111. Base Pte ee6139e8 Ptes In Subsect 52 Unused Ptes 0  
112. Flags 2 Sector Offset 0 Protection 1  
113. Subsection 5 @ 883a2f20  
114. ControlArea 883a2e58 Starting Sector 298 Number Of Sectors 1  
115. Base Pte ee613c78 Ptes In Subsect 1 Unused Ptes 0  
116. Flags 2 Sector Offset 0 Protection 1  
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9.12 Driver Verifier 

As introduced in Chapter 7, Driver Verifier is a mechanism that can be used to help find and 
isolate commonly found bugs in device driver or other kernel-mode system code. This section 
describes the memory management–related verification options Driver Verifier provides (the 
options related to device drivers are described in Chapter 7). 

The verification settings are stored in the registry under HKLM\SYSTEM\CurrentControlSet 
\Control\Session Manager\Memory Management. The value VerifyDriverLevel contains a 
bitmask that represents the verification types enabled. The VerifyDrivers value contains the names 
of the drivers to validate. (These values won’t exist in the registry until you select drivers to verify 
in the Driver Verifier Manager.) If you choose to verify all drivers, VerifyDrivers is set to an 
asterisk (*) character. Depending on the settings you have made, you might need to reboot the 
system for the selected verification to occur. 

Early in the boot process, the memory manager reads the Driver Verifier registry values to 
determine which drivers to verify and which Driver Verifier options you enabled. (Note that if you 
boot in safe mode, any Driver Verifier settings are ignored.) Subsequently, if you’ve selected at 
least one driver for verification, the kernel checks the name of every device driver it loads into 
memory against the list of drivers you’ve selected for verification. For every device driver that 
appears in both places, the kernel invokes the VfLoadDriver function, which calls other internal 
Vf* functions to replace the driver’s references to a number of kernel functions with references to 
Driver Verifier–equivalent versions of those functions. For example, ExAllocatePool is replaced 
with a call to VerifierAllocatePool. The windowing system driver (Win32k.sys) also makes 
similar changes to use Driver Verifier–equivalent functions. 

Now that we’ve reviewed how Driver Verifier is set up, we’ll examine the six memory-related 
verification options that can be applied to device drivers: Special Pool, Pool Tracking, Force 
IRQL Checking, Low Resources Simulation, Miscellaneous Checks, and Automatic Checks 
Special Pool The Special Pool option causes the pool allocation routines to bracket pool 
allocations with an invalid page so that references before or after the allocation will result in a 
kernel-mode access violation, thus crashing the system with the finger pointed at the buggy driver. 
Special pool also causes some additional validation checks to be performed when a driver 
allocates or frees memory. 

When special pool is enabled, the pool allocation routines allocate a region of kernel memory for 
Driver Verifier to use. Driver Verifier redirects memory allocation requests that drivers under 
verification make to the special pool area rather than to the standard kernel-mode memory pools. 
When a device driver allocates memory from special pool, Driver Verifier rounds up the 
allocation to an even-page boundary. Because Driver Verifier brackets the allocated page with 
invalid pages, if a device driver attempts to read or write past the end of the buffer, the driver will 
access an invalid page, and the memory manager will raise a kernelmode access violation. 



 733

Figure 9-36 shows an example of the special pool buffer that Driver Verifier allocates to a device 
driver when Driver Verifier checks for overrun errors. 

  

By default, Driver Verifier performs overrun detection. It does this by placing the buffer that the 
device driver uses at the end of the allocated page and fills the beginning of the page with a 
random pattern. Although the Driver Verifier Manager doesn’t let you specify underrun detection, 
you can set this type of detection manually by adding the DWORD registry value 
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\ PoolTag- 
Overruns and setting it to 0 (or by running the Gflags utility and selecting the Verify Start option 
instead of the default option, Verify End). When Windows enforces underrun detection, Driver 
Verifier allocates the driver’s buffer at the beginning of the page rather than at the end. 

The overrun-detection configuration includes some measure of underrun detection as well. When 
the driver frees its buffer to return the memory to Driver Verifier, Driver Verifier ensures that the 
pattern preceding the buffer hasn’t changed. If the pattern is modified, the device driver has 
underrun the buffer and written to memory outside the buffer. 

Special pool allocations also check to ensure that the processor IRQL at the time of an allocation 
and deallocation is legal. This check catches an error that some device drivers make: allocating 
pageable memory from an IRQL at DPC/dispatch level or above. 

You can also configure special pool manually by adding the DWORD registry value 
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\PoolTag, 
which represents the allocation tags the system uses for special pool. Thus, even if Driver Verifier 
isn’t configured to verify a particular device driver, if the tag the driver associates with the 
memory it allocates matches what is specified in the PoolTag registry value, the pool allocation 
routines will allocate the memory from special pool. If you set the value of PoolTag to 
0x0000002a or to the wildcard (*), all memory that drivers allocate is from special pool, provided 
there’s enough virtual and physical memory. (The drivers will revert to allocating from regular 
pool if there aren’t enough free pages—bounding exists, but each allocation uses two pages.) 

Pool Tracking If pool tracking is enabled, the memory manager checks at driver unload time 
whether the driver freed all the memory allocations it made. If it didn’t, it crashes the system, 
indicating the buggy driver. Driver Verifier also shows general pool statistics on the Driver 
Verifier Manager’s Pool Tracking tab. You can also use the !verifier kernel debugger command. 
This command shows more information than Driver Verifier and is useful to driver writers. 
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Driver Verifier can also perform locked memory page tracking, which additionally checks for 
pages that have been left locked after an I/O operation and generates the DRIVER_LEFT 
_LOCKED_PAGES_IN_PROCESS instead of the PROCESS_HAS_LOCKED_PAGES crash 
code—the former indicates the driver responsible for the error as well as the function responsible 
for the locking of the pages. 

Force IRQL Checking One of the most common device driver bugs occurs when a driver accesses 
pageable data or code when the processor on which the device driver is executing is at an elevated 
IRQL. As explained in Chapter 3, the memory manager can’t service a page fault when the IRQL 
is DPC/dispatch level or above. The system often doesn’t detect instances of a device driver 
accessing pageable data when the processor is executing at a high IRQL level because the 
pageable data being accessed happens to be physically resident at the time. At other times, 
however, the data might be paged out, which results in a system crash with the stop code 
IRQL_NOT_LESS_OR_EQUAL (that is, the IRQL wasn’t less than or equal to the 
level  required for the operation attempted—in this case, accessing pageable memory). 

Although testing device drivers for this kind of bug is usually difficult, Driver Verifier makes it 
easy. If you select the Force IRQL Checking option, Driver Verifier forces all kernel-mode 
pageable code and data out of the system working set whenever a device driver under verification 
raises the IRQL. The internal function that does this is MiTrimAllSystemPagableMemory. With 
this setting enabled, whenever a device driver under verification accesses  ageable 

memory when the IRQL is elevated, the system instantly detects the violation, and the resulting 
system crash identifies the faulty driver. 

Another common driver crash that results from incorrect IRQL usage occurs when 
synchronization objects are part of data structures that are paged and then waited on. 
Synchronization objects should never be paged because the dispatcher needs to access them at an 
elevated IRQL, which would cause a crash. Driver Verifier checks whether any of the following 
structures are present in pageable memory: KTIMER, KMUTEX, KSPIN_LOCK, KEVENT, 
KSEMAPHORE, ERESOURCE, FAST_MUTEX. 

Low Resources Simulation Enabling Low Resources Simulation causes Driver Verifier to 
randomly fail memory allocations that verified device drivers perform. In the past, developers 
wrote many device drivers under the assumption that kernel memory would always be available 
and that if memory ran out, the device driver didn’t have to worry about it because the system 
would crash anyway. However, because low-memory conditions can occur  temporarily, it’s 
important that device drivers properly handle allocation failures that indicate kernel memory is 
exhausted. 

The driver calls that will be injected with random failures include the ExAllocatePool*, MmProbe 
AndLockPages, MmMapLockedPagesSpecifyCache, MmMapIoSpace, MmAllocateContiguous- 
Memory, MmAllocatePagesForMdl, IoAllocateIrp, IoAllocateMdl, IoAllocateWorkItem, and 
IoAllocateErrorLogEntry APIs. Additionally, you can specify the probability that allocation will 
fail (6 percent by default), which applications should be subject to the simulation (all are by 
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default), which pool tags should be affected (all are by default), and what delay should be used 
before fault injection starts (the default is 7 minutes after the system boots, which is enough time 
to get past the critical initialization period in which a low-memory condition might prevent a 
device driver from loading). 

After the delay period, Driver Verifier starts randomly failing allocation calls for device drivers it 
is verifying. If a driver doesn’t correctly handle allocation failures, this will likely show up as a 
system crash. 

Miscellaneous Checks Some of the checks that Driver Verifier calls “miscellaneous” allow Driver 
Verifier to detect the freeing of certain system structures in the pool that are still active. For 
example, Driver Verifier will check for: 

■ Active work items in freed memory (a driver calls ExFreePool to free a pool block in which one 
or more work items queued with IoQueueWorkItem are present). 

■ Active resources in freed memory (a driver calls ExFreePool before calling ExDeleteResource 
to destroy an ERESOURCE object). 

■ Active look-aside lists in freed memory (a driver calls ExFreePool before calling ExDelete 
NPagedLookasideList or ExDeletePagedLookasideList to delete the look-aside list). 

Finally, when verification is enabled, Driver Verifier also performs certain automatic checks that 
cannot be enabled or disabled. These include: 

■ Calling MmProbeAndLockPages or MmProbeAndLockProcessPages on a memory descriptor 
list (MDL) having incorrect flags. For example, it is incorrect to call MmProbeAndLockPages for 
an MDL setup by calling MmBuildMdlForNonPagedPool. 

■ Calling MmMapLockedPages on an MDL having incorrect flags. For example, it is incorrect to 
call MmMapLockedPages for an MDL that is already mapped to a system address. Another 
example of incorrect driver behavior is calling MmMapLockedPages for an MDL that was not 
locked. 

■ Calling MmUnlockPages or MmUnmapLockedPages on a partial MDL (created by using 
IoBuildPartialMdl). 

■ Calling MmUnmapLockedPages on an MDL that is not mapped to a system address.  

Driver Verifier is a valuable addition to the arsenal of verification and debugging tools available 
to device driver writers. Many device drivers that first ran with Driver Verifier had bugs that 
Driver Verifier was able to expose. Thus, Driver Verifier has resulted in an overall improvement 
in the quality of all kernel-mode code running in Windows 
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9.13 Page Frame Number Database 

In several previous sections, we’ve concentrated on the virtual view of a Windows process—page 
tables, PTEs, and VADs. In the remainder of this chapter, we’ll explain how Windows manages 
physical memory, starting with how Windows keeps track of physical memory. Whereas working 
sets describe the resident pages owned by a process or the system, the page frame number (PFN) 
database describes the state of each page in physical memory. The page states are listed in Table 
9-17. 

  

The PFN database consists of an array of structures that represent each physical page of memory 
on the system. The PFN database and its relationship to page tables are shown in Figure 9-37. As 
this figure shows, valid PTEs usually point to entries in the PFN database, and the PFN database 
entries (for nonprototype PFNs) point back to the page table that is using them (if it is being used 
by a page table). For prototype PFNs, they point back to the prototype PTE. 
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Of the page states listed in Table 9-17, six are organized into linked lists so that the memory 
manager can quickly locate pages of a specific type. (Active/valid pages, transition pages, and 
overloaded “bad” pages aren’t in any systemwide page list.) Additionally, the standby state is 
actually associated with eight different lists ordered by priority (we’ll talk about page priority in 
the next section). Figure 9-38 shows an example of how these entries are linked together. 
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In the next section, you’ll find out how these linked lists are used to satisfy page faults and how 
pages move to and from the various lists. 

EXPERIMENT: Viewing the PFN Database 

You can use the MemInfo tool from Winsider Seminars & Solutions to dump the size of the 
various paging lists by using the –s flag. The following is the output from this command: 

1. C:\>MemInfo.exe -s   
2. MemInfo v2.00 - Show PFN database information   
3. Copyright (C) 2007-2009 Alex Ionescu   
4. www.alex-ionescu.com   
5. Initializing PFN Database... Done   
6. PFN Database List Statistics   
7. Zeroed: 487 ( 1948 kb)   
8. Free: 0 ( 0 kb)   
9. Standby: 379745 (1518980 kb)   
10. Modified: 1052 ( 4208 kb)   
11. ModifiedNoWrite: 0 ( 0 kb)   
12. Active/Valid: 142703 ( 570812 kb)   
13. Transition: 184 ( 736 kb)   
14. Bad: 0 ( 0 kb)   
15. Unknown: 2 ( 8 kb)   
16. TOTAL: 524173 (2096692 kb)   
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Using the kernel debugger !memusage command, you can obtain similar information, although 
this will take considerably longer and will require booting into debugging mode. 

9.13.1 Page List Dynamics 

Figure 9-39 shows a state diagram for page frame transitions. For simplicity, the modifiedno-write 
list isn’t shown. Page frames move between the paging lists in the following ways: 

■ When the memory manager needs a zero-initialized page to service a demand-zero page fault (a 
reference to a page that is defined to be all zeros or to a user-mode committed private page that 
has never been accessed), it first attempts to get one from the zero page list. If the list is empty, it 
gets one from the free page list and zeroes the page. If the free list is empty, it goes to the standby 
list and zeroes that page. 

One reason zero-initialized pages are required is to meet C2 security requirements. C2 specifies 
that user-mode processes must be given initialized page frames to prevent them from reading a 
previous process’s memory contents. Therefore, the memory manager gives user-mode processes 
zeroed page frames unless the page is being read in from a backing store. If that’s the case, the 
memory manager prefers to use nonzeroed page frames, initializing them with the data off the disk 
or remote storage. 

  

The zero page list is populated from the free list by a system thread called the zero page thread 
(thread 0 in the System process). The zero page thread waits on a gate object to signal it to go to 
work. When the free list has eight or more pages, this gate is signaled. However, the zero page 
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thread will run only if no other threads are running, because the zero page thread runs at priority 0 
and the lowest priority that a user thread can be set to is 1. 

Note When memory needs to be zeroed as a result of a physical page allocation by a driver that 
calls MmAllocatePagesForMdl or MmAllocatePagesForMdlEx, by a Windows application that 
calls AllocateUserPhysicalPages or AllocateUserPhysicalPagesNuma, or when an application 
allocates large pages, the memory manager zeroes the memory by using a higher performing 
function called MiZeroInParallel that maps larger regions than the zero page thread, which only 
zeroes a page at a time. In addition, on multiprocessor systems, the memory manager creates 
additional system threads to perform the zeroing in parallel (and in a NUMA-optimized fashion on 
NUMA platforms). 

■ When the memory manager doesn’t require a zero-initialized page, it goes first to the free list. If 
that’s empty, it goes to the zeroed list. If the zeroed list is empty, it goes to the standby lists. 
Before the memory manager can use a page frame from the standby lists, it must first backtrack 
and remove the reference from the invalid PTE (or prototype PTE) that still points to the page 
frame. Because entries in the PFN database contain pointers back to the previous user’s page table 
(or to a prototype PTE for shared pages), the memory manager can quickly find the PTE and make 
the appropriate change. 

■ When a process has to give up a page out of its working set (either because it referenced a new 
page and its working set was full or the memory manager trimmed its working set), the page goes 
to the standby lists if the page was clean (not modified) or to the modified list if the page was 
modified while it was resident. When a process exits, all the private pages go to the free list. Also, 
when the last reference to a pagefile-backed section is closed, these pages also go to the free list. 

9.13.2 Page Priority 

Because every page of memory has a priority in the range 0 to 7, the memory manager 
divides the standby list into eight lists that each store pages of a particular priority. When the 
memory manager wants to take a page from the standby list, it takes pages from low-priority lists 
first, as shown in Figure 9-40. A page’s priority usually reflects the priority of the thread that first 
causes its allocation. (If the page is shared, it reflects the highest memory priority among the 
sharing threads.) A thread inherits its page-priority value from the process to which it belongs. 
The memory manager uses low priorities for pages it reads from disk speculatively when 
anticipating a process’s memory accesses. 
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By default, processes have a page-priority value of 5, but functions allow applications and the 
system to change process and thread page-priority values. You can look at the memory priority of 
a thread with Process Explorer (per-page priority can be displayed by looking at the PFN entries, 
as you’ll see in an experiment later in the chapter). Figure 9-41 shows Process Explorer’s Threads 
tab displaying information about Winlogon’s main thread. Although the thread priority itself is 
high, the memory priority is still the standard 5. 

  

The real power of memory priorities is realized only when the relative priorities of pages are 
understood at a high level, which is the role of SuperFetch, covered at the end of this chapter. 

EXPERIMENT: Viewing the Prioritized Standby lists 

You can use the MemInfo tool from Winsider Seminars & Solutions to dump the size of each 
standby paging list by using the –c flag. MemInfo will also display the number of repurposed 
pages for each standby list—this corresponds to the number of pages in each list that had to be 
reused to satisfy a memory allocation, and thus thrown out of the standby page lists. The following 
is the relevant output from this command: 

1. C:\>MemInfo.exe -s   
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2. MemInfo v2.00 - Show PFN database information   

3. Copyright (C) 2007-2009 Alex Ionescu   

4. www.alex-ionescu.com   

5. Initializing PFN Database... Done   

6. Priority Standby Repurposed   

7. 0 - Idle 1756 ( 7024 KB) 798 ( 3192 KB)   

8. 1 - Very Low 236518 ( 946072 KB) 0 ( 0 KB)   

9. 2 - Low 37014 ( 148056 KB) 0 ( 0 KB)   

10. 3 - Background 64367 ( 257468 KB) 0 ( 0 KB)   

11. 4 - Background 15576 ( 62304 KB) 0 ( 0 KB)   

12. 5 - Normal 14445 ( 57780 KB) 0 ( 0 KB)   

13. 6 - SuperFetch 3889 ( 15556 KB) 0 ( 0 KB)   

14. 7 - SuperFetch 6641 ( 26564 KB) 0 ( 0 KB)   

15. TOTAL 380206 (1520824 KB) 798 ( 3192 KB)   

You can add the –i flag to MemInfo to display the live state of the standby page lists and 
repurpose counts, which is useful for tracking memory usage as well as the following experiment. 
Additionally, the system information panel in Process Explorer (choose View, System Information) 
can also be used to display the live state of the prioritized standby lists, as shown in this screen 
shot: 

  

On the system used in this experiment (see the previous MemInfo output), there is about 7 
MB of cached data at priority 0, and more than 900 MB at priority 1. Your system probably has 
some data in those priorities as well. The following shows what happens when we use the 
TestLimit tool from Sysinternals to commit and touch 1 GB of memory. Here is the command you 
use (to leak and touch memory in chunks of 50 MB): 

1. testlimit –d 50  
2. Here is the output of MemInfo during the leak:   
3. Priority Standby Repurposed   
4. 0 - Idle 0 ( 0 KB) 2554 ( 10216 KB)   



 743

5. 1 - Very Low 92915 ( 371660 KB) 141352 ( 565408 KB)   
6. 2 - Low 35783 ( 143132 KB) 0 ( 0 KB)   
7. 3 - Background 50666 ( 202664 KB) 0 ( 0 KB)   
8. 4 - Background 15236 ( 60944 KB) 0 ( 0 KB)   
9. 5 - Normal 34197 ( 136788 KB) 0 ( 0 KB)   
10. 6 - SuperFetch 2912 ( 11648 KB) 0 ( 0 KB)   
11. 7 - SuperFetch 5876 ( 23504 KB) 0 ( 0 KB)   
12. TOTAL 237585 ( 950340 KB) 143906 ( 575624 KB)   
13. And here is the output after the leak:   
14. Priority Standby Repurposed   
15. 0 - Idle 0 ( 0 KB) 2554 ( 10216 KB)   
16. 1 - Very Low 5 ( 20 KB) 234351 ( 937404 KB)   
17. 2 - Low 0 ( 0 KB) 35830 ( 143320 KB)   
18. 3 - Background 9586 ( 38344 KB) 41654 ( 166616 KB)   
19. 4 - Background 15371 ( 61484 KB) 0 ( 0 KB)   
20. 5 - Normal 34208 ( 136832 KB) 0 ( 0 KB)   
21. 6 - SuperFetch 2914 ( 11656 KB) 0 ( 0 KB)   
22. 7 - SuperFetch 5881 ( 23524 KB) 0 ( 0 KB)   
23. TOTAL 67965 ( 271860 KB) 314389 (1257556 KB)   

Note how the lower-priority standby page lists were used first (shown by the repurposed 
count) and are now depleted, while the higher lists still contain valuable cached data. 

9.13.3 Modified Page Writer 

The memory manager employs two system threads to write pages back to disk and move 
those pages back to the standby lists (based on their priority). One system thread writes out 
modified pages (MiModifiedPageWriter) to the paging file, and a second one writes modified 
pages to mapped files (MiMappedPageWriter). Two threads are required to avoid creating a 
deadlock, which would occur if the writing of mapped file pages caused a page fault that in turn 
required a free page when no free pages were available (thus requiring the modified page writer to 
create more free pages). By having the modified page writer perform mapped file paging I/Os 
from a second system thread, that thread can wait without blocking regular page file I/O. 

Both threads run at priority 17, and after initialization they wait for separate objects to trigger 
their operation. The mapped page writer is woken in the following cases: 

■ The MmMappedPageWriterEvent event was signaled by the memory manager’s working 
set manager (MmWorkingSetManager), which runs as part of the kernel’s balance set manager 
(once every second). The working set manager signals this event if the number of 
filesystem-destined pages on the modified page list has reached more than 800. This event can 
also be signaled when a request to flush all pages is being processed or when the system is 
attempting to obtain free pages (and more than 16 are available on the modified page list). 

■ One of the MiMappedPageListHeadEvent events associated with the 16 mapped page lists 
has been signaled. Each time a mapped page is dirtied, it is inserted into one of these 16 mapped 
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page lists based on a bucket number (MiCurrentMappedPageBucket). This bucket number is 
updated by the working set manager whenever the system considers that mapped pages have 
gotten old enough, which is currently 100 seconds (the MiWriteGapCounter variable controls this 
and is incremented whenever the working set manager runs). The reason for these additional 
events is to reduce data loss in the case of a system crash or power failure by eventually writing 
out modified mapped pages even if the modified list hasn’t reached its threshold of 800 pages. 

The modified page writer waits on a single gate object (MmModifiedPageWriterGate), which 
can be signaled in the following scenarios: 

■ The working set manager detects that the size of the zeroed and free page lists has dropped 
below 20,000 pages. 

■ A request to flush all pages has been received. 

■ The number of available pages (MmAvailablePages) has dropped below 262,144 pages 
during the working set manager’s check, or below 256 pages during a page list operation. 

Additionally, the modified page writer also waits on an event (MiRescanPageFilesEvent) and 
an internal event in the paging file header (MmPagingFileHeader), which allows the system to 
manually request flushing out data to the paging file when needed. 

When invoked, the mapped page writer attempts to write as many pages as possible to disk 
with a single I/O request. It accomplishes this by examining the original PTE field of the PFN 
database elements for pages on the modified page list to locate pages in contiguous locations on 
the disk. Once a list is created, the pages are removed from the modified list, an I/O request is 
issued, and, at successful completion of the I/O request, the pages are placed at the tail of the 
standby list corresponding to their priority. 

Pages that are in the process of being written can be referenced by another thread. When this 
happens, the reference count and the share count in the PFN entry that represents the physical 
page are incremented to indicate that another process is using the page. When the I/O operation 
completes, the modified page writer notices that the reference count is no longer 0 and doesn’t 
place the page on any standby list. 

9.13.4 PFN Data Structures 

Although PFN database entries are of fixed length, they can be in several different states, 
depending on the state of the page. Thus, individual fields have different meanings depending on 
the state. The states of a PFN entry are shown in Figure 9-42. 
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Several fields are the same for several PFN types, but others are specific to a given type of 
PFN. The following fields appear in more than one PFN type: 

■ PTE address Virtual address of the PTE that points to this page. 

■ Reference count The number of references to this page. The reference count is incremented 
when a page is first added to a working set and/or when the page is locked in memory for I/O (for 
example, by a device driver). The reference count is decremented when the share count becomes 0 
or when pages are unlocked from memory. When the share count becomes 0, the page is no longer 
owned by a working set. Then, if the reference count is also zero, the PFN database entry that 
describes the page is updated to add the page to the free, standby, or modified list. 

■ Type The type of page represented by this PFN. (Types include active/valid, standby, 
modified, modified-no-write, free, zeroed, bad, and transition.) 

■ Flags The information contained in the flags field is shown in Table 9-18. 

■ Priority The priority associated with this PFN, which will determine on which standby list 
it will be placed. 

■ Original PTE contents All PFN database entries contain the original contents of the PTE 
that pointed to the page (which could be a prototype PTE). Saving the contents of the PTE allows 
it to be restored when the physical page is no longer resident. PFN entries for AWE allocations are 
exceptions; they store the AWE reference count in this field instead. 

■ PFN of PTE Physical page number of the page table page containing the PTE that points to 
this page. 

■ Color Besides being linked together on a list, PFN database entries use an additional field 
to link physical pages by “color,” their location in the processor CPU memory cache. Windows 
attempts to minimize unnecessary thrashing of CPU memory caches by using different physical 
pages in the CPU cache. It achieves this optimization by avoiding using the same cache entry for 
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two different pages wherever possible. For systems with direct mapped caches, optimally using 
the hardware’s capabilities can result in a significant performance advantage. 

■ Flags A second flags field is used to encode additional information on the PTE. These flags 
are described in Table 9-19. 

  

  

The remaining fields are specific to the type of PFN. For example, the first PFN in Figure 
9-42 represents a page that is active and part of a working set. The share count field represents the 
number of PTEs that refer to this page. (Pages marked read-only, copy-on-write, or shared 
read/write can be shared by multiple processes.) For page table pages, this field is the number of 
valid and transition PTEs in the page table. As long as the share count is greater than 0, the page 
isn’t eligible for removal from memory. 

The working set index field is an index into the process working set list (or the system or 
session working set list, or zero if not in any working set) where the virtual address that maps this 
physical page resides. If the page is a private page, the working set index field refers directly to 
the entry in the working set list because the page is mapped only at a single virtual address. In the 
case of a shared page, the working set index is a hint that is guaranteed to be correct only for the 
first process that made the page valid. (Other processes will try to use the same index where 
possible.) The process that initially sets this field is guaranteed to refer to the proper index and 
doesn’t need to add a working set list hash entry referenced by the virtual address into its working 
set hash tree. This guarantee reduces the size of the working set hash tree and makes searches 
faster for these particular direct entries. 
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The second PFN in Figure 9-42 is for a page on either the standby or the modified list. In this 
case, the forward and backward link fields link the elements of the list together within the list. 
This linking allows pages to be easily manipulated to satisfy page faults. When a page is on one of 
the lists, the share count is by definition 0 (because no working set is using the page) and therefore 
can be overlaid with the backward link. The reference count is also 0 if the page is on one of the 
lists. If it is nonzero (because an I/O could be in progress for this page—for example, when the 
page is being written to disk), it is first removed from the list.  

The third PFN in Figure 9-42 is for a page that belongs to a kernel stack. As mentioned 
earlier, kernel stacks in Windows are dynamically allocated, expanded, and freed whenever a 
callback to user mode is performed and/or returns, or when a driver performs a callback and 
requests stack expansion. For these PFNs, the memory manager must keep track of the thread 
actually associated with the kernel stack, or if it is free it keeps a link to the next free look-aside 
stack.  

The fourth PFN in Figure 9-42 is for a page that has an I/O in progress (for example, a page 
read). While the I/O is in progress, the first field points to an event object that will be signaled 
when the I/O completes. If an in-page error occurs, this field contains the Windows error status 
code representing the I/O error. This PFN type is used to resolve collided page faults.  

EXPERIMENT: Viewing PFN Entries 

You can examine individual PFN entries with the kernel debugger !pfn command. You first 
need to supply the PFN as an argument. (For example, !pfn 1 shows the first entry, !pfn 2 shows 
the second, and so on.) In the following example, the PTE for virtual address 0x50000 is displayed, 
followed by the PFN that contains the page directory, and then the actual page: 

1. lkd> !pte 50000  
2. VA 00050000  
3. PDE at 00000000C0600000 PTE at 00000000C0000280  
4. contains 000000002C9F7867 contains 800000002D6C1867  
5. pfn 2c9f7 ---DA--UWEV pfn 2d6c1 ---DA--UW-V   
6. lkd> !pfn 2c9f7  
7. PFN 0002C9F7 at address 834E1704  
8. flink 00000026 blink / share count 00000091 pteaddress C0600000  
9. reference count 0001 Cached color 0 Priority 5  
10. restore pte 00000080 containing page 02BAA5 Active M   
11. Modified   
12. lkd> !pfn 2d6c1  
13. PFN 0002D6C1 at address 834F7D1C   
14. flink 00000791 blink / share count 00000001 pteaddress C0000280  
15. reference count 0001 Cached color 0 Priority 5  
16. restore pte 00000080 containing page 02C9F7 Active M   
17. Modified   



 748

You can also use the MemInfo tool to obtain information about a PFN. MemInfo can 
sometimes give you more information than the debugger’s output, and it does not require being 
booted into debugging mode. Here’s MemInfo’s output for those same two PFNs: 

1. C:\>meminfo -p 2c9f7  
2. PFN: 2c9f7  
3. PFN List: Active and Valid   
4. PFN Type: Page Table   
5. PFN Priority: 5  
6. Page Directory: 0x866168C8  
7. Physical Address: 0x2C9F7000  
8. C:\>meminfo -p 2d6c1  
9. PFN: 2d6c1  
10. PFN List: Active and Valid   
11. PFN Type: Process Private   
12. PFN Priority: 5  
13. EPROCESS: 0x866168C8 [windbg.exe]   
14. Physical Address: 0x2D6C1000  

MemInfo correctly recognized that the first PFN was a page table and that the second PFN 
belongs to WinDbg, which was the active process when the !pte 50000 command was used in the 
debugger. 

In addition to the PFN database, the system variables in Table 9-20 describe the overall state 
of physical memory. 

  

9.14 Physical Memory limits 

Now that you’ve learned how Windows keeps track of physical memory, we’ll describe how 
much of it Windows can actually support. Because most systems access more code and data than 
can fit in physical memory as they run, physical memory is in essence a window into the code and 
data used over time. The amount of memory can therefore affect performance, because when data 
or code that a process or the operating system needs is not present, the memory manager must 
bring it in from disk or remote storage. 

Besides affecting performance, the amount of physical memory impacts other resource limits. 
For example, the amount of nonpaged pool, operating system buffers backed by physical memory, 
is obviously constrained by physical memory. Physical memory also contributes to the system 
virtual memory limit, which is the sum of roughly the size of physical memory plus the current 
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configured size of any paging files. Physical memory also can indirectly limit the maximum 
number of processes. 

Windows support for physical memory is dictated by hardware limitations, licensing, 
operating system data structures, and driver compatibility. Table 9-21 lists the currently supported 
amounts of physical memory across editions of Windows Vista and Windows Server 2008, along 
with the limiting factors. 

Although some 64-bit processors can access up to 2 TB of physical memory (and up to 1 TB 
even when running 32-bit operating systems through an extended version of PAE), the maximum 
32-bit limit supported by Windows Server Datacenter and Enterprise is 64 GB. This restriction 
comes from the fact that structures the memory manager uses to track physical memory (the PFN 
database entries seen earlier) would consume too much of the CPU’s 32-bit virtual address space 
on larger systems. Because a PFN entry is 28 bytes, on a 64-GB system this requires about 465 
MB for the PFN database, which leaves only 1.5 GB for mapping the kernel, device drivers, 
system cache, and other system data structures, making the 64-GB restriction a reasonable cutoff. 
On systems with the increaseuserva BCD option set, the kernel might have as little as 1 GB of 
virtual address space, so allowing the  PFN database to consume more than half of available 
address space would lead to premature exhaustion of other resources. 

  

The memory manager could accommodate more memory by mapping pieces of the PFN 
database into the system address as needed, but that would add complexity and reduce 
performance with the added overhead of mapping, unmapping, and locking operations. It’s only 
recently that systems have become large enough for that to be considered, but because the system 
address space is not a constraint for mapping the entire PFN database on 64-bit Windows, support 
for more memory is left to 64-bit Windows. 

The maximum 2-TB limit of 64-bit Windows Server 2008 Datacenter for Itanium doesn’t 
come from any implementation or hardware limitation, but because Microsoft will support only 
configurations it can test. As of the release of Windows Server 2008, the largest Itanium system 
available was 2 TB, so Windows caps its use of physical memory there. On x64 configurations, 
the 1-TB limit derives from the maximum amount of memory that current x64 page tables can 
address.  
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Windows Client Memory Limits 

64-bit Windows client editions support different amounts of memory as a differentiating 
feature, with the low end being 4 GB for Windows Vista Home Basic, increasing to 128 GB for 
the Ultimate, Enterprise, and Business editions. All 32-bit Windows client editions, however, 
support a maximum of 4 GB of physical memory, which is the highest physical address accessible 
with the standard x86 memory management mode. 

Although client SKUs support PAE addressing modes in order to provide hardware 
noexecute protection (which would also enable access to more than 4 GB of physical memory), 
testing revealed that many of the systems would crash, hang, or become unbootable because some 
device drivers, commonly those for video and audio devices found typically on clients but not 
servers, were not programmed to expect physical addresses larger than 4 GB. As a result, the 
drivers truncated such addresses, resulting in memory corruptions and corruption side effects. 
Server systems commonly have more generic devices, with simpler and more stable drivers, and 
therefore had not generally revealed these problems. The problematic client driver ecosystem led 
to the decision for client editions to ignore physical memory that resides above 4 GB, even though 
they can theoretically address it. Driver developers are encouraged to test their systems with the 
nolowmem BCD option, which will force the kernel to use physical addresses above 4 GB only, if 
sufficient memory exists on the system to allow it. This will immediately lead to the detection of 
such issues in faulty drivers. 

32-Bit Client Effective Memory Limits 

While 4 GB is the licensed limit for 32-bit client editions, the effective limit is actually lower 
and dependent on the system’s chipset and connected devices. The reason is that the physical 
address map includes not only RAM but device memory, and x86 and x64 systems typically map 
all device memory below the 4 GB address boundary to remain compatible with 32-bit operating 
systems that don’t know how to handle addresses larger than 4 GB. Newer chipsets do support 
PAE-based device remapping, but client editions of Windows do not support this feature for the 
driver compatibility problems explained earlier (otherwise, drivers would receive 64-bit pointers 
to their device memory). 

If a system has 4 GB of RAM and devices such as video, audio, and network adapters that 
implement windows into their device memory that sum to 500 MB, 500 MB of the 4 GB of RAM 
will reside above the 4 GB address boundary, as seen in Figure 9-43. 
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The result is that if you have a system with 3 GB or more of memory and you are running a 
32-bit Windows client, you may not be getting the benefit of all of the RAM. You can see how 
much RAM Windows has detected as being installed in the System Properties dialog box, but to 
see how much memory is actually available to Windows, you need to look at Task Manager’s 
Performance page or the Msinfo32 and Winver utilities. On a 4-GB laptop, when booted with 
32-bit Windows Vista, the amount of physical memory available is 3.5 GB, as seen in the 
Msinfo32 utility: 

1. Installed Physical Memory (RAM) 4.00 GB   
2. Total Physical Memory 3.50 GB  

You can see the physical memory layout with the MemInfo tool from Winsider Seminars & 
Solutions. Figure 9-44 shows the output of MemInfo when run on the Windows Vista system, 
using the –r switch to dump physical memory ranges: 

  

Note the gap in the memory address range from page 9F0000 to page 100000, and another 
gap from DFE6D000 to FFFFFFFF (4 GB). When the system is booted with 64-bit Windows 
Vista, on the other hand, all 4 GB show up as available (see Figure 9-45), and you can see how 
Windows uses the remaining 500 MB of RAM that are above the 4-GB boundary. 

  

You can use Device Manager on your machine to see what is occupying the various reserved 
memory regions that can’t be used by Windows (and that will show up as holes in MemInfo’s 
output). To check Device Manager, run devmgmt.msc, select Resources By Connection on the 
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View menu, and then expand the Memory node. On the laptop computer used for the output 
shown in Figure 9-46, the primary consumer of mapped device memory is, unsurprisingly, the 
video card, which consumes 256 MB in the range E0000000-EFFFFFFF. 

  

Other miscellaneous devices account for most of the rest, and the PCI bus reserves additional 
ranges for devices as part of the conservative estimation the firmware uses during boot. The 
consumption of memory addresses below 4 GB can be drastic on high-end gaming systems with 
large video cards. For example, on a test machine with 8 GB of RAM and two 1-GB video cards, 
only 2.2 GB of the memory was accessible by 32-bit Windows. A large memory hole from 
8FEF0000 to FFFFFFFF is visible in the MemInfo output from the system on which 64-bit 
Windows is installed, shown in Figure 9-47. 

  

Device Manager revealed that 512 MB of the more than 2-GB gap is for the video cards (256 
MB each) and that the firmware had reserved more either for dynamic mappings or because it was 
conservative in its estimate. Finally, even systems with as little as 2 GB can be prevented from 
having all their memory usable under 32-bit Windows because of chipsets that aggressively 
reserve memory regions for devices. 

9.15 Working Sets 

Now that we’ve looked at how Windows keeps track of physical memory, and how much 
memory it can support, we’ll explain how Windows keeps a subset of virtual addresses in physical 
memory.  

As you’ll recall, the term used to describe a subset of virtual pages resident in physical 
memory is called a working set. There are three kinds of working sets:  

■ Process working sets contain the pages referenced by threads within a single process.  

■ The system working set contains the resident subset of the pageable system code (for 
example, Ntoskrnl.exe and drivers), paged pool, and the system cache. 
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■ Each session has a working set that contains the resident subset of the kernel-mode 
session-specific data structures allocated by the kernel-mode part of the Windows subsystem 
(Win32k.sys), session paged pool, session mapped views, and other sessionspace device drivers. 

Before examining the details of each type of working set, let’s look at the overall policy for 
deciding which pages are brought into physical memory and how long they remain. After that, 
we’ll explore the various types of working sets. 

9.15.1 Demand Paging 

The Windows memory manager uses a demand-paging algorithm with clustering to load 
pages into memory. When a thread receives a page fault, the memory manager loads into memory 
the faulted page plus a small number of pages preceding and/or following it. This strategy 
attempts to minimize the number of paging I/Os a thread will incur. Because programs, especially 
large ones, tend to execute in small regions of their address space at any given time, loading 
clusters of virtual pages reduces the number of disk reads. For page faults that reference data 
pages in images, the cluster size is 3 pages. For all other page faults, the cluster size is 7 pages.  

However, a demand-paging policy can result in a process incurring many page faults when its 
threads first begin executing or when they resume execution at a later point. To optimize the 
startup of a process (and the system), Windows has an intelligent prefetch engine called the logical 
prefetcher, described in the next section. Further optimization and prefetching is performed by 
another component called SuperFetch, that we’ll describe later in the chapter. 

9.15.2 Logical Prefetcher 

During a typical system boot or application startup, the order of faults is such that some 
pages are brought in from one part of a file, then perhaps from a distant part of the same file, then 
from a different file, perhaps from a directory, and then again from the first file. This jumping 
around slows down each access considerably and, thus, analysis shows that disk seek times are a 
dominant factor in slowing boot and application startup times. By prefetching batches of pages all 
at once, a more sensible ordering of access, without excessive backtracking, can be achieved, thus 
improving the overall time for system and application startup. The pages that are needed can be 
known in advance because of the high correlation in accesses across boots or application starts. 

The prefetcher tries to speed the boot process and application startup by monitoring the data 
and code accessed by boot and application startups and using that information at the beginning of 
a subsequent boot or application startup to read in the code and data. When the prefetcher is active, 
the memory manager notifies the prefetcher code in the kernel of page faults, both those that 
require that data be read from disk (hard faults) and those that simply require data already in 
memory be added to a process’s working set (soft faults). The prefetcher monitors the first 10 
seconds of application startup. For boot, the prefetcher by default traces from system start through 
the 30 seconds following the start of the user’s shell (typically Explorer) or, failing that, up 



 754

through 60 seconds following Windows service initialization or through 120 seconds, whichever 
comes first. 

The trace assembled in the kernel notes faults taken on the NTFS Master File Table (MFT) 
metadata file (if the application accesses files or directories on NTFS volumes), on referenced 
files, and on referenced directories. With the trace assembled, the kernel prefetcher code waits for 
requests from the prefetcher component of the SuperFetch service (%SystemRoot%\System32 
\Sysmain.dll), running in a copy of Svchost. The Supferfetch service is responsible for both the 
logical prefetching component in the kernel and for the SuperFetch component that we’ll talk 
about later. The prefetcher signals the event \KernelObjects\PrefetchTracesReady to inform the 
SuperFetch service that it can now query trace data. 

Note You can enable or disable prefetching of the boot or application startups by editing the 
DWORD registry value HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory 
Management\PrefetchParameters\EnablePrefetcher. Set it to 0 to disable prefetching altogether, 1 
to enable prefetching of only applications, 2 for prefetching of boot only, and 3 for both boot and 
applications. 

The SuperFetch service (which hosts the logical prefetcher, although it is a completely 
separate component from the actual SuperFetch functionality) performs a call to the internal 
NtQuerySystemInformation system call requesting the trace data. The logical prefetcher 
postprocesses the trace data, combining it with previously collected data, and writes it to a file in 
the %SystemRoot%\Prefetch folder, which is shown in Figure 9-48. The file’s name is the name 
of the application to which the trace applies followed by a dash and the hexadecimal 
representation of a hash of the file’s path. The file has a .pf extension; an example would be 
NOTEPAD.EXE-AF43252301.PF. 

There are two exceptions to the file name rule. The first is for images that host other 
components, including the Microsoft Management Console (%SystemRoot%\System32\Mmc.exe), 
the Service Hosting Process (%SystemRoot%\System32\Svchost.exe), the Run DLL Component 
(%SystemRoot%\System32\Rundll32.exe), and Dllhost (%SystemRoot%\System32\Dllhost.exe). 
Because add-on components are specified on the command line for these applications, the 
prefetcher includes the command line in the generated hash. Thus, invocations of these 
applications with different components on the command line will result in different traces. The 
prefetcher reads the list of executables that it should treat this way from the HostingAppList value 
in its parameters registry key, HKLM\SYSTEM\CurrentControlSet\Control\Session 
Manager\Memory Management\PrefetchParameters, and then allows the SuperFetch service to 
query this list through the NtQuerySystemInformation API. 

The other exception to the file name rule is the file that stores the boot’s trace, which is 
always named NTOSBOOT-B00DFAAD.PF. (If read as a word, “boodfaad” sounds similar to the 
English words boot fast.) Only after the prefetcher has finished the boot trace (the time of which 
was defined earlier) does it collect page fault information for specific applications. 



 755

  

EXPERIMENT: looking Inside a Prefetch File 

A prefetch file’s contents serve as a record of files and directories accessed during the boot or 
an application startup, and you can use the Strings utility from Sysinternals to see the record. The 
following command lists all the files and directories referenced during the last boot: 

1. C:\Windows\Prefetch>Strings –n 5 ntosboot-boodfaad.pf   
2. Strings v2.4  
3. Copyright (C) 1999-2007 Mark Russinovich   
4. Sysinternals - www.sysinternals.com   
5. NTOSBOOT   

6. \DEVICE\HARDDISKVOLUME1\$MFT   

7. \DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\TUNNEL.SYS   

8. \DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\TUNMP.SYS   

9. \DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\I8042PRT.SYS   

10. \DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\KBDCLASS.SYS   

11. \DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\VMMOUSE.SYS   

12. \DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\MOUCLASS.SYS   

13. \DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\PARPORT.SYS   

14. . . .   

When the system boots or an application starts, the prefetcher is called to give it an 
opportunity to perform prefetching. The prefetcher looks in the prefetch directory to see if a trace 
file exists for the prefetch scenario in question. If it does, the prefetcher calls NTFS to prefetch 
any MFT metadata file references, reads in the contents of each of the directories referenced, and 
finally opens each file referenced. It then calls the memory manager function MmPrefetchPages to 
read in any data and code specified in the trace that’s not already in memory. The memory 
manager initiates all the reads asynchronously and then waits for them to complete before letting 
an application’s startup continue. 

EXPERIMENT: Watching Prefetch File Reads and Writes 
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If you capture a trace of application startup with Process Monitor from Sysinternals on a 
client edition of Windows (Windows Server editions disable prefetching by default), you can see 
the prefetcher check for and read the application’s prefetch file (if it exists), and roughly 10 
seconds after the application started, see the prefetcher write out a new copy of the file. Below is a 
capture of Notepad startup with an Include filter set to “prefetch” so that Process Monitor shows 
only accesses to the %SystemRoot%\Prefetch directory: 

  

Lines 1 through 4 show the Notepad prefetch file being read in the context of the Notepad 
process during its startup. Lines 5 through 11, which have time stamps 10 seconds later than the 
first three lines, show the SuperFetch service, which is running in the context of a Svchost process, 
write out the updated prefetch file. 

To minimize seeking even further, every three days or so, during system idle periods, the 
SuperFetch service organizes a list of files and directories in the order that they are referenced 
during a boot or application start and stores the list in a file named Windows\Prefetch\Layout.ini, 
shown in Figure 9-49. This list also includes frequently accessed files tracked by SuperFetch. 

  

Then it launches the system defragmenter with a command-line option that tells the 
defragmenter to defragment based on the contents of the file instead of performing a full defrag. 
The defragmenter finds a contiguous area on each volume large enough to hold all the listed files 
and directories that reside on that volume and then moves them in their entirety into the area so 
that they are stored one after the other. Thus, future prefetch operations will even be more efficient 
because all the data read in is now stored physically on the disk in the order it will be read. 
Because the files defragmented for prefetching usually number only in the hundreds, this 
defragmentation is much faster than full volume defragmentations. (See Chapter 11 for more 
information on  defragmentation.) 
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9.15.3 Placement Policy 

When a thread receives a page fault, the memory manager must also determine where in 
physical memory to put the virtual page. The set of rules it uses to determine the best position is 
called a placement policy. Windows considers the size of CPU memory caches when choosing 
page frames to minimize unnecessary thrashing of the cache.  

If physical memory is full when a page fault occurs, a replacement policy is used to 
determine which virtual page must be removed from memory to make room for the new page. 
Common replacement policies include least recently used (LRU) and first in, first out (FIFO). The 
LRU algorithm (also known as the clock algorithm, as implemented in most versions of UNIX) 
requires the virtual memory system to track when a page in memory is used. When a new page 
frame is required, the page that hasn’t been used for the greatest amount of time is removed from 
the working set. The FIFO algorithm is somewhat simpler; it removes the page that has been in 
physical memory for the greatest amount of time, regardless of how often it’s been used. 

Replacement policies can be further characterized as either global or local. A global 
replacement policy allows a page fault to be satisfied by any page frame, whether or not that frame 
is owned by another process. For example, a global replacement policy using the FIFO algorithm 
would locate the page that has been in memory the longest and would free it to satisfy a page fault; 
a local replacement policy would limit its search for the oldest page to the set of pages already 
owned by the process that incurred the page fault. Global replacement policies make processes 
vulnerable to the behavior of other processes—an ill-behaved application can undermine the entire 
operating system by inducing excessive paging activity in all processes. 

Windows implements a combination of local and global replacement policy. When a working 
set reaches its limit and/or needs to be trimmed because of demands for physical memory, the 
memory manager removes pages from working sets until it has determined there are enough free 
pages. 

9.15.4 Working Set Management 

Every process starts with a default working set minimum of 50 pages and a working set 
maximum of 345 pages. Although it has little effect, you can change the process working set 
limits with the Windows SetProcessWorkingSetSize function, though you must have the “increase 
scheduling priority” user right to do this. However, unless you have configured the process to use 
hard working set limits, these limits are ignored, in that the memory manager will permit a process 
to grow beyond its maximum if it is paging heavily and there is ample memory (and conversely, 
the memory manager will shrink a process below its working set minimum if it is not paging and 
there is a high demand for physical memory on the system). Hard working set limits can be set 
using the SetProcessWorkingSetSizeEx function along with the QUOTA_LIMITS_HARDWS 
_ENABLE flag, but it is almost always better to let the system manage your working set instead of 
setting your own hard working set minimums. 
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The maximum working set size can’t exceed the systemwide maximum calculated at system 
initialization time and stored in the kernel variable MiMaximumWorkingSet, which is a hard 
upper limit based on the working set maximums listed in Table 9-22. 

  

When a page fault occurs, the process’s working set limits and the amount of free memory on 
the system are examined. If conditions permit, the memory manager allows a process to grow to 
its working set maximum (or beyond if the process does not have a hard working set limit and 
there are enough free pages available). However, if memory is tight, Windows replaces rather than 
adds pages in a working set when a fault occurs.  

Although Windows attempts to keep memory available by writing modified pages to disk, 
when modified pages are being generated at a very high rate, more memory is required in order to 
meet memory demands. Therefore, when physical memory runs low, the working set manager, a 
routine that runs in the context of the balance set manager system thread (described in the next 
section), initiates automatic working set trimming to increase the amount of free memory available 
in the system. (With the Windows SetProcess Working SetSizeEx function mentioned earlier, you 
can also initiate working set trimming of your own process—for example, after process 
initialization.) 

The working set manager examines available memory and decides which, if any, working 
sets need to be trimmed. If there is ample memory, the working set manager calculates how many 
pages could be removed from working sets if needed. If trimming is needed, it looks at working 
sets that are above their minimum setting. It also dynamically adjusts the rate at which it examines 
working sets as well as arranges the list of processes that are candidates to be trimmed into an 
optimal order. For example, processes with many pages that have not been accessed recently are 
examined first; larger processes that have been idle longer are considered before smaller processes 
that are running more often; the process running the foreground application is considered last; and 
so on.  

When it finds processes using more than their minimums, the working set manager looks for 
pages to remove from their working sets, making the pages available for other uses. If the amount 
of free memory is still too low, the working set manager continues removing pages from 
processes’ working sets until it achieves a minimum number of free pages on the system. 

The working set manager tries to remove pages that haven’t been accessed recently. It does 
this by checking the accessed bit in the hardware PTE to see whether the page has been accessed. 
If the bit is clear, the page is aged, that is, a count is incremented indicating that the page hasn’t 
been referenced since the last working set trim scan. Later, the age of pages is used to locate 
candidate pages to remove from the working set. 
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If the hardware PTE accessed bit is set, the working set manager clears it and goes on to 
examine the next page in the working set. In this way, if the accessed bit is clear the next time the 
working set manager examines the page, it knows that the page hasn’t been accessed since the last 
time it was examined. This scan for pages to remove continues through the working set list until 
either the number of desired pages has been removed or the scan has returned to the starting point. 
(The next time the working set is trimmed, the scan picks up where it left off last.) 

EXPERIMENT: Viewing Process Working Set Sizes 

You can use the Performance tool to examine process working set sizes by looking at the 
performance counters shown in the following table. 

  

Several other process viewer utilities (such as Task Manager and Process Explorer) also 
display the process working set size. 

You can also get the total of all the process working sets by selecting the _Total process in 
the instance box in the Performance tool. This process isn’t real—it’s simply a total of the 
process-specific counters for all processes currently running on the system. The total you see is 
misleading, however, because the size of each process working set includes pages being shared by 
other processes. Thus, if two or more processes share a page, the page is counted in each process’s 
working set. 

EXPERIMENT: Viewing the Working Set list 

You can view the individual entries in the working set by using the kernel debugger !wsle 
command. The following example shows a partial output of the working set list of WinDbg. 

1. lkd> !wsle 7  
2. Working Set @ c0802000  
3. FirstFree 209c FirstDynamic 6  
4. LastEntry 242e NextSlot 6 LastInitialized 24b9  
5. NonDirect 0 HashTable 0 HashTableSize 0  
6. Reading the WSLE data ................................................................   
7. Virtual Address Age Locked ReferenceCount   
8. c0600203 0 1 1  
9. c0601203 0 1 1  
10. c0602203 0 1 1  
11. c0603203 0 1 1  
12. c0604213 0 1 1  
13. c0802203 0 1 1  
14. 2865201 0 0 1  
15. 1a6d201 0 0 1  
16. 3f4201 0 0 1  
17. 707ed101 0 0 1  
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18. 2d27201 0 0 1  
19. 2d28201 0 0 1  
20. 772f5101 0 0 1  
21. 2d2a201 0 0 1  
22. 2d2b201 0 0 1  
23. 2d2c201 0 0 1  
24. 779c3101 0 0 1  
25. c0002201 0 0 1  
26. 7794f101 0 0 1  
27. 7ffd1109 0 0 1  
28. 7ffd2109 0 0 1  
29. 7ffc0009 0 0 1  
30. 7ffb0009 0 0 1  
31. 77940101 0 0 1  
32. 77944101 0 0 1  
33. 112109 0 0 1  
34. 320109 0 0 1  
35. 322109 0 0 1  
36. 77949101 0 0 1  
37. 110109 0 0 1  
38. 77930101 0 0 1  
39. 111109 0 0 1  

Notice that some entries in the working set list are page table pages (the ones with addresses 
greater than 0xC0000000), some are from system DLLs (the ones in the 0x7nnnnnnn range), and 
some are from the code of Windbg.exe itself. 

9.15.5 Balance Set Manager and Swapper 

Working set expansion and trimming take place in the context of a system thread called the 
balance set manager (routine KeBalanceSetManager). The balance set manager is created during 
system initialization. Although the balance set manager is technically part of the kernel, it calls the 
memory manager’s working set manager (MmWorkingSetManager) to perform working set 
analysis and adjustment.  

The balance set manager waits for two different event objects: an event that is signaled when 
a periodic timer set to fire once per second expires and an internal working set manager event that 
the memory manager signals at various points when it determines that working sets need to be 
adjusted. For example, if the system is experiencing a high page fault rate or the free list is too 
small, the memory manager wakes up the balance set manager so that it will call the working set 
manager to begin trimming working sets. When memory is more plentiful, the working set 
manager will permit faulting processes to gradually increase the size of their working sets by 
faulting pages back into memory, but the working sets will grow only as needed. 
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When the balance set manager wakes up as the result of its 1-second timer expiring, it takes 
the following five steps: 

1. It queues a DPC associated to a 1-second timer. The DPC routine is the 
KiScanReadyQueues routine, which looks for threads that might warrant having their priority 
boosted because they are CPU starved. (See the section “Priority Boosts for CPU Starvation” in 
Chapter 5.) 

2. Every fourth time the balance set manager wakes up because its 1-second timer has 
expired, it signals an event that wakes up another system thread called the swapper 
(KiSwapperThread) (routine KeSwapProcessOrStack). 

3. The balance set manager then checks the look-aside lists and adjusts their depths if 
necessary (to improve access time and to reduce pool usage and pool fragmentation). 

4. It adjusts IRP credits to optimize the usage of the per-processor look-aside lists used in 
IRP completion. This allows better scalability when certain processors are under heavy I/O load. 

5. It calls the memory manager’s working set manager. (The working set manager has its 
own internal counters that regulate when to perform working set trimming and how aggressively 
to trim.) 

The swapper is also awakened by the scheduling code in the kernel if a thread that needs to 
run has its kernel stack swapped out or if the process has been swapped out. The swapper looks 
for threads that have been in a wait state for 15 seconds (or 3 seconds on a system with less than 
12 MB of RAM). If it finds one, it puts the thread’s kernel stack in transition (moving the pages to 
the modified or standby lists) so as to reclaim its physical memory, operating on the principle that 
if a thread’s been waiting that long, it’s going to be waiting even longer.  

When the last thread in a process has its kernel stack removed from memory, the process is 
marked to be entirely outswapped. That’s why, for example, processes that have been idle for a 
long time (such as Winlogon is after you log on) can have a zero working set size. 

9.15.6 System Working Set 

Just as processes have working sets, the pageable code and data in the operating system are 
managed by a single system working set. Five different kinds of pages can reside in the system 
working set: 

■ System cache pages 

■ Paged pool 

■ Pageable code and data in Ntoskrnl.exe 

■ Pageable code and data in device drivers 

■ System mapped views 
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You can examine the size of the system working set or the size of the five components that 
contribute to it with the performance counters or system variables shown in Table 9-23. Keep in 
mind that the performance counter values are in bytes whereas the system variables are measured 
in terms of pages. 

You can also examine the paging activity in the system working set by examining the 
Memory: Cache Faults/sec performance counter, which describes page faults that occur in the 
system working set (both hard and soft). 

  

MmSystemCacheWs.Page Fault Count is the system variable that contains the value for this 
counter. 

9.15.7 Memory Notification Events 

Windows provides a way for user-mode processes and kernel-mode drivers to be notified 
when physical memory, paged pool, nonpaged pool, and commit charge are low and/or plentiful. 
This information can be used to determine memory usage as appropriate. For example, if available 
memory is low, the application can reduce memory consumption. If available paged pool is high, 
the driver can allocate more memory. Finally, the memory manager also provides an event that 
permits notification when corrupted pages have been detected. 

User-mode processes can be notified only of low or high memory conditions. An application 
can call the CreateMemoryResourceNotification function, specifying whether low or high 
memory notification is desired. A handle can be provided to any of the wait functions. When 
memory is low (or high), the wait completes, thus notifying the thread of the condition. 
Alternatively, the QueryMemoryResourceNotification can be used to query the system memory 
condition at any time. 
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Drivers, on the other hand, use the specific event name that the memory manager has set up 
in the \KernelObjects directory, since notification is implemented by the memory manager 
signaling one of the globally named event objects it defines, shown in Table 9-24.  

  

When a given memory condition is detected, the appropriate event is signaled, thus waking 
up any waiting threads. 

Note The high and low memory values can be overridden by adding a DWORD registry 
value, LowMemoryThreshold or HighMemoryThreshold, under HKLM\SYSTEM 
\CurrentControlSet\Session Manager\Memory Management that specifies the number of 
megabytes to use as the low or high threshold. The system can also be configured to crash the 
system when a bad page is detected, instead of signaling a memory error event, by setting the 
PageValidationAction DWORD registry value in the same key. 

EXPERIMENT: Viewing the Memory Resource Notification Events 

To see the memory resource notification events, run Winobj from Sysinternals and click on 
the KernelObjects folder. You will see both the low and high memory condition events shown in 
the right pane: 
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If you double-click either event, you can see how many handles and/or references have been 
made to the objects. 

To see whether any processes in the system have requested memory resource notification, 
search the handle table for references to “LowMemoryCondition” or “HighMemoryCondition.” 
You can do this by using Process Explorer’s Find menu and choosing the Handle capability or by 
using WinDbg. (For a description of the handle table, see the section on the “Object Manager” in 
Chapter 3.) 

9.16 Proactive Memory Management (SuperFetch) 

Traditional memory management in operating systems has focused on the demand-paging 
model we’ve shown until now, with some advancements in clustering and prefetching so that disk 
I/Os can be optimized at the time of the demand-page fault. Client versions of Windows Vista and 
later releases, however, include a significant improvement in the management of physical memory 
with the implementation of SuperFetch, a memory management scheme that enhances the 
least-recently accessed approach with historical information and proactive memory management.  

The standby list management of previous Windows versions has had two limitations. First, 
the prioritization of pages relies only on the recent past behavior of processes and does not 
anticipate their future memory requirements. Second, the data used for prioritization is limited to 
the list of pages owned by a process at any given point in time. These shortcomings can result in 
scenarios in which the computer is left unattended for a brief period of time, during which a 
memory-intensive system application runs (doing work such as an antivirus scan or a disk 
defragmentation) and then causes subsequent interactive application use (or launch) to be sluggish. 
The same situation can happen when a user purposely runs a data and/or memory intensive 
application and then returns to use other programs, which appear to be significantly less 
responsive. 

This decline in performance occurs because the memory-intensive application forces the code 
and data that active applications had cached in memory to be overwritten by the memory-intensive 
activities—applications perform sluggishly as they have to request their data and code from disk. 
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Client versions of Windows Vista and later take a big step toward resolving these limitations with 
SuperFetch. 

9.16.1 Components 

SuperFetch is composed of several components in the system that work hand in hand to 
proactively manage memory and limit the impact on user activity when SuperFetch is performing 
its work. These components include: 

■ Tracer The tracer mechanisms are part of a kernel component (Pf) that allows SuperFetch 
to query detailed page usage, session, and process information at any time. SuperFetch also makes 
use of the FileInfo driver (%SystemRoot%\System32\Drivers\Fileinfo.sys) to track file usage. 

■ Trace Collector and Processor This collector works with the tracing components to provide 
a raw log based on the tracing data that has been acquired. This tracing data is kept in memory and 
handed off to the processor. The processor then hands the log entries in the trace to the agents, 
which maintain history files (described below) in memory and persist them to disk when the 
service stops (such as during a reboot). 

■ Agents SuperFetch keeps file page access information in history files, which keep track of 
virtual offsets. Agents group pages by attributes, such as: 

❏ Page access while the user was active 

❏ Page access by a foreground process 

❏ Hard fault while the user was active 

❏ Page access during an application launch 

❏ Page access upon the user returning after a long idle period 

■ Scenario manager This component, also called the context agent, manages the three 
SuperFetch scenario plans: hibernation, standby, and fast-user switching The kernelmode part of 
the scenario manager provides APIs for initiating and terminating scenarios, managing current 
scenario state, and associating tracing information with these scenarios. 

■ Rebalancer Based on the information provided by the SuperFetch agents, as well as the 
current state of the system (such as the state of the prioritized page lists), the rebalancer, a 
specialized agent that is located in the SuperFetch user-mode service, queries the PFN database 
and reprioritizes it based on the associated score of each page, thus building the prioritized 
standby lists. The rebalancer can also issue commands to the memory manager that modify the 
working sets of processes on the system, and it is the only agent that actually takes action on the 
system—other agents merely filter information for the rebalancer to use in its decisions. Other 
than reprioritization, the rebalancer also initiates prefetching through the prefetcher thread, which 
makes use of FileInfo and kernel services to preload memory with useful pages. 

Finally, all these components make use of facilities inside the memory manager that allow 
querying detailed information about the state of each page in the PFN database, the current page 
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counts for each page list and prioritized list, and more. Figure 9-50 displays an architectural 
diagram of SuperFetch’s multiple components. SuperFetch components also make use of 
prioritized I/O (see Chapter 7 for more information on I/O priority) to minimize user. 

 

9.16.2 Tracing and Logging 

SuperFetch makes most of its decisions based on information that has been integrated, parsed, 
and post-processed from raw traces and logs, making these two components among the most 
critical. Tracing is similar to ETW in some ways because it makes use of certain triggers in code 
throughout the system to generate events, but it also works in conjunction with facilities already 
provided by the system, such as power manager notification, process callbacks, and file system 
filtering. The tracer also makes use of traditional page aging mechanisms that exist in the memory 
manager, as well as newer working set aging and access tracking implemented for SuperFetch.  

SuperFetch always keeps a trace running and continuously queries trace data from the system, 
which tracks page usage and access through the memory manager’s access bit tracking and 
working set aging. To track file-related information, which is as critical as page usage because it 
allows prioritization of file data in the cache, SuperFetch leverages existing filtering functionality 
with the addition of the FileInfo driver. (See Chapter 7 for more information on filter drivers.) 
This driver sits on the file system device stack and monitors access and changes to files at the 
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stream level (for more information on NTFS data streams, see Chapter 11), which provides it with 
fine-grained understanding of file access. The main job of the FileInfo driver is to associate 
streams (identified by a unique key, currently implemented as the FsContext field of the respective 
file object) with file names so that the user-mode SuperFetch service can identify the specific file 
steam and offset with which a page in the standby list belonging to a memory mapped section is 
associated. It also provides the interface for prefetching file data transparently, without interfering 
with locked files and other file system state. The rest of the driver ensures that the information 
stays consistent by tracking deletions, renaming operations, truncations, and the reuse of file keys 
by implementing sequence numbers. 

At any time during tracing, the rebalancer might be invoked to repopulate pages differently. 
These decisions are made by analyzing information such as the distribution of memory within 
working sets, the zero page list, the modified page list and the standby page lists, the number of 
faults, the state of PTE access bits, the per-page usage traces, current virtual address consumption, 
and working set size. 

A given trace can be either a page access trace, in which the tracer keeps track (by using the 
access bit) of which pages were accessed by the process (both file page and private memory), or a 
name logging trace, which monitors the file-name-to-file-key-mapping updates (which allow 
SuperFetch to map a page associated with a file object) to the actual file on disk.  

Although a SuperFetch trace only keeps track of page accesses, the SuperFetch service 
processes this trace in user mode and goes much deeper, adding its own richer information such as 
where the page was loaded from (such as resident memory or a hard page fault), whether this was 
the initial access to that page, and what the rate of page access actually is. Additional information, 
such as the system state, is also kept, as well as information about in which recent scenarios each 
traced page was last referenced. The generated trace information is kept in memory through a 
logger into data structures, which  identify, in the case of page access traces, a 
virtual-address-to-working-set pair or, in the case of a name logging trace, a file-to-offset pair. 
SuperFetch can thus keep track of which range of virtual addresses for a given process have 
page-related events and which range of offsets for a given file have similar events. 

9.16.3 Scenarios 

One aspect of SuperFetch that is distinct from its primary page repriorization and prefetching 
mechanisms (covered in more detail in the next section) is its support for scenarios, which are 
specific actions on the machine for which SuperFetch strives to improve the user experience. 
These scenarios are standby and hibernation as well as fast user switching. Each of these scenarios 
has different goals, but all are centered around the main purpose of minimizing or removing hard 
faults.  

■ For hibernation, the goal is to intelligently decide which pages are saved in the hibernation 
file other than the existing working set pages. The goal is to minimize the amount of time that it 
takes for the system to become responsive after a resume. 
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■ For standby, the goal is to completely remove hard faults after resume. Because a typical 
system can resume in less than 2 seconds, but can take 5 seconds to spin-up the hard drive after a 
long sleep, a single hard fault could cause such a delay in the resume cycle. SuperFetch prioritizes 
pages needed after a standby to remove this chance. 

■ For fast user switching, the goal is to keep an accurate priority and understanding of each 
user’s memory, so that switching to another user will cause the user’s session to be immediately 
usable, and not require a large amount of lag time to allow pages to be faulted in. 

Scenarios are hardcoded, and SuperFetch manages them through the NtSetSystem- 
Information and NtQuerySystemInformation APIs that control system state. For SuperFetch 
purposes, a special information class, SystemSuperFetchInformation, is used to control the 
kernel-mode components and to generate requests such as starting, ending, and querying a 
scenario or associating one or more traces with a scenario. 

Each scenario is defined by a plan file, which contains, at minimum, a list of pages associated 
with the scenario. Page priority values are also assigned according to certain rules we’ll describe 
next. When a scenario starts, the scenario manager is responsible for responding to the event by 
generating the list of pages that should be brought into memory and at which priority. 

9.16.4 Page Priority and Rebalancing 

We’ve already seen that the memory manager implements a system of page priorities to 
define from which standby list pages will be repurposed for a given operation and in which list a 
given page will be inserted. This mechanism provides benefits when processes and threads can 
have associated priorities—such that a defragmenter process doesn’t pollute the standby page list 
and/or steal pages from an interactive, foreground process—but its real power is unleashed 
through SuperFetch’s page prioritization schemes and rebalancing, which don’t require manual 
application input or hardcoded knowledge of process importance.  

SuperFetch assigns page priority based on an internal score it keeps for each page, part of 
which is based on frequency-based usage. This usage counts how many times a page was used in 
given relative time intervals, such as an hour, a day, or a week. Time of use is also kept track of, 
which records for how long a given page has not been accessed. Finally, data such as where this 
page comes from (which list) and other access patterns are used to compute this final score, which 
is then translated into a priority number, which can be anywhere from 1 to 6 (7 is used for another 
purpose described later). Going down each level, the lower standby page list priorities are 
repurposed first, as shown in the Experiment “Viewing Prioritized Standby Lists.” Priority 5 is 
typically used for normal applications, while priority 1 is meant for background applications that 
third-party developers can mark as such. Finally, priority 6 is used to keep a certain number of 
high-importance pages as far away as possible from repurposing. 

The other priorities are a result of the score associated with each page. Because SuperFetch 
“learns” a user’s system, it can start from scratch with no existing historical data and slowly build 
up an understanding of the different page usage accesses associated with the user. However, this 
would result in a significant learning curve whenever a new application, user, or service pack was 
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installed. Instead, by using an internal tool, Microsoft has the ability to pretrain SuperFetch to 
capture SuperFetch data and then turn it into prebuilt traces. Before Windows shipped, the 
SuperFetch team traced common usages and patterns that all users will probably encounter, such 
as clicking the Start menu, opening Control Panel, or using the File Open/Save dialog box. This 
trace data was then saved to history files (which ship as resources in Sysmain.dll) and is used to 
prepopulate the special priority 7 list, which is where the most critical data is placed and which is 
very rarely repurposed. Pages at priority 7 are file pages kept in memory even after the process has 
exited and even across reboots (by being repopulated at the next boot). Finally, pages with priority 
7 are static, in that they are never reprioritized, and SuperFetch will never dynamically load pages 
at priority 7 other than the static pretrained set. 

The prioritized list is loaded into memory (or prepopulated) by the rebalancer, but the actual 
act of rebalancing is actually handled both by SuperFetch and the memory manager. As shown 
earlier, the prioritized standby page list mechanism is internal to the memory manager, and 
decisions as to which pages to throw out first and which to protect are innate, based on the priority 
number. The rebalancer actually does its job not by manually rebalancing memory but by 
reprioritizing it, which will cause the operation of the memory manager to perform the needed 
tasks. The rebalancer is also responsible for reading the actual pages from disk, if needed, so that 
they are present in memory (prefetching). It then assigns the priority that is mapped by each agent 
to the score for each page, and the memory manager will then ensure that the page is treated 
according to its importance. 

The rebalancer can also take action without relying on other agents; for example, if it notices 
that the distribution of pages across paging lists is suboptimal or that the number of repurposed 
pages across different priority levels is detrimental. The rebalancer also has the ability to cause 
working set trimming if needed, which might be required for creating an appropriate budget of 
pages that will be used for SuperFetch prepopulated cache data. The rebalancer will typically take 
low-utility pages—such as those that are already marked as low priority, pages that are zeroed, 
and pages with valid contents but not in any working set and have been unused—and build a more 
useful set of pages in memory, given the budget it has allocated itself. 

Once the rebalancer has decided which pages to bring into memory and at which priority 
level they need to be loaded (as well as which pages can be thrown out), it performs the required 
disk reads to prefetch them. It also works in conjunction with the I/O manager’s prioritization 
schemes so that the I/Os are performed with very low priority and do not interfere with the user. It 
is important to note that the actual memory consumption used by prefetching is all backed by 
standby pages—as described earlier in the discussion of page dynamics, standby memory is 
available memory because it can be repurposed as free memory for another allocator at any time. 
In other words, if SuperFetch is prefetching the “wrong data,” there is no real impact to the user, 
because that memory can be reused when needed and doesn’t actually consume resources. 

Finally, the rebalancer also runs periodically to ensure that pages it has marked as high 
priority have actually been recently used. Because these pages will rarely (sometimes never) be 
repurposed, it is important not to waste them on data that is rarely accessed but may have appeared 
to be frequently accessed during a certain time period. If such a situation is detected, the 
rebalancer runs again to push those pages down in the priority lists.  
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In addition to the rebalancer, a special agent called the application launch agent is also 
involved in a different kind of prefetching mechanism, which attempts to predict application 
launches and builds a Markov chain model that describes the probability of certain application 
launches given the existence of other application launches within a time segment. These time 
segments are divided across four different periods—morning, noon, evening, and night; roughly 6 
hours each—and are also kept track of separately as weekdays or weekends. For example, if on 
Saturday and Sunday evening a user typically launches Outlook (to send e-mail) after having 
launched Word (to write letters), the application launch agent will probably have prefetched 
Outlook based on the high probability of it running after Word during weekend evenings. 

Because systems today have sufficiently large amounts of memory, on average more than 2 
GB (although SuperFetch works well on low-memory systems, too), the actual real amount of 
memory that frequently used processes on a machine need resident for optimal performance ends 
up being a manageable subset of their entire memory footprint, and SuperFetch can often fit all the 
pages required into RAM. When it can’t, technologies such as ReadyBoost and ReadyDrive can 
further avoid disk usage. 

9.16.5 Robust Performance 

A final performance enhancing functionality of SuperFetch is called robustness, or robust 
performance. This component, managed by the user-mode SuperFetch service, but ultimately 
implemented in the kernel (Pf routines), watches for specific file I/O access that might harm 
system performance by populating the standby lists with unneeded data. For example, if a process 
were to copy a large file across the file system, the standby list would be populated with the file’s 
contents, even though that file might never be accessed again (or not for a long period of time). 
This would throw out any other data within that priority (and if this was an interactive and useful 
program, chances are its priority would’ve been at least 5).  

SuperFetch responds to two specific kinds of I/O access patterns: sequential file access 
(going through all the data in a file) and sequential directory access (going through every file in a 
directory). When SuperFetch detects that a certain amount of data (past an internal threshold) has 
been populated in the standby list as a result of this kind of access, it applies aggressive 
deprioritization (robustion) to the pages being used to map this file, within the targeted process 
only (so as not to penalize other applications). These pages, so-called robusted, essentially become 
reprioritized to priority 2. 

Because this component of SuperFetch is reactive and not predictive, it does take some time 
for the robustion to kick in. SuperFetch will therefore keep track of this process for the next time it 
runs. Once SuperFetch has determined that it appears that this process always performs this kind 
of sequential access, SuperFetch remembers it and robusts the file pages as soon as they’re 
mapped, instead of waiting on the reactive behavior. At this point, the entire process is now 
considered robusted for future file access. 

Just by applying this logic, however, SuperFetch could potentially hurt many legitimate 
applications or user scenarios that perform sequential access in the future. For example, by using 
the Sysinternals Strings.exe utility, you can look for a string in all executables that are part of a 
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directory. If there are many files, SuperFetch would likely perform robustion. Now, next time you 
run Strings with a different search parameter, it would run just as slowly as it did the first time, 
even though you’d expect it to run much faster. To prevent this, SuperFetch keeps a list of 
processes that it watches into the future, as well as an internal hard-coded list of exceptions. If a 
process is detected to later re-access robusted files, robustion is disabled on the process in order to 
restore expected behavior.  

The main point to remember when thinking about robustion, and SuperFetch optimizations in 
general, is that SuperFetch constantly monitors usage patterns and updates its understanding of the 
system, so that it can avoid fetching useless data. Although changes in a user’s daily activities or 
application startup behavior might cause SuperFetch to incorrectly “pollute” the cache with 
irrelevant data or to throw out data that SuperFetch might think is useless, it will quickly adapt to 
any pattern changes. If the user’s actions are erratic and random, the worst that can happen is that 
the system behaves in a similar state as if SuperFetch was not present at all. If SuperFetch is ever 
in doubt or cannot track data reliably, it quiets itself and doesn’t make changes to a given process 
or page, keeping the behavior as it would have been on a Windows XP machine, for example.  

9.16.6 ReadyBoost 

Although RAM today is somewhat easily available and relatively cheap compared to a 
decade ago, it still doesn’t beat the cost of secondary storage such as hard disk drives. 
Unfortunately, hard disks today contain many moving parts, are fragile, and, more importantly, 
relatively slow compared to RAM, especially during seeking, so storing active SuperFetch data on 
the drive would be as bad as paging out a page and hard faulting it inside memory. (Solid state 
disks offset some of these disadvantages, but they are pricier and still slow compared to RAM.) 
On the other hand, portable solid state media such as USB keys, CompactFlash cards, and Secure 
Digital cards provide a useful compromise. They are cheaper than RAM and available in larger 
sizes, but they also have seek times much shorter than hard drives because of the lack of moving 
parts. 

Random disk I/O is especially expensive because disk head seek times are on the order of 10 
milliseconds—an eternity for today’s 3-GHz processors. Flash memory, however, can service 
random reads up to 10 times faster than a typical hard disk. Windows therefore includes a feature 
called ReadyBoost to take advantage of flash memory storage devices by creating an intermediate 
caching layer on them that logically sits between memory and disks. ReadyBoost consists of a 
service (%SystemRoot%\System32\Emdmgmt.dll) that runs in a Service Host process and a 
volume filter driver (%SystemRoot%\System32\Drivers\Ecache.sys). (Emd is short for External 
Memory Device, the working name for ReadyBoost during its development.) When you insert a 
flash device like a USB key into a system, the ReadyBoost service looks at the device to 
determine its performance characteristics and stores the results of its test in HKLM\SOFTWARE 
\Microsoft\Windows NT\CurrentVersion\Emdmgmt, as shown in Figure 9-51. 
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If you aren’t already using a device for caching and the new device is between 256 MB and 
32 GB in size, has a transfer rate of 2.5 MB per second or higher for random 4-KB reads, and has 
a transfer rate of 1.75 MB per second or higher for random 512-KB writes, then ReadyBoost will 
ask if you’d like to dedicate up to 4 GB of the storage for disk caching. (Although ReadyBoost 
can use NTFS, it limits the maximum cache size to 4 GB to accommodate FAT32 limitations.) If 
you agree, the service creates a caching file named Ready Boost.sfcache in the root of the device, 
which it will use to store cached pages (the initial cache is built by querying SuperFetch’s cache, 
but later contents are fully managed by ReadyBoost independently).  

After the ReadyBoost service initializes caching, the Ecache.sys device driver intercepts all 
reads and writes to local hard disk volumes (C:\, for example) and copies any data being read or 
written into the caching file that the service created, with certain exceptions such as data that 
hasn’t been read in a long while, or data that belongs to Volume Snapshot requests. Ecache.sys 
compresses data and typically achieves a 2:1 compression ratio, so a 4-GB cache file will usually 
contain 8 GB of data. The driver encrypts each block it writes using Advanced Encryption 
Standard (AES) encryption with a randomly generated per-boot session key in order to guarantee 
the privacy of the data in the cache if the device is removed from the system. 

When ReadyBoost sees random reads that can be satisfied from the cache, it services them 
from there, but because hard disks have better sequential read access than flash memory, it lets 
reads that are part of sequential access patterns go directly to the disk even if the data is in the 
cache. Likewise, when reading the cache, if large I/Os have to be done, the on-disk cache will be 
read insead. 

One disadvantage of depending on flash media is that the user can remove it at any time, 
which means the system can never solely store critical data on the media (as we’ve seen, writes 
always go to the secondary storage first). A related technology, ReadyDrive, covered in the next 
section, offers additional benefits and solves this problem. 

9.16.7 ReadyDrive 

ReadyDrive is a Windows feature that takes advantage of hybrid hard disk drives called 
H-HDDs. An H-HDD is a disk with embedded nonvolatile flash memory (also known as 
NVRAM). Typical H-HDDs include between 50 MB and 512 MB of cache, but the Windows 
cache limit is 2 TB. 



 773

Windows uses ATA-8 commands to define the disk data to be held in the flash memory. For 
example, Windows will save boot data to the cache when the system shuts down, allowing for 
faster restarting. It also stores portions of hibernation file data in the cache when the system 
hibernates so that the subsequent resume is faster. Because the cache is enabled even when the 
disk is spun down, Windows can use the flash memory as a disk-write cache, which avoids 
spinning up the disk when the system is running on battery power. Keeping the disk spindle turned 
off can save much of the power consumed by the disk drive under normal usage.  

Another consumer of ReadyDrive is SuperFetch, since it offers the same advantages as 
ReadyBoost with some enhanced functionality, such as not requiring an external flash device and 
having the ability to work persistently. Because the cache is on the actual physical hard drive 
(which typically a user cannot remove while the computer is running), the hard drive controller 
typically doesn’t have to worry about the data disappearing and can avoid making writes to the 
actual disk, using solely the cache. 

RaM Optimization Software 

While SuperFetch provides valuable and realistic optimization of memory usage for the 
various scenarios it aims to support, many third-party software manufacturers are involved in the 
distribution of so-called “RAM Optimization” software, which aims to significantly increase 
available memory on a user’s system. These memory optimizers typically present a user interface 
that shows a graph labeled “Available Memory,” and a line typically shows the amount of 
memory that the optimizer will try to free when it runs. After the optimization job runs, the 
utility’s available memory counter often goes up, sometimes dramatically, implying that the tool is 
actually freeing up memory for application use. RAM optimizers work by allocating and then 
freeing large amounts of virtual memory. The following illustration shows the effect a RAM 
optimizer has on a system: 

  

The Before bar depicts the process and system working sets, the pages in standby lists, and 
free memory before optimization. The During bar shows that the RAM optimizer creates a high 
memory demand, which it does by incurring many page faults in a short time. In response, the 
memory manager increases the RAM optimizer’s working set. This working-set expansion occurs 
at the expense of free memory, followed by standby pages and—when available memory becomes 
low—at the expense of other process working sets. The After bar illustrates how, after the RAM 
optimizer frees its memory, the memory manager moves all the pages that were assigned to the 
RAM optimizer to the free page list (which ultimately get zeroed by the zero page thread and 
moved to the zeroed page list), thus contributing to the free memory value. 
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Although gaining more free memory might seem like a good thing, it isn’t. As RAM 
optimizers force the available memory counter up, they force other processes’ data and code out of 
memory. If you’re running Microsoft Word, for example, the text of open documents and the 
program code that was part of Word’s working set before the optimization (and was therefore 
present in physical memory) must be reread from disk as you continue to edit your document. 
Additionally, by depleting the standby lists, valuable cached data is lost, including much of 
SuperFetch’s cache. The performance degradation can be especially severe on servers, where the 
trimming of the system working set causes cached file data in physical memory to be thrown out, 
causing hard faults the next time it is accessed. 

9.17. Conclusion 

In this chapter, we’ve examined how the Windows memory manager implements virtual 
memory management. As with most modern operating systems, each process is given access to a 
private address space, protecting one process’s memory from another’s but allowing processes to 
share memory efficiently and securely. Advanced capabilities, such as the inclusion of mapped 
files and the ability to sparsely allocate memory, are also available. The Windows environment 
subsystem makes most of the memory manager’s capabilities available to applications through the 
Windows API. 

The next chapter covers a component tightly integrated with the memory manager, the cache 
manager. 
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10. Cache Manager 

The cache manager is a set of kernel-mode functions and system threads that cooperate with 
the memory manager to provide data caching for all Windows file system drivers (both local and 
network). In this chapter, we’ll explain how the cache manager, including its key internal data 
structures and functions, works; how it is sized at system initialization time; how it interacts with 
other elements of the operating system; and how you can observe its activity through performance 
counters. We’ll also describe the five flags on the Windows CreateFile function that affect file 
caching.  

Note None of the cache manager’s internal functions are outlined in this chapter beyond the 
depth required to explain how the cache manager works. The programming interfaces to the cache 
manager are documented in the Windows Driver Ki t (WDK). For more information about the 
WDK, see www.microsoft.com/whdc/devtools/wdk/default.mspx. 

10.1 Key Features of the Cache Manager 

The cache manager has several key features: 

■ Supports all file system types (both local and network), thus removing the need for each 
file system to implement its own cache management code 

■ Uses the memory manager to control which parts of which files are in physical memory 
(trading off demands for physical memory between user processes and the operating system) 

■ Caches data on a virtual block basis (offsets within a file)—in contrast to many caching 
systems, which cache on a logical block basis (offsets within a disk volume)—allowing for 
intelligent read-ahead and high-speed access to the cache without involving file system drivers 
(This method of caching, called fast I/O, is described later in this chapter.) 

■ Supports “hints” passed by applications at file open time (such as random versus sequential 
access, temporary file creation, and so on) 

■ Supports recoverable file systems (for example, those that use transaction logging) to 
recover data after a system failure 

Although we’ll talk more throughout this chapter about how these features are used in the 
cache manager, in this section we’ll introduce you to the concepts behind these features. 

Single, Centralized System Cache 

Some operating systems rely on each individual file system to cache data, a practice that 
results either in duplicated caching and memory management code in the operating system or in 
limitations on the kinds of data that can be cached. In contrast, Windows offers a centralized 
caching facility that caches all externally stored data, whether on local hard disks, floppy disks, 
network file servers, or CD-ROMs. Any data can be cached, whether it’s user data streams (the 
contents of a file and the ongoing read and write activity to that file) or file system metadata (such 
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as directory and file headers). As you’ll discover in this chapter, the method Windows uses to 
access the cache depends on the type of data being cached.  

The Memory Manager 

One unusual aspect of the cache manager is that it never knows how much cached data is 
actually in physical memory. This statement might sound strange because the purpose of a cache 
is to keep a subset of frequently accessed data in physical memory as a way to improve I/O 
performance. The reason the cache manager doesn’t know how much data is in physical memory 
is that it accesses data by mapping views of files into system virtual address spaces,  using 
standard section objects (file mapping objects in Windows API terminology). (Section objects are 
the basic primitive of the memory manager and are explained in detail in Chapter 9.) As addresses 
in these mapped views are accessed, the memory manager pages in blocks that aren’t in physical 
memory. And when memory demands dictate, the memory manager pages data out of the cache 
and back to the files that are open in (mapped into) the cache.  

By caching on the basis of a virtual address space using mapped files, the cache manager 
avoids generating read or write I/O request packets (IRPs) to access the data for files it’s caching. 
Instead, it simply copies data to or from the virtual addresses where the portion of the cached file 
is mapped and relies on the memory manager to fault in (or out) the data into (or out of) memory 
as needed. This process allows the memory manager to make global tradeoffs on how much 
memory to give to the system cache versus how much to give to user processes. (The cache 
manager also initiates I/O, such as lazy writing, which is described later in this chapter; however, 
it calls the memory manager to write the pages.) Also, as you’ll learn in the next section, this 
design makes it possible for processes that open cached files to see the same data as do processes 
that are mapping the same files into their user address spaces. 

Cache Coherency 

One important function of a cache manager is to ensure that any process accessing cached 
data will get the most recent version of that data. A problem can arise when one process opens a 
file (and hence the file is cached) while another process maps the file into its address space 
directly (using the Windows MapViewOfFile function). This potential problem doesn’t occur 
under Windows because both the cache manager and the user applications that map files into their 
address spaces use the same memory management file mapping services. Because the memory 
manager guarantees that it has only one representation of each unique mapped file (regardless of 
the number of section objects or mapped views), it maps all views of a file (even if they overlap) 
to a single set of pages in physical memory, as shown in Figure 10-1. (For more information on 
how the memory manager works with mapped files, see Chapter 9.) 
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So, for example, if Process 1 has a view (View 1) of the file mapped into its user address 
space, and Process 2 is accessing the same view via the system cache, Process 2 will see any 
changes that Process 1 makes as they’re made, not as they’re flushed. The memory manager won’t 
flush all user-mapped pages—only those that it knows have been written to (because they have the 
modified bit set). Therefore, any process accessing a file under Windows always sees the most 
up-to-date version of that file, even if some processes have the file open through the I/O system 
and others have the file mapped into their address space using the Windows file mapping 
functions. 

Note Cache coherency in this case refers to coherency between user-mapped data and cached 
I/O and not between noncached and cached hardware access and I/Os, which are almost 
guaranteed to be incoherent. Also, cache coherency is somewhat more difficult for network 
redirectors than for local file systems because network redirectors must implement additional 
flushing and purge operations to ensure cache coherency when accessing network data. See 
Chapter 11 for a description of opportunistic locking, the Windows distributed cache coherency 
mechanism. 

Virtual Block Caching 

The Windows cache manager uses a method known as virtual block caching, in which the 
cache manager keeps track of which parts of which files are in the cache. The cache manager is 
able to monitor these file portions by mapping 256-KB views of files into system virtual address 
spaces, using special system cache routines located in the memory manager. This approach has the 
following key benefits: 

■ It opens up the possibility of doing intelligent read-ahead; because the cache tracks which 
parts of which files are in the cache, it can predict where the caller might be going next. 



 778

■ It allows the I/O system to bypass going to the file system for requests for data that is 
already in the cache (fast I/O). Because the cache manager knows which parts of which files are in 
the cache, it can return the address of cached data to satisfy an I/O request without having to call 
the file system. 

Details of how intelligent read-ahead and fast I/O work are provided later in this chapter. 

Stream-Based Caching 

The cache manager is also designed to do stream caching, as opposed to file caching. A 
stream is a sequence of bytes within a file. Some file systems, such as NTFS, allow a file to 
contain more than one stream; the cache manager accommodates such file systems by caching 
each stream independently. NTFS can exploit this feature by organizing its master file table 
(described in Chapter 11) into streams and by caching these streams as well. In fact, although the 
cache manager might be said to cache files, it actually caches streams (all files have at least one 
stream of data) identified by both a file name and, if more than one stream exists in the file, a 
stream name. 

Note Internally, the cache manager is not aware of file or stream names, but uses pointers to 
these objects. 

Recoverable File System Support 

Recoverable file systems such as NTFS are designed to reconstruct the disk volume structure 
after a system failure. This capability means that I/O operations in progress at the time of a system 
failure must be either entirely completed or entirely backed out from the disk when the system is 
restarted. Half-completed I/O operations can corrupt a disk volume and even render an entire 
volume inaccessible. To avoid this problem, a recoverable file system maintains a log file in 
which it records every update it intends to make to the file system structure (the file system’s 
metadata) before it writes the change to the volume. If the system fails, interrupting volume 
modifications in progress, the recoverable file system uses information stored in the log to reissue 
the volume updates.  

Note The term metadata applies only to changes in the file system structure: file and 
directory creation, renaming, and deletion. 

To guarantee a successful volume recovery, every log file record documenting a volume 
update must be completely written to disk before the update itself is applied to the volume. 
Because disk writes are cached, the cache manager and the file system must coordinate metadata 
updates by ensuring that the log file is flushed ahead of metadata updates. Overall, the following 
actions occur in sequence: 

1. The file system writes a log file record documenting the metadata update it intends to 
make. 

2. The file system calls the cache manager to flush the log file record to disk. 

3. The file system writes the volume update to the cache—that is, it modifies its cached 
metadata. 
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4. The cache manager flushes the altered metadata to disk, updating the volume structure. 
(Actually, log file records are batched before being flushed to disk, as are volume modifications.) 

When a file system writes data to the cache, it can supply a logical sequence number (LSN) 
that identifies the record in its log file, which corresponds to the cache update. The cache manager 
keeps track of these numbers, recording the lowest and highest LSNs (representing the oldest and 
newest log file records) associated with each page in the cache. In addition, data streams that are 
protected by transaction log records are marked as “no write” by NTFS so that the mapped page 
writer won’t inadvertently write out these pages before the corresponding log records are written. 
(When the mapped page writer sees a page marked this way, it moves the page to a special list that 
the cache manager then flushes at the appropriate time, such as when lazy writer activity takes 
place.) When it prepares to flush a group of dirty pages to disk, the cache manager determines the 
highest LSN associated with the pages to be flushed and reports that number to the file system. 
The file system can then call the cache manager back, directing it to flush log file data up to the 
point represented by the reported LSN. After the cache manager flushes the log file up to that LSN, 
it flushes the corresponding volume structure  updates to disk, thus ensuring that it records what 
it’s going to do before actually doing it. These interactions between the file system and the cache 
manager guarantee the recoverability of the disk volume after a system failure. 

10.2 Cache Virtual Memory Management 

Because the Windows system cache manager caches data on a virtual basis, it uses up regions 
of system virtual address space (instead of physical memory) and manages them in structures 
called virtual address control blocks, or VACBs. VACBs define these regions of address space 
into 256-KB slots called views. When the cache manager initializes during the bootup process, it 
allocates an initial array of VACBs to describe cached memory. As caching requirements grow 
and more memory is required, the cache manager allocates more VACB arrays, as needed. It can 
also shrink virtual address space as other demands put pressure on the system. 

At a file’s first I/O (read or write) operation, the cache manager maps a 256-KB view of the 
256-KB-aligned region of the file that contains the requested data into a free slot in the system 
cache address space. For example, if 10 bytes starting at an offset of 300,000 bytes were read into 
a file, the view that would be mapped would begin at offset 262144 (the second 256-KB-aligned 
region of the file) and extend for 256 KB. 

The cache manager maps views of files into slots in the cache’s address space on a 
roundrobin basis, mapping the first requested view into the first 256-KB slot, the second view into 
the second 256-KB slot, and so forth, as shown in Figure 10-2. In this example, File B was 
mapped first, File A second, and File C third, so File B’s mapped chunk occupies the first slot in 
the cache. Notice that only the first 256-KB portion of File B has been mapped, which is due to 
the fact that only part of the file has been accessed and because although File C is only 100 KB 
(and thus smaller than one of the views in the system cache), it requires its own 256-KB slot in the 
cache. 

The cache manager guarantees that a view is mapped as long as it’s active (although views 
can remain mapped after they become inactive). A view is marked active, however, only during a 
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read or write operation to or from the file. Unless a process opens a file by specifying the 
FILE_FLAG_RANDOM_ACCESS flag in the call to CreateFile, the cache manager unmaps 
inactive views of a file as it maps new views for the file if it detects that the file is being accessed 
sequentially. Pages for unmapped views are sent to the standby or modified lists (depending on 
whether they have been changed), and because the memory manager exports a special interface 
for the cache manager, the cache manager can direct the pages to be placed at the end or front of 
these lists. Pages that correspond to views of files opened with the FILE_FLAG_SEQUENTIAL 
_SCAN flag are moved to the front of the lists, whereas all others are moved to the end. This 
scheme encourages the reuse of pages belonging to sequentially read files and specifically 
prevents a large file copy operation from affecting more than a small part of physical memory. 
The flag also affects unmapping: the cache manager will aggressively unmap views when this flag 
is supplied. 

  

If the cache manager needs to map a view of a file and there are no more free slots in the 
cache, it will unmap the least recently mapped inactive view and use that slot. If no views are 
available, an I/O error is returned, indicating that insufficient system resources are available to 
perform the operation. Given that views are marked active only during a read or write operation, 
however, this scenario is extremely unlikely because thousands of files would have to be accessed 
simultaneously for this situation to occur. 

10.3 Cache Size 

In the following sections, we’ll explain how Windows computes the size of the system cache, 
both virtually and physically. As with most calculations related to memory management, the size 
of the system cache depends on a number of factors. 

Cache Virtual Size 

On a 32-bit Windows system, the virtual size of the system cache is limited solely by the 
amount of kernel-mode virtual address space and the SystemCacheLimit registry key that can be 
optionally configured. (See Chapter 9 for more information on limiting the size of the kernel 
virtual address space.) This means that the cache size is capped by the 2-GB system address space, 
but it is typically significantly smaller because the system address space is shared with other 
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resources, including system paged table entries (PTEs), nonpaged and paged pool, and page tables. 
The maximum virtual cache size is 1,024 GB (1 TB) on 64-bit Windows. 

Cache Working Set Size 

As mentioned earlier, one of the key differences in the design of the cache manager from that 
of other operating systems is the delegation of physical memory management to the global 
memory manager. Because of this, the existing code that handles working set expansion and 
trimming, as well as managing the modified and standby lists, is also used to control the size of 
the system cache, dynamically balancing demands for physical memory between processes and 
the operating system. 

The system cache doesn’t have its own working set but rather shares a single system set that 
includes cache data, paged pool, pageable Ntoskrnl code, and pageable driver code. As explained 
in the section “System Working Set” in Chapter 9, this single working set is called internally the 
system cache working set even though the system cache is just one of the components that 
contribute to it. For the purposes of this book, we’ll refer to this working set simply as the system 
working set. Also explained in Chapter 9 is the fact that if the LargeSystemCache registry value is 
1, the memory manager favors the system working set over that of processes running on the 
system. 

You can examine the physical size of the system cache compared to that of the total system 
working set as well as page fault information on the system working set by examining the 
performance counters or system variables listed in Table 10-1.  

  

eXPeriMeNT: looking at the Cache’s Working Set 

The !filecache debugger command dumps information about the physical memory the cache 
is using, the current and peak working set sizes, the number of valid pages associated with views, 
and the names of files mapped into views, where applicable, as you can see in the following 
output. (File system drivers cache metadata, such as directory structures and volume bitmaps, by 
using unnamed file streams.) 

1. lkd> !filecache   
2. ***** Dump file cache******   
3. Reading and sorting VACBs ...   
4. Processing 572 active VACBs ...   
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5. File Cache Information   
6. Current size 91372 kb   
7. Peak size 112580 kb   
8. 572 Control Areas   
9. Loading file cache database (100% of 523264 PTEs)   
10. SkippedPageTableReads = 936  
11. File cache has 14099 valid pages   
12. Usage Summary (in Kb):   
13. Control Valid Standby/Dirty Shared Locked FsContext Name   
14. 84445288 5220 16 0 0 8443dd70 $Mft   
15. 84bbcaf8 76 0 0 0 87748b18 $Directory   
16. 850b5158 4 0 0 0 9000e528 $Directory   
17. 8522b008 1136 0 0 0 900b3d80 INDEX.BTR   
18. 84c6b008 60 0 0 0 8d7b5708 $Directory   
19. 8443e2a8 3088 6656 0 0 8443e578 $LogFile   
20. 84c03ae8 68 0 0 0 93fc4548  
21. Microsoft-Windows-Resource-Exhaustion-Detector%4Operational.evtx   
22. 84453368 28 0 0 0 93f79d08 $Directory   
23. 84a20398 20 0 0 0 93ea18d8 $Directory   
24. 850f4298 288 128 0 0 91dbf0f8  
25. Microsoft-Windows-RestartManager%4Operational.evtx   
26. 8520f2e0 5792 120 0 0 93e60a08 ntkrpamp.pdb   
27. 850e6bc8 4 0 0 0 85cffd08 $Directory   
28. 8505d910 4 0 0 0 92e560f8 $Directory   
29. 8443d368 4 0 0 0 8443d760 $MftMirr   
30. 84ba59d8 128 0 0 0 8de50d80 NTUSER.DAT   
31. 84446820 512 0 0 0 84446a98 $BitMap   
32. 84447270 12 0 0 0 844475a0 $Mft   
33. 84f36880 128 0 0 0 8de21358 NTUSER.DAT   
34. 8444c440 44 0 0 0 8318be60 $Directory   
35. 8462a8e0 16656 0 0 0 877560f8 COMPONENTS   
36. 84402a00 4 0 0 0 83144d08 $Directory   

Cache Physical Size 

While the system working set includes the amount of physical memory that is mapped into 
views in the cache’s virtual address space, it does not necessarily reflect the total amount of file 
data that is cached in physical memory. There can be a discrepancy between the two values 
because additional file data might be in the memory manager’s standby or modified page lists. 

Recall from Chapter 9 that during the course of working set trimming or page replacement 
the memory manager can move dirty pages from a working set to either the standby list or 
modified page list, depending on whether the page contains data that needs to be written to the 
paging file or another file before the page can be reused. If the memory manager didn’t implement 
these lists, any time a process accessed data previously removed from its working set, the memory 
manager would have to hard-fault it in from disk. Instead, if the accessed data is present on either 
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of these lists, the memory manager simply soft-faults the page back into the process’s working set. 
Thus, the lists serve as in-memory caches of data that’s stored in the paging file, executable 
images, or data files. Thus, the total amount of file data cached on a system includes not only the 
system working set but the combined sizes of the standby and modified page lists as well. 

An example illustrates how the cache manager can cause much more file data than that 
containable in the system working set to be cached in physical memory. Consider a system that 
acts as a dedicated file server. A client application accesses file data from across the network, 
while a server, such as the file server driver (\Windows\System32\Drivers\Srv2.sys, described in 
Chapter 13), uses cache manager interfaces to read and write file data on behalf of the client. If the 
client reads through several thousand files of 1 MB each, the cache manager will have to start 
reusing views when it runs out of mapping space (and can’t enlarge the VACB mapping area). For 
each file read thereafter, the cache manager unmaps views and remaps them for new files. When 
the cache manager unmaps a view, the memory manager doesn’t discard the file data in the 
cache’s working set that corresponds to the view, it moves the data to the standby list. In the 
absence of any other demand for physical memory, the standby list can consume almost all the 
physical memory that remains outside the system working set. In other words, virtually all the 
server’s physical memory will be used to cache file data, as shown in Figure 10-3. 

  

Because the total amount of file data cached includes the system working set, modified page 
list, and standby list—the sizes of which are all controlled by the memory manager—it is in a 
sense the real cache manager. The cache manager subsystem simply provides convenient 
interfaces for accessing file data through the memory manager. It also plays an important role with 
its read-ahead and write-behind policies in influencing what data the memory manager keeps 
present in physical memory, as well as with managing system virtual address views of the space. 

To try and accurately reflect the total amount of file data that’s cached on a system, both 
Task Manager and Process Explorer show a value named System Cache in their performance view 
that reflects the combined size of the system working set, standby list, and modified page list. 
Figure 10-4 shows the system information view in Process Explorer and the System Cache value 
in the Physical Memory area in the middle of the figure. 
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10.4 Cache Data Structures 

The cache manager uses the following data structures to keep track of cached files:  

■ Each 256-KB slot in the system cache is described by a VACB. 

■ Each separately opened cached file has a private cache map, which contains information 
used to control read-ahead (discussed later in the chapter). 

■ Each cached file has a single shared cache map structure, which points to slots in the 
system cache that contain mapped views of the file. 

These structures and their relationships are described in the next sections. 

10.4.1 Systemwide Cache Data Structures 

As previously described, the cache manager keeps track of the state of the views in the 
system cache by using an array of data structures called virtual address control block (VACB) 
arrays that are stored in nonpaged pool. On a 32-bit system, each VACB is 32 bytes in size and a 
VACB array is 128 KB, resulting in 4,096 VACBs per array. On a 64-bit system, a VACB is 64 
bytes, resulting in 2,048 VACBs per array. The cache manager allocates the initial VACB array 
during system initialization and links it into the systemwide list of VACB arrays called 
CcVacbArrays. Each VACB represents one 256-KB view in the system cache, as shown in Figure 
10-5. The structure of a VACB is shown in Figure 10-6. 

Additionally, each VACB array is composed of two kinds of VACB: low priority mapping 
VACBs and high priority mapping VACBs. The system allocates 64 initial high priority VACBs 
for each VACB array. High priority VACBs have the distinction of having their views 
preallocated from system address space. When the memory manager has no views to give to the 
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cache manager at the time of mapping some data, and if the mapping request is marked as high 
priority, the cache manager will use one of the preallocated views present in a high priority VACB. 
It uses these high priority VACBs, for example, for critical file system metadata as well as for 
purging data from the cache. After high priority VACBs are gone, however, any operation 
requiring a VACB view will fail with insufficient resources. Typically, the mapping priority is set 
to the default of low, but by using the PIN_HIGH_PRIORITY flag when pinning (described later) 
cached data, file systems can request a high priority VACB to be used instead, if one is needed. 

  

  

As you can see in Figure 10-6, the first field in a VACB is the virtual address of the data in 
the system cache. The second field is a pointer to the shared cache map structure, which identifies 
which file is cached. The third field identifies the offset within the file at which the view begins 
(always based on 256-KB granularity). Given this granularity, the bottom 16 bits of the file offset 
will always be zero, so those bits are reused to store the number of references to the view—that is, 
how many active reads or writes are accessing the view. The fourth field links the VACB into a 
list of least-recently-used (LRU) VACBs when the cache manager frees the VACB; the cache 
manager first checks this list when allocating a new VACB. Finally, the fifth field links this 
VACB to the VACB array header representing the array in which the VACB is stored. 

During an I/O operation on a file, the file’s VACB reference count is incremented and then 
it’s decremented when the I/O operation is over. When the reference count is nonzero the VACB 
is active. For access to file system metadata, the active count represents how many file system 
drivers have the pages in that view locked into memory. 

eXPeriMeNT: looking at VaCbs and VaCb Statistics 

The cache manager internally keeps track of various values that are useful to developers and 
support engineers when debugging crash dumps. All these debugging variables start with the 
CcDbg prefix, which makes it easy to see the whole list, thanks to the x command: 
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1. lkd> x nt!*ccdbg*   
2. 81d7c09c nt!CcDbgNumberOfFailedMappingsDueToVacbSpace =                
        <NO&NBSP;TYPE&NBSP;INFORMATION>   
3. 81d7c0a8 nt!CcDbgNumberOfVacbArraysAllocated =                          
         <NO&NBSP;TYPE&NBSP;INFORMATION>   
4. 81d7c08c nt!CcDbgNumberOfFailedBitmapAllocations =                        
        <NO&NBSP;TYPE&NBSP;INFORMATION>   
5. 81d7c098 nt!CcDbgNumberOfFailedHighPriorityMappingsDueToMmResources =   
         <NO&NBSP;TYPE SPAN  <> 
6. information>   
7. ...   

Using these variables and your knowledge of the VACB array header data structures, you can 
use the kernel debugger to list all the VACB array headers. The CcVacbArrays variable stores the 
list head, which you can print with the dl or !list command, and then use the debugger’s support 
for list traversal and type referencing to dump the contents of the _VACB_ARRAY_HEADERs 
on the list: 

1. lkd> !list "-t _LIST_ENTRY.Flink -e -x \"dt _VACB_ARRAY_HEADER @$extret\"  
2. poi(CcVacbArrays)"   
3. dt _VACB_ARRAY_HEADER @$extret   
4. nt!_VACB_ARRAY_HEADER   
5. +0x000 Links : _LIST_ENTRY [ 0x81d7c0c8 - 0x81d7c0c8 ]   
6. +0x008 MappingCount : 0x810  
7. +0x00c Reserved : 0  

The output shows that the system has only one VACB array with 2,064 (0x810) active 
VACBs. 

Finally, the CcNumberOfFreeVacbs variable stores the number of VACBs on the free VACB 
list. Dumping this variable on the system used for the experiment results in 2,032 (0x7f1): 

1. lkd> dd CcNumberOfFreeVacbs l 1  
2. 81d7c0d8 000007f1  

As expected, the sum of the free (2,032) and active VACBs (0x7f1—2,064 decimal) on a 
32-bit system with one VACB array equals 4,096, the number of VACBs in one VACB array. If 
the system were to run out of free VACBs, the cache manager would try to allocate a new VACB 
array. 

10.4.2 Per-File Cache Data Structures 

Each open handle to a file has a corresponding file object. (File objects are explained in detail 
in Chapter 7.) If the file is cached, the file object points to a private cache map structure that 
contains the location of the last two reads so that the cache manager can perform intelligent 
read-ahead (described later in the section “Intelligent Read-Ahead”). In addition, all the private 
cache maps for open instances of a file are linked together. 
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Each cached file (as opposed to file object) has a shared cache map structure that describes 
the state of the cached file, including its size and its valid data length. (The function of the valid 
data length field is explained in the section “Write-Back Caching and Lazy Writing.”) The shared 
cache map also points to the section object (maintained by the memory manager and which 
describes the file’s mapping into virtual memory), the list of private cache maps associated with 
that file, and any VACBs that describe currently mapped views of the file in the system cache. 
(See Chapter 9 for more about section object pointers.) The relationships among these per-file 
cache data structures are illustrated in Figure 10-7. 

When asked to read from a particular file, the cache manager must determine the answers to 
two questions: 

1. Is the file in the cache? 

2. If so, which VACB, if any, refers to the requested location? 

In other words, the cache manager must find out whether a view of the file at the desired 
address is mapped into the system cache. If no VACB contains the desired file offset, the 
requested data isn’t currently mapped into the system cache. 

  

To keep track of which views for a given file are mapped into the system cache, the cache 
manager maintains an array of pointers to VACBs, which is known as the VACB index array. The 
first entry in the VACB index array refers to the first 256 KB of the file, the second entry to the 
second 256 KB, and so on. The diagram in Figure 10-8 shows four different sections from three 
different files that are currently mapped into the system cache. 

When a process accesses a particular file in a given location, the cache manager looks in the 
appropriate entry in the file’s VACB index array to see whether the requested data has been 
mapped into the cache. If the array entry is nonzero (and hence contains a pointer to a VACB), the 
area of the file being referenced is in the cache. The VACB, in turn, points to the location in the 
system cache where the view of the file is mapped. If the entry is zero, the cache manager must 
find a free slot in the system cache (and therefore a free VACB) to map the required view. 
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As a size optimization, the shared cache map contains a VACB index array that is four 
entries in size. Because each VACB describes 256 KB, the entries in this small, fixed-size index 
array can point to VACB array entries that together describe a file of up to 1 MB. If a file is larger 
than 1 MB, a separate VACB index array is allocated from nonpaged pool, based on the size of the 
file divided by 256 KB and rounded up in the case of a remainder. The shared cache map then 
points to this separate structure. 

As a further optimization, the VACB index array allocated from nonpaged pool becomes a 
sparse multilevel index array if the file is larger than 32 MB, where each index array consists of 
128 entries. You can calculate the number of levels required for a file with the following formula: 

1. (Number of bits required to represent file size – 18) / 7  

Round the result of the equation up to the next whole number. The value 18 in the equation 
comes from the fact that a VACB represents 256 KB, and 256 KB is 218. The value 7 comes from 
the fact that each level in the array has 128 entries and 27 is 128. Thus, a file that has a size that is 
the maximum that can be described with 63 bits (the largest size the cache manager supports) 
would require only seven levels. The array is sparse because the only branches that the cache 
manager allocates are ones for which there are active views at the lowest-level index array. Figure 
10-9 shows an example of a multilevel VACB array for a sparse file that is large enough to require 
three levels. 
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This scheme is required to efficiently handle sparse files that might have extremely large file 
sizes with only a small fraction of valid data because only enough of the array is allocated to 
handle the currently mapped views of a file. For example, a 32-GB sparse file for which only 256 
KB is mapped into the cache’s virtual address space would require a VACB array with three 
allocated index arrays because only one branch of the array has a mapping and a 32-GB (235 
bytes) file requires a three-level array. If the cache manager didn’t use the multilevel VACB index 
array optimization for this file, it would have to allocate a VACB index array with 128,000 entries, 
or the equivalent of 1,000 VACB index arrays. 

eXPeriMeNT: looking at Shared and Private Cache Maps 

You can use the kernel debugger’s dt command to look at the shared and private cache map 
data structure definitions and examine the structures on a live system. First, execute the !filecache 
command and locate an entry in the VACB output with a file name you recognize. In this example, 
the file is the Debugging Tools for Windows Help file: 

1. 8653c828 120 160 0 0 debugger.chw  

The first address is that of a control area data structure, which the memory manager uses to 
keep track of an address range. (See Chapter 9 for more information.) The control area stores the 
pointer to the file object that corresponds to the view in the cache. A file object identifies an 
instance of an open file. Execute the following command using the address of the control area of 
the entry you identified to see the control area structure: 

1. lkd> !ca 8653c828  
2. ControlArea @8653c828  
3. Segment: e1bce428 Flink 0 Blink 0  
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4. Section Ref 1 Pfn Ref 46 Mapped Views 4  
5. User Ref 0 WaitForDel 0 Flush Count 0  
6. File Object 86960228 ModWriteCount 0 System Views 0  
7. Flags (8008080) File WasPurged Accessed   
8. File: \Program Files\Debugging Tools for Windows (x86)\debugger.chw   

Next look at the file object referenced by the control area with this command: 

1. lkd> dt nt!_FILE_OBJECT 0x86960228  
2. +0x000 Type : 5  
3. +0x002 Size : 128  
4. +0x004 DeviceObject : 0x84a69a18 _DEVICE_OBJECT   
5. +0x008 Vpb : 0x84a63278 _VPB   
6. +0x00c FsContext : 0x9ae3e768  
7. +0x010 FsContext2 : 0xad4a0c78  
8. +0x014 SectionObjectPointer : 0x86724504 _SECTION_OBJECT_POINTERS   
9. +0x018 PrivateCacheMap : 0x86b48460  
10. +0x01c FinalStatus : 0  
11. +0x020 RelatedFileObject : (null)   
12. +0x024 LockOperation : 0 ''  
13. ...   

The private cache map is at offset 0x18: 

1. lkd> dt nt!_PRIVATE_CACHE_MAP 0x86b48460  
2. +0x000 NodeTypeCode : 766  
3. +0x000 Flags : _PRIVATE_CACHE_MAP_FLAGS   
4. +0x000 UlongFlags : 0x1402fe   
5. +0x004 ReadAheadMask : 0xffff   
6. +0x008 FileObject : 0x86960228 _FILE_OBJECT   
7. +0x010 FileOffset1 : _LARGE_INTEGER 0x146  
8. +0x018 BeyondLastByte1 : _LARGE_INTEGER 0x14a   
9. +0x020 FileOffset2 : _LARGE_INTEGER 0x14a   
10. +0x028 BeyondLastByte2 : _LARGE_INTEGER 0x156  
11. +0x030 ReadAheadOffset : [2] _LARGE_INTEGER 0x0  
12. +0x040 ReadAheadLength : [2] 0  
13. +0x048 ReadAheadSpinLock : 0  
14. +0x04c PrivateLinks : _LIST_ENTRY [ 0x86b48420 - 0x86b48420 ]   
15. +0x054 ReadAheadWorkItem : (null)  

Finally, you can locate the shared cache map in the SectionObjectPointer field of the file 
object and then view its contents: 

1. lkd> dt nt!_SECTION_OBJECT_POINTERS 0x86724504  
2. +0x000 DataSectionObject : 0x867548f0  
3. +0x004 SharedCacheMap : 0x86b48388  
4. +0x008 ImageSectionObject : (null)   



 791

5. lkd> dt nt!_SHARED_CACHE_MAP 0x86b48388  
6. +0x000 NodeTypeCode : 767  
7. +0x002 NodeByteSize : 320  
8. +0x004 OpenCount : 1  
9. +0x008 FileSize : _LARGE_INTEGER 0x125726  
10. +0x010 BcbList : _LIST_ENTRY [ 0x86b48398 - 0x86b48398 ]   
11. +0x018 SectionSize : _LARGE_INTEGER 0x140000  
12. +0x020 ValidDataLength : _LARGE_INTEGER 0x125726  
13. +0x028 ValidDataGoal : _LARGE_INTEGER 0x125726  
14. +0x030 InitialVacbs : [4] (null)   
15. +0x040 Vacbs : 0x867de330 -> 0x84738b30 _VACB   
16. +0x044 FileObjectFastRef : _EX_FAST_REF   
17. +0x048 ActiveVacb : 0x84738b30 _VACB   
18. ...   

Alternatively, you can use the !fileobj command to look up and display much of this 
information automatically. For example, using this command on the same file object referenced 
earlier results in the following output: 

1. lkd> !fileobj 0x86960228  
2. \Program Files\Debugging Tools for Windows (x86)\debugger.chw   
3. Device Object: 0x84a69a18 \Driver\volmgr   
4. Vpb: 0x84a63278  
5. Event signalled   
6. Access: Read SharedRead SharedWrite   
7. Flags: 0xc0042  
8. Synchronous IO   
9. Cache Supported   
10. Handle Created   
11. Fast IO Read   
12. FsContext: 0x9ae3e768 FsContext2: 0xad4a0c78  
13. Private Cache Map: 0x86b48460  
14. CurrentByteOffset: 156  
15. Cache Data:   
16. Section Object Pointers: 86724504  
17. Shared Cache Map: 86b48388 File Offset: 156 in VACB number 0  
18. Vacb: 84738b30  
19. Your data is at: b1e00156  

10.5 File System interfaces 

The first time a file’s data is accessed for a read or write operation, the file system driver is 
responsible for determining whether some part of the file is mapped in the system cache. If it’s not, 
the file system driver must call the CcInitializeCacheMap function to set up the perfile data 
structures described in the preceding section. 
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Once a file is set up for cached access, the file system driver calls one of several functions to 
access the data in the file. There are three primary methods for accessing cached data, each 
intended for a specific situation: 

■ The copy method copies user data between cache buffers in system space and a process 
buffer in user space. 

■ The mapping and pinning method uses virtual addresses to read and write data directly 
from and to cache buffers. 

■ The physical memory access method uses physical addresses to read and write data directly 
from and to cache buffers. 

File system drivers must provide two versions of the file read operation—cached and 
noncached—to prevent an infinite loop when the memory manager processes a page fault. When 
the memory manager resolves a page fault by calling the file system to retrieve data from the file 
(via the device driver, of course), it must specify this noncached read operation by setting the “no 
cache” flag in the IRP. 

Figure 10-10 illustrates the typical interactions between the cache manager, the memory 
manager, and file system drivers in response to user read or write file I/O. The cache manager is 
invoked by a file system through the copy interfaces (the CcCopyRead and CcCopyWrite paths). 
To process a CcFastCopyRead or CcCopyRead read, for example, the cache manager creates a 
view in the cache to map a portion of the file being read and reads the file data into the user buffer 
by copying from the view. The copy operation generates page faults as it accesses each previously 
invalid page in the view, and in response the memory manager initiates noncached I/O into the file 
system driver to retrieve the data corresponding to the part of the file mapped to the page that 
faulted.  

The next three sections explain these cache access mechanisms, their purpose, and how 
they’re used. 

 

10.5.1 Copying to and from the Cache 
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Because the system cache is in system space, it is mapped into the address space of every 
process. As with all system space pages, however, cache pages aren’t accessible from user mode 
because that would be a potential security hole. (For example, a process might not have the rights 
to read a file whose data is currently contained in some part of the system cache.) Thus, user 
application file reads and writes to cached files must be serviced by kernelmode routines that copy 
data between the cache’s buffers in system space and the application’s buffers residing in the 
process address space. The functions that file system drivers can use to perform this operation are 
listed in Table 10-2. 

  

You can examine read activity from the cache via the performance counters or system 
perprocessor variables stored in the processor’s control block (KPRCB) listed in Table 10-3. 

 

10.5.2 Caching with the Mapping and Pinning Interfaces 

Just as user applications read and write data in files on a disk, file system drivers need to read 
and write the data that describes the files themselves (the metadata, or volume structure data). 
Because the file system drivers run in kernel mode, however, they could, if the cache manager 
were properly informed, modify data directly in the system cache. To permit this optimization, the 
cache manager provides the functions shown in Table 10-4. These functions permit the file system 
drivers to find where in virtual memory the file system metadata resides, thus allowing direct 
modification without the use of intermediary buffers.  
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If a file system driver needs to read file system metadata in the cache, it calls the cache 
manager’s mapping interface to obtain the virtual address of the desired data. The cache manager 
touches all the requested pages to bring them into memory and then returns control to the file 
system driver. The file system driver can then access the data directly. 

If the file system driver needs to modify cache pages, it calls the cache manager’s pinning 
services, which keep the pages active in virtual memory so that they cannot be reclaimed. 

The pages aren’t actually locked into memory (such as when a device driver locks pages for 
direct memory access transfers). Most of the time, a file system driver will mark its metadata 
stream “no write”, which instructs the memory manager’s mapped page writer (explained in 
Chapter 9) to not write the pages to disk until explicitly told to do so. When the file system driver 
unpins (releases) them, the cache manager releases its resources so that it can lazily flush any 
changes to disk and release the cache view that the metadata occupied. The mapping and pinning 
interfaces solve one thorny problem of implementing a file system: buffer management. Without 
directly manipulating cached metadata, a file system must predict the maximum number of buffers 
it will need when updating a volume’s structure. By allowing the file system to access and update 
its metadata directly in the cache, the cache manager eliminates the need for buffers, simply 
updating the volume structure in the virtual memory the memory manager provides. The only 
limitation the file system encounters is the amount of available memory. 

You can examine pinning and mapping activity in the cache via the performance counters or 
per-processor variables stored in the processor’s control block (KPRCB) listed in Table 10-5.  
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10.5.3 Caching with the Direct Memory Access Interfaces 

In addition to the mapping and pinning interfaces used to access metadata directly in the 
cache, the cache manager provides a third interface to cached data: direct memory access (DMA). 
The DMA functions are used to read from or write to cache pages without intervening buffers, 
such as when a network file system is doing a transfer over the network. 

The DMA interface returns to the file system the physical addresses of cached user data 
(rather than the virtual addresses, which the mapping and pinning interfaces return), which can 
then be used to transfer data directly from physical memory to a network device. Although small 
amounts of data (1 KB to 2 KB) can use the usual buffer-based copying interfaces, for larger 
transfers the DMA interface can result in significant performance improvements for a network 
server processing file requests from remote systems.  

To describe these references to physical memory, a memory descriptor list (MDL) is used. 
(MDLs were introduced in Chapter 9.) The four separate functions described in Table 10-6 create 
the cache manager’s DMA interface. 
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You can examine MDL activity from the cache via the performance counters or 
per-processor variables stored in the processor’s control block (KPRCB) listed in Table 10-7. 

 

10.6 Fast I/O 

Whenever possible, reads and writes to cached files are handled by a high-speed mechanism 
named fast I/O. Fast I/O is a means of reading or writing a cached file without going through the 
work of generating an IRP, as described in Chapter 7. With fast I/O, the I/O manager calls the file 
system driver’s fast I/O routine to see whether I/O can be satisfied directly from the cache 
manager without generating an IRP. 

Because the cache manager is architected on top of the virtual memory subsystem, file 
system drivers can use the cache manager to access file data simply by copying to or from pages 
mapped to the actual file being referenced without going through the overhead of generating an 
IRP. 

Fast I/O doesn’t always occur. For example, the first read or write to a file requires setting up 
the file for caching (mapping the file into the cache and setting up the cache data structures, as 
explained earlier in the section “Cache Data Structures”). Also, if the caller specified an 
asynchronous read or write, fast I/O isn’t used because the caller might be stalled during paging 
I/O operations required to satisfy the buffer copy to or from the system cache and thus not really 
providing the requested asynchronous I/O operation. But even on a synchronous I/O, the file 
system driver might decide that it can’t process the I/O operation by using the fast I/O mechanism, 
say, for example, if the file in question has a locked range of bytes (as a result of calls to the 
Windows LockFile and UnlockFile functions). Because the cache manager doesn’t know what 
parts of which files are locked, the file system driver must check the validity of the read or write, 
which requires generating an IRP. The decision tree for fast I/O is shown in Figure 10-11. 

These steps are involved in servicing a read or a write with fast I/O: 

1. A thread performs a read or write operation. 

2. If the file is cached and the I/O is synchronous, the request passes to the fast I/O entry 
point of the file system driver stack. If the file isn’t cached, the file system driver sets up the file 
for caching so that the next time, fast I/O can be used to satisfy a read or write request. 
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3. If the file system driver’s fast I/O routine determines that fast I/O is possible, it calls the 
cache manager’s read or write routine to access the file data directly in the cache. (If fast I/O isn’t 
possible, the file system driver returns to the I/O system, which then generates an IRP for the I/O 
and eventually calls the file system’s regular read routine.) 

4. The cache manager translates the supplied file offset into a virtual address in the cache. 

5. For reads, the cache manager copies the data from the cache into the buffer of the process 
requesting it; for writes, it copies the data from the buffer to the cache. 

6. One of the following actions occurs: 

❏ For reads where FILE_FLAG_RANDOM_ACCESS wasn’t specified when the file was 
opened, the read-ahead information in the caller’s private cache map is updated. Read-ahead may 
also be queued for files for which the FO_RANDOM_ACCESS flag is not specified. 

❏ For writes, the dirty bit of any modified page in the cache is set so that the lazy writer will 
know to flush it to disk. 

❏ For write-through files, any modifications are flushed to disk. 

  

The performance counters or per-processor variables stored in the processor’s control block 
(KPRCB) listed in Table 10-8 can be used to determine the fast I/O activity on the system. 
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10.7 read ahead and Write behind 

In this section, you’ll see how the cache manager implements reading and writing file data on 
behalf of file system drivers. Keep in mind that the cache manager is involved in file I/O only 
when a file is opened without the FILE_FLAG_NO_BUFFERING flag and then read from or 
written to using the Windows I/O functions (for example, using the Windows ReadFile and 
WriteFile functions). Mapped files don’t go through the cache manager, nor do files opened with 
the FILE_FLAG_NO_BUFFERING flag set.  

Note When an application uses the FILE_FLAG_NO_BUFFERING flag to open a file, its 
file I/O must start at device-aligned offsets and be of sizes that are a multiple of the alignment size; 
its input and output buffers must also be device-aligned virtual addresses. For file systems, this 
usually corresponds to the sector size (512 bytes on NTFS, typically, and 2,048 bytes on CDFS). 
One of the benefits of the cache manager, apart from the actual caching performance, is the fact 
that it performs intermediate buffering to allow arbitrarily aligned and sized I/O. 

10.7.1 Intelligent Read-Ahead 

The cache manager uses the principle of spatial locality to perform intelligent read-ahead by 
predicting what data the calling process is likely to read next based on the data that it is reading 
currently. Because the system cache is based on virtual addresses, which are contiguous for a 
particular file, it doesn’t matter whether they’re juxtaposed in physical memory. File read-ahead 
for logical block caching is more complex and requires tight cooperation between file system 
drivers and the block cache because that cache system is based on the relative positions of the 
accessed data on the disk, and, of course, files aren’t necessarily stored contiguously on disk. You 
can examine read-ahead activity by using the Cache: Read Aheads/sec performance counter or the 
CcReadAheadIos system variable.  

Reading the next block of a file that is being accessed sequentially provides an obvious 
performance improvement, with the disadvantage that it will cause head seeks. To extend 
readahead benefits to cases of strided data accesses (both forward and backward through a file), 
the cache manager maintains a history of the last two read requests in the private cache map for 
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the file handle being accessed, a method known as asynchronous read-ahead with history. If a 
pattern can be determined from the caller’s apparently random reads, the cache manager 
extrapolates it. For example, if the caller reads page 4000 and then page 3000, the cache manager 
assumes that the next page the caller will require is page 2000 and prereads it.  

Note Although a caller must issue a minimum of three read operations to establish a 
predictable sequence, only two are stored in the private cache map. 

To make read-ahead even more efficient, the Win32 CreateFile function provides a flag 
indicating forward sequential file access: FILE_FLAG_SEQUENTIAL_SCAN. If this flag is set, 
the cache manager doesn’t keep a read history for the caller for prediction but instead performs 
sequential read-ahead. However, as the file is read into the cache’s working set, the cache manager 
unmaps views of the file that are no longer active and, if they are unmodified, directs the memory 
manager to place the pages belonging to the unmapped views at the front of the standby list so that 
they will be quickly reused. It also reads ahead two times as much data (2 MB instead of 1 MB, 
for example). As the caller continues reading, the cache manager prereads additional blocks of 
data, always staying about one read (of the size of the current read) ahead of the caller. 

The cache manager’s read-ahead is asynchronous because it is performed in a thread separate 
from the caller’s thread and proceeds concurrently with the caller’s execution. When called to 
retrieve cached data, the cache manager first accesses the requested virtual page to satisfy the 
request and then queues an additional I/O request to retrieve additional data to a system worker 
thread. The worker thread then executes in the background, reading additional data in anticipation 
of the caller’s next read request. The preread pages are faulted into memory while the program 
continues executing so that when the caller requests the data it’s already in memory. 

For applications that have no predictable read pattern, the FILE_FLAG_RANDOM_ 
ACCESS flag can be specified when the CreateFile function is called. This flag instructs the cache 
manager not to attempt to predict where the application is reading next and thus disables 
read-ahead. The flag also stops the cache manager from aggressively unmapping views of the file 
as the file is accessed so as to minimize the mapping/unmapping activity for the file when the 
application revisits portions of the file. 

10.7.2 Write-Back Caching and Lazy Writing 

The cache manager implements a write-back cache with lazy write. This means that data 
written to files is first stored in memory in cache pages and then written to disk later. Thus, write 
operations are allowed to accumulate for a short time and are then flushed to disk all at once, 
reducing the overall number of disk I/O operations. 

The cache manager must explicitly call the memory manager to flush cache pages because 
otherwise the memory manager writes memory contents to disk only when demand for physical 
memory exceeds supply, as is appropriate for volatile data. Cached file data, however, represents 
nonvolatile disk data. If a process modifies cached data, the user expects the contents to be 
reflected on disk in a timely manner. 
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The decision about how often to flush the cache is an important one. If the cache is flushed 
too frequently, system performance will be slowed by unnecessary I/O. If the cache is flushed too 
rarely, you risk losing modified file data in the cases of a system failure (a loss especially irritating 
to users who know that they asked the application to save the changes) and running out of physical 
memory (because it’s being used by an excess of modified pages). 

To balance these concerns, once per second the cache manager’s lazy writer function 
executes on a system worker thread and queues one-eighth of the dirty pages in the system cache 
to be written to disk. If the rate at which dirty pages are being produced is greater than the amount 
the lazy writer had determined it should write, the lazy writer writes an additional number of dirty 
pages that it calculates are necessary to match that rate. System worker threads from the 
systemwide critical worker thread pool actually perform the I/O operations. 

Note The cache manager provides a means for file system drivers to track when and how 
much data has been written to a file. After the lazy writer flushes dirty pages to the disk, the cache 
manager notifies the file system, instructing it to update its view of the valid data length for the 
file. (The cache manager and file systems separately track the valid data length for a file in 
memory.) 

You can examine the activity of the lazy writer by examining the cache performance counters 
or per-processor variables stored in the processor’s control block (KPRCB) listed in Table 10-9.  

  

eXPeriMeNT: Watching the Cache Manager in action 

In this experiment, we’ll use Process Monitor to view the underlying file system activity, 
including cache manager read-ahead and write-behind, when Windows Explorer copies a large file 
(in this example, a CD-ROM image) from one local directory to another. First, configure Process 
Monitor’s filter to include the source and destination file paths, the Explorer.exe and System 
processes, and the ReadFile and WriteFile operations. In this example, the c:\source.iso file was 
copied to c:\programming\source.iso, so the filter is configured as follows: 

  

You should see a Process Monitor trace like the one shown here after you copy the file: 
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The first few entries show the initial I/O processing performed by the copy engine and the 
first cache manager operations. Here are some of the things that you can see: 

■ The initial 1-MB cached read from Explorer at the first entry. The size of this read depends 
on an internal matrix calculation based on the file size and can vary from 128 KB to 1 MB. 
Because this file was large, the copy engine chose 1 MB. 

■ The 1-MB read is followed by 16 64-KB noncached reads. Noncached reads typically 
indicate activity due to page faults or cache manager access. A closer look at the stack trace for 
these events, which you can see by double-clicking an entry and choosing the Stack tab, reveals 
that indeed the CcCopyRead cache manager routine, which is called by the NTFS driver’s read 
routine, causes the memory manager to fault the source data into physical memory: 

  

■ After these 64-KB page fault I/Os, the cache manager’s read-ahead mechanism starts 
reading the file, which includes the System process’s subsequent noncached 2-MB read at the 
1-MB offset. Because of the file size and Explorer’s read I/O sizes, the cache manager chose 2 
MB as the optimal read-ahead size.  
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The stack trace for one of the read-ahead operations, shown next, confirms that one of the 
cache manager’s worker threads is performing the read-ahead. 

  

After this point, Explorer’s 1-MB reads aren’t followed by 64-KB page faults, because the 
read-ahead thread stays ahead of Explorer, prefetching the file data with its 2-MB noncached 
reads. Eventually, after reading about 4 MB of the file, Explorer starts performing writes to the 
destination file. These are sequential, cached 64-KB writes. After about 32 MB of reads, the first 
WriteFile operation from the System process occurs, shown here: 

  

The write operation’s stack trace, shown here, indicates that the memory manager’s mapped 
page writer thread was actually responsible for the write: 
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This occurs because for the first couple of megabytes of data, the cache manager hadn’t 
started performing write-behind, so the memory manager’s mapped page writer began flushing the 
modified destination file data (see Chapter 9 for more information on the mapped page writer). 

To get a clearer view of the cache manager operations, remove Explorer from the Process 
Monitor’s filter so that only the System process operations are visible, as shown next. 

  

With this view, it’s much easier to see the cache manager’s 16-MB write-behind operations 
(the maximum write sizes are 1 MB on client versions of Windows and 32 MB on server versions; 
this experiment was performed on a server system). The Time Of Day column shows that these 
operations occur almost exactly 1 second apart. The stack trace for one of the write-behind 
operations, shown here, verifies that a cache manager worker thread is performing write-behind: 
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As an added experiment, try repeating this process with a remote copy instead (from one 
Windows system to another) and by copying files of varying sizes. You’ll notice some different 
behaviors by the copy engine and the cache manager, both on the receiving and sending sides. 

Disabling Lazy Writing for a File 

If you create a temporary file by specifying the flag FILE_ATTRIBUTE_TEMPORARY in a 
call to the Windows CreateFile function, the lazy writer won’t write dirty pages to the disk unless 
there is a severe shortage of physical memory or the file is explicitly flushed. This characteristic of 
the lazy writer improves system performance—the lazy writer doesn’t immediately write data to a 
disk that might ultimately be discarded. Applications usually delete temporary files soon after 
closing them. 

Forcing the Cache to Write Through to Disk 

Because some applications can’t tolerate even momentary delays between writing a file and 
seeing the updates on disk, the cache manager also supports write-through caching on a per–file 
object basis; changes are written to disk as soon as they’re made. To turn on write-through 
caching, set the FILE_FLAG_WRITE_THROUGH flag in the call to the CreateFile function. 
Alternatively, a thread can explicitly flush an open file, by using the Windows FlushFileBuffers 
function, when it reaches a point at which the data needs to be written to disk. You can observe 
cache flush operations that are the result of write-through I/O requests or explicit calls to 
FlushFileBuffers via the performance counters or per-processor variables stored in the processor’s 
control block (KPRCB) shown in Table 10-10.  
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Flushing Mapped Files 

If the lazy writer must write data to disk from a view that’s also mapped into another 
process’s address space, the situation becomes a little more complicated, because the cache 
manager will only know about the pages it has modified. (Pages modified by another process are 
known only to that process because the modified bit in the page table entries for modified pages is 
kept in the process private page tables.) To address this situation, the memory manager informs 
the cache manager when a user maps a file. When such a file is flushed in the cache (for example, 
as a result of a call to the Windows FlushFileBuffers function), the cache manager writes the dirty 
pages in the cache and then checks to see whether the file is also mapped by another process. 
When the cache manager sees that the file is, the cache manager then flushes the entire view of the 
section to write out pages that the second process might have modified. If a user maps a view of a 
file that is also open in the cache, when the view is unmapped, the modified pages are marked as 
dirty so that when the lazy writer thread later flushes the view, those dirty pages will be written to 
disk. This procedure works as long as the sequence occurs in the following order: 

1. A user unmaps the view. 

2. A process flushes file buffers. 

If this sequence isn’t followed, you can’t predict which pages will be written to disk. 

eXPeriMeNT: Watching Cache Flushes 

You can see the cache manager map views into the system cache and flush pages to disk by 
running the Reliability and Performance Monitor and adding the Data Maps/sec and Lazy Write 
Flushes/sec counters and then copying a large file from one location to another. The generally 
higher line in the following screen shot shows Data Maps/sec and the other shows Lazy Write 
Flushes/sec. 

  

10.7.3 Write Throttling 
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The file system and cache manager must determine whether a cached write request will affect 
system performance and then schedule any delayed writes. First the file system asks the cache 
manager whether a certain number of bytes can be written right now without hurting performance 
by using the CcCanIWrite function and blocking that write if necessary. For asynchronous I/O, the 
file system sets up a callback with the cache manager for automatically writing the bytes when 
writes are again permitted by calling CcDeferWrite. Otherwise, it just blocks and waits on 
CcCanIWrite to continue. Once it’s notified of an impending write operation, the cache manager 
determines how many dirty pages are in the cache and how much physical memory is available. If 
few physical pages are free, the cache manager momentarily blocks the file system thread that’s 
requesting to write data to the cache. The cache manager’s lazy writer flushes some of the dirty 
pages to disk and then allows the blocked file system thread to continue. This write throttling 
prevents system performance from degrading because of a lack of memory when a file system or 
network server issues a large write operation. 

Note The effects of write throttling are global to the system because the resource it is based 
on, available physical memory, is global to the system. This means that if heavy write activity to a 
slow device triggers write throttling, writes to other devices will also be throttled. 

The dirty page threshold is the number of pages that the system cache will allow to be dirty 
before throttling cached writers. This value is computed at system initialization time and depends 
on the product type (client or server). Two other values are also computed—the top dirty page 
threshold and the bottom dirty page threshold. Depending on memory consumption and the rate at 
which dirty pages are being processed, the lazy writer calls the internal function CcAdjustThrottle, 
which, on server systems, performs dynamic adjustment of the current threshold based on the 
calculated top and bottom values. This adjustment is made to preserve the read cache in cases of a 
heavy write load that will inevitably overrun the cache and become throttled. Table 10-11 lists the 
algorithms used to calculate the dirty page thresholds. 

  

Write throttling is also useful for network redirectors transmitting data over slow 
communication lines. For example, suppose a local process writes a large amount of data to a 
remote file system over a 9600-baud line. The data isn’t written to the remote disk until the cache 
manager’s lazy writer flushes the cache. If the redirector has accumulated lots of dirty pages that 
are flushed to disk at once, the recipient could receive a network timeout before the data transfer 
completes. By using the CcSetDirtyPageThreshold function, the cache manager allows network 
redirectors to set a limit on the number of dirty cache pages they can tolerate (for each stream), 
thus preventing this scenario. By limiting the number of dirty pages, the redirector ensures that a 
cache flush operation won’t cause a network timeout.  

eXPeriMeNT: Viewing the Write-Throttle Parameters 
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The !defwrites kernel debugger command dumps the values of the kernel variables the cache 
manager uses, including the number of dirty pages in the file cache (CcTotalDirtyPages), when 
determining whether it should throttle write operations: 

1. lkd> !defwrites   
2. *** Cache Write Throttle Analysis ***   
3. CcTotalDirtyPages: 7 ( 28 Kb)   
4. CcDirtyPageThreshold: 425694 ( 1702776 Kb)   
5. MmAvailablePages: 572387 ( 2289548 Kb)   
6. MmThrottleTop: 450 ( 1800 Kb)   
7. MmThrottleBottom: 80 ( 320 Kb)   
8. MmModifiedPageListHead.Total: 10477 ( 41908 Kb)   
9. Write throttles not engaged   
10. lkd> !defwrites   
11. *** Cache Write Throttle Analysis ***   
12. CcTotalDirtyPages: 7 ( 28 Kb)   
13. CcDirtyPageThreshold: 425694 ( 1702776 Kb)   
14. MmAvailablePages: 572387 ( 2289548 Kb)   
15. MmThrottleTop: 450 ( 1800 Kb)   
16. MmThrottleBottom: 80 ( 320 Kb)   
17. MmModifiedPageListHead.Total: 10477 ( 41908 Kb)   
18. Write throttles not engaged   

This output shows that the number of dirty pages is far from the number that triggers write 
throttling (CcDirtyPageThreshold), so the system has not engaged in any write throttling. 

10.7.4 System Threads 

As mentioned earlier, the cache manager performs lazy write and read-ahead I/O operations 
by submitting requests to the common critical system worker thread pool. However, it does limit 
the use of these threads to one less than the total number of critical system worker threads for 
small and medium memory systems (two less than the total for large memory systems).  

Internally, the cache manager organizes its work requests into four lists (though these are 
serviced by the same set of executive worker threads): 

■ The express queue is used for read-ahead operations. 

■ The regular queue is used for lazy write scans (for dirty data to flush), write-behinds, and 
lazy closes. 

■ The fast teardown queue is used when the memory manager is waiting for the data section 
owned by the cache manager to be freed so that the file can be opened with an image section 
instead, which causes CcWriteBehind to flush the entire file and tear down the shared cache map. 

■ The post tick queue is used for the cache manager to internally register for a notification 
after each “tick” of the lazy writer thread—in other words, at the end of each pass.  
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To keep track of the work items the worker threads need to perform, the cache manager 
creates its own internal per-processor look-aside list, a fixed-length list—one for each 
processor—of worker queue item structures. (Look-aside lists are discussed in Chapter 9.) The 
number of worker queue items depends on system size: 32 for small-memory systems, 64 for 
medium-memory systems, 128 for large-memory client systems, and 256 for large-memory server 
systems. For cross-processor performance, the cache manager also allocates a global look-aside 
list at the same sizes as just described. 

10.8 Conclusion 

The cache manager provides a high-speed, intelligent mechanism for reducing disk I/O and 
increasing overall system throughput. By caching on the basis of virtual blocks, the cache manager 
can perform intelligent read-ahead. By relying on the global memory manager’s mapped file 
primitive to access file data, the cache manager can provide the special fast I/O mechanism to 
reduce the CPU time required for read and write operations and also leave all matters related to 
physical memory management to the single Windows global memory manager, thus reducing 
code duplication and increasing efficiency. 
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11. File Systems 

In this chapter, we present an overview of the file system formats supported by Windows. 
We then describe the types of file system drivers and their basic operation, including how they 
interact with other system components, such as the memory manager and the cache manager. 
Following that is a description of how to use Process Monitor from Windows Sysinternals (at 
www.microsoft.com/technet/sysinternals) to troubleshoot a wide variety of file system access 
problems. 

In the balance of the chapter, we first describe the Common Log File System (CLFS), a 
transactional logging virtual file system implemented on the native Windows file system format, 
NTFS. Then we focus on the on-disk layout of NTFS and its advanced features, such as 
compression, recoverability, quotas, symbolic links, transactions (which use the services provided 
by CLFS), and encryption. 

To fully understand this chapter, you should be familiar with the terminology introduced in 
Chapter 8, including the terms volume and partition. You’ll also need to be acquainted with these 
additional terms: 

■ Sectors are hardware-addressable blocks on a storage medium. Hard disks for x86 systems 
almost always define a 512-byte sector size; however, Windows also supports large sector disks, 
which are a new technology that allows access to even larger disks. Thus, if the sector size is the 
standard 512 bytes and the operating system wants to modify the 632nd byte on a disk, it must 
write a 512-byte block of data to the second sector on the disk. 

■ File system formats define the way that file data is stored on storage media, and they affect 
a file system’s features. For example, a format that doesn’t allow user permissions to be associated 
with files and directories can’t support security. A file system format can also impose limits on the 
sizes of files and storage devices that the file system supports. Finally, some file system formats 
efficiently implement support for either large or small files or for large or small disks. NTFS and 
exFAT are examples of file system formats that offer a different set of features and usage 
scenarios. 

■ Clusters are the addressable blocks that many file system formats use. Cluster size is 
always a multiple of the sector size, as shown in Figure 11-1. File system formats use clusters to 
manage disk space more efficiently; a cluster size that is larger than the sector size divides a disk 
into more manageable blocks. The potential trade-off of a larger cluster size is wasted disk space, 
or internal fragmentation, that results when file sizes aren’t perfect multiples of cluster sizes. 
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■ Metadata is data stored on a volume in support of file system format management. It isn’t 
typically made accessible to applications. Metadata includes the data that defines the placement of 
files and directories on a volume, for example. 

11.1 Windows File System Formats 

Windows includes support for the following file system formats: 

■ CDFS 

■ UDF 

■ FAT12, FAT16, and FAT32 

■ exFAT 

■ NTFS 

Each of these formats is best suited for certain environments, as you’ll see in the following 
sections. 

CDFS 

CDFS (\Windows\System32\Drivers\Cdfs.sys), or CD-ROM file system, is a read-only file 
system driver that supports a superset of the ISO-9660 format as well as a superset of the Joliet 
disk format. While the ISO-9660 format is relatively simple and has limitations such as ASCII 
uppercase names with a maximum length of 32 characters, Joliet is more flexible and supports 
Unicode names of arbitrary length, for example. If structures for both formats are present on a disk 
(to offer maximum compatibility), CDFS uses the Joliet format. CDFS has a couple of restrictions: 

■ A maximum file size of 4 GB 

■ A maximum of 65,535 directories 

CDFS is considered a legacy format because the industry has adopted the Universal Disk 

Format (UDF) as the standard for optical media. 

UDF 

The Windows UDF file system implementation is OSTA (Optical Storage Technology 
Association) UDF-compliant. (UDF is a subset of the ISO-13346 format with extensions for 
formats such as CD-R and DVD-R/RW.) OSTA defined UDF in 1995 as a format to replace the 
ISO-9660 format for magneto-optical storage media, mainly DVD-ROM. UDF is included in the 
DVD specification and is more flexible than CDFS. The UDF file system format has the following 
traits: 

■ Directory and file names can be 254 ASCII or 127 Unicode characters long. 

■ Files can be sparse. (Sparse files are defined later in the chapter.) 

■ File sizes are specified with 64-bits. 
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■ Support for access control lists (ACLs). 

■ Support for alternate data streams. 

The UDF driver supports UDF versions up to 2.60. The UDF format was designed with 
rewritable media in mind. The Windows UDF driver  (\Windows\System32\Drivers\Udfs.sys) 
provides read-write support for DVD-RAM, CD-R/RW, and DVD+-R/RW drives when using 
UDF 2.50 and read-only support when using UDF 2.60. However, Windows does not implement 
support for certain UDF features such as named streams and access control lists.  

FAT12, FAT16, and FAT32 

Windows supports the FAT file system primarily to enable upgrades from previous versions 
of Windows, for compatibility with other operating systems in multiboot systems, and as a format 
for flash drives or memory cards. The Windows FAT file system driver is implemented in 
\Windows\System32\Drivers\Fastfat.sys. 

The name of each FAT format includes a number that indicates the number of bits the format 
uses to identify clusters on a disk. FAT12’s 12-bit cluster identifier limits a partition to storing a 
maximum of 212 (4,096) clusters. Windows uses cluster sizes from 512 bytes to 8 KB in size, 
which limits a FAT12 volume size to 32 MB. 

Note All FAT file system types reserve the first two clusters and the last 16 clusters of a 
volume, so the number of usable clusters for a FAT12 volume, for instance, is slightly less than 
4,096. 

FAT16, with a 16-bit cluster identifier, can address 216 (65,536) clusters. On Windows, 
FAT16 cluster sizes range from 512 bytes (the sector size) to 64 KB, which limits FAT16 volume 
sizes to 4 GB. The cluster size Windows uses depends on the size of a volume. The various sizes 
are listed in Table 11-1. If you format a volume that is less than 16 MB as FAT by using the 
format command or the Disk Management snap-in, Windows uses the FAT12 format instead of 
FAT16. 

  

A FAT volume is divided into several regions, which are shown in Figure 11-2. The file 
allocation table, which gives the FAT file system format its name, has one entry for each cluster 
on a volume. Because the file allocation table is critical to the successful interpretation of a 
volume’s contents, the FAT format maintains two copies of the table so that if a file system driver 
or consistency-checking program (such as Chkdsk) can’t access one (because of a bad disk sector, 
for example), it can read from the other. 
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Entries in the file allocation table define file-allocation chains (shown in Figure 11-3) for 
files and directories, where the links in the chain are indexes to the next cluster of a file’s data. A 
file’s directory entry stores the starting cluster of the file. The last entry of the file’s allocation 
chain is the reserved value of 0xFFFF for FAT16 and 0xFFF for FAT12. The FAT entries for 
unused clusters have a value of 0. You can see in Figure 11-3 that FILE1 is assigned clusters 2, 3, 
and 4; FILE2 is fragmented and uses clusters 5, 6, and 8; and FILE3 uses only cluster 7. Reading a 
file from a FAT volume can involve reading large portions of a file allocation table to traverse the 
file’s allocation chains. 

  

The root directory of FAT12 and FAT16 volumes is preassigned enough space at the start of 
a volume to store 256 directory entries, which places an upper limit on the number of files and 
directories that can be stored in the root directory. (There’s no preassigned space or size limit on 
FAT32 root directories.) A FAT directory entry is 32 bytes and stores a file’s name, size, starting 
cluster, and time stamp (last-accessed, created, and so on) information. If a file has a name that is 
Unicode or that doesn’t follow the MS-DOS 8.3 naming convention, additional directory entries 
are allocated to store the long file name. The supplementary entries precede the file’s main entry. 
Figure 11-4 shows a sample directory entry for a file named “The quick brown fox.” The system 
has created a THEQUI~1.FOX 8.3 representation of the name (that is, you don’t see a “.” in the 
directory entry because it is assumed to come after the eighth character) and used two more 
directory entries to store the Unicode long file name. Each row in the figure is made up of 16 
bytes. 
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FAT32 uses 32-bit cluster identifiers but reserves the high 4 bits, so in effect it has 28-bit 
cluster identifiers. Because FAT32 cluster sizes can be as large as 32 KB, FAT32 has a theoretical 
ability to address 8-terabyte (TB) volumes. Although Windows works with existing FAT32 
volumes of larger sizes (created in other operating systems), it limits new FAT32 volumes to a 
maximum of 32 GB. FAT32’s higher potential cluster numbers let it manage disks more 
efficiently than FAT16; it can handle up to 128-GB volumes with 512-byte clusters. Table 11-2 
shows default cluster sizes for FAT32 volumes. 

  

FAT32 uses 32-bit cluster identifiers but reserves the high 4 bits, so in effect it has 28-bit 
cluster identifiers. Because FAT32 cluster sizes can be as large as 32 KB, FAT32 has a theoretical 
ability to address 8-terabyte (TB) volumes. Although Windows works with existing FAT32 
volumes of larger sizes (created in other operating systems), it limits new FAT32 volumes to a 
maximum of 32 GB. FAT32’s higher potential cluster numbers let it manage disks more 
efficiently than FAT16; it can handle up to 128-GB volumes with 512-byte clusters. Table 11-2 
shows default cluster sizes for FAT32 volumes. 

 

Besides the higher limit on cluster numbers, other advantages FAT32 has over FAT12 and 
FAT16 include the fact that the FAT32 root directory isn’t stored at a predefined location on the 
volume, the root directory doesn’t have an upper limit on its size, and FAT32 stores a second copy 
of the boot sector for reliability. A limitation FAT32 shares with FAT16 is that the maximum file 
size is 4 GB because directories store file sizes as 32-bit values. 

exFAT 

Designed by Microsoft, the Extended File Allocation Table file system (exFAT, also called 
FAT64) is an improvement over the traditional FAT file systems and is specifically designed for 
flash drives. The main goal of exFAT is to provide some of the advanced functionality offered by 
NTFS, but without the metadata structure overhead and metadata logging that create write patterns 
not suited for many flash media devices. 
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As the FAT64 name implies, the file size limit is increased to 264, allowing files up to 16 
exabytes. This change is also matched by an increase in the maximum cluster size, which is 
currently implemented as 32 MB but can be as large as 2255 sectors. exFAT also adds a bitmap 
that tracks free clusters, which improves the performance of allocation and deletion operations. 
Finally, exFAT allows more than 1,000 files in a single directory. These characteristics result in 
increased scalability and support for large disk sizes. 

Additionally, exFAT implements certain features previously available only in NTFS, such as 
support for access control lists (ACLs) and transactions (called Transaction-Safe FAT, or TFAT). 
While the Windows Embedded CE implementation of exFAT includes these features, the version 
of exFAT in Windows Vista and Windows Server 2008 does not. Note ReadyBoost (described in 
Chapter 9) does not work with exFAT-formatted flash drives. 

NTFS 

As we said at the beginning of the chapter, the NTFS file system is the native file system 
format of Windows. NTFS uses 64-bit cluster numbers. This capacity gives NTFS the ability to 
address volumes of up to 16 exaclusters; however, Windows limits the size of an NTFS volume to 
that addressable with 32-bit clusters, which is slightly less than 256 TB (using 64-KB clusters). 
Table 11-3 shows the default cluster sizes for NTFS volumes. (You can override the default when 
you format an NTFS volume.) NTFS also supports 232–1 files per volume. The NTFS format 
allows for files that are 16 exabytes in size, but the implementation limits the maximum file size to 
16 TB. 

 

NTFS includes a number of advanced features, such as file and directory security, alternate 
data streams, disk quotas, sparse files, file compression, symbolic (soft) and hard links, support for 
transactional semantics, and encryption. One of its most significant features is recoverability. If a 
system is halted unexpectedly, the metadata of a FAT volume can be left in an inconsistent state, 
leading to the corruption of large amounts of file and directory data. NTFS logs changes to 
metadata in a transactional manner so that file system structures can be repaired to a consistent 
state with no loss of file or directory structure information. (File data can be lost, however.) 
Additionally, the NTFS driver in Windows also implements self-healing, a mechanism through 
which it makes most minor repairs to corruption of file system on-disk structures while Windows 
is running and without requiring a reboot. We’ll describe NTFS data structures and advanced 
features in detail later in this chapter. 
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11.2 File System Driver architecture 

File system drivers (FSDs) manage file system formats. Although FSDs run in kernel mode, 
they differ in a number of ways from standard kernel-mode drivers. Perhaps most significant, they 
must register as an FSD with the I/O manager and they interact more extensively with the memory 
manager. For enhanced performance, file system drivers also usually rely on the services of the 
cache manager. Thus, they use a superset of the exported Ntoskrnl.exe functions that standard 
drivers use. Just as for standard kernel-mode drivers, you must have the Windows Driver Kit 
(WDK) to build file system drivers. (See Chapter 1 and www.microsoft.com/whdc/devtoolswdk 
for more information on the WDK.)  

Windows has two different types of file system drivers: 

■ Local FSDs manage volumes directly connected to the computer. 

■ Network FSDs allow users to access data volumes connected to remote computers. 

11.2.1 Local FSDs 

Local FSDs include Ntfs.sys, Fastfat.sys, Exfat.sys, Udfs.sys, Cdfs.sys, and the Raw FSD 
(integrated in Ntoskrnl.exe). Figure 11-5 shows a simplified view of how local FSDs interact with 
the I/O manager and storage device drivers. As we described in the section “Volume Mounting” in 
Chapter 8, a local FSD is responsible for registering with the I/O manager. Once the FSD is 
registered, the I/O manager can call on it to perform volume recognition when applications or the 
system initially access the volumes. Volume recognition involves an examination of a volume’s 
boot sector and often, as a consistency check, the file system metadata.  

The first sector of every Windows-supported file system format is reserved as the volume’s 
boot sector. A boot sector contains enough information so that a local FSD can both identify the 
volume on which the sector resides as containing a format that the FSD manages and locate any 
other metadata necessary to identify where metadata is stored on the volume.  

When a local FSD recognizes a volume, it creates a device object that represents the mounted 
file system format. The I/O manager makes a connection through the volume parameter block 
(VPB) between the volume’s device object (which is created by a storage device driver) and the 
device object that the FSD created. The VPB’s connection results in the I/O manager redirecting 
I/O requests targeted at the volume device object to the FSD device object. (See Chapter 8 for 
more information on VPBs.) 
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To improve performance, local FSDs usually use the cache manager to cache file system data, 
including metadata. (For more information on the cache manager, see Chapter 10.) They also 
integrate with the memory manager so that mapped files are implemented correctly. For example, 
they must query the memory manager whenever an application attempts to truncate a file in order 
to verify that no processes have mapped the part of the file beyond the truncation point. (See 
Chapter 9 for more information on the memory manager.) Windows doesn’t permit file data that is 
mapped by an application to be deleted either through truncation or file deletion. 

Local FSDs also support file system dismount operations, which permit the system to 
disconnect the FSD from the volume object. A dismount occurs whenever an application requires 
raw access to the on-disk contents of a volume or the media associated with a volume is changed. 
The first time an application accesses the media after a dismount, the I/O manager reinitiates a 
volume mount operation for the media. 

11.2.2 Remote FSDs 

Remote FSDs consist of two components: a client and a server. A client-side remote FSD 
allows applications to access remote files and directories. The client FSD accepts I/O requests 
from applications and translates them into network file system protocol commands that the FSD 
sends across the network to a server-side component, which is typically a remote FSD. A 
server-side FSD listens for commands coming from a network connection and fulfills them by 
issuing I/O requests to the local FSD that manages the volume on which the file or directory that 
the command is intended for resides. 

Windows includes a client-side remote FSD named LANMan Redirector (redirector) and a 
server-side remote FSD named LANMan Server (\%SystemRoot%\System32\Drivers\Srv2.sys). 
The redirector is implemented as a port/miniport driver combination, where the port driver 
(\%SystemRoot%\System32\Drivers\Rdbss.sys) is implemented as a driver subroutine library, and 
the miniport (\%SystemRoot%\System32\Drivers\Mrxsmb.sys) uses services implemented by the 
port driver. Another redirector miniport driver is WebDAV (\%SystemRoot%\System32 
\Drivers\Mrxdav.sys), which implements the client side of file access over HTTP. The 
port/miniport model simplifies redirector development because the port driver, which all remote 
FSD miniport drivers share, handles many of the mundane details involved with interfacing a 
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client-side remote FSD to the Windows I/O manager. In addition to the FSD components, both 
LANMan Redirector and LANMan Server include Windows services named Workstation and 
Server, respectively. Figure 11-6 shows the relationship between a client accessing files remotely 
from a server through the redirector and server FSDs. 

  

Windows relies on the Common Internet File System (CIFS) protocol to format messages 
exchanged between the redirector and the server. CIFS is a version of Microsoft’s Server Message 
Block (SMB) protocol. (For more information on CIFS, go to www.cifs.com.) Like local FSDs, 
client-side remote FSDs usually use cache manager services to locally cache file data belonging to 
remote files and directories. However, client-side remote FSDs must implement a distributed 
cache coherency protocol, called oplock (opportunistic locking), so that the data an application 
sees when it accesses a remote file is the same as the data applications running on other computers 
that are accessing the same file see. Although serverside remote FSDs participate in maintaining 
cache coherency across their clients, they don’t cache data from the local FSDs because local 
FSDs cache their own data. 

When a client wants to access a server file, it must first request an oplock. The client dictates 
the kind of caching that the client can perform based on the type of oplock that the server grants. 

There are three main types of oplocks:  

■ A Level I oplock is granted when a client has exclusive access to a file. A client holding 
this type of oplock for a file can cache both reads and writes on the client system. 

■ A Level II oplock represents a shared file lock. Clients that hold a Level II oplock can 
cache reads, but writing to the file invalidates the Level II oplock. 

■ A Batch oplock is the most permissive kind of oplock. A client with this oplock can cache 
both reads and writes to the file as well as open and close the file without requesting additional 
oplocks. Batch oplocks are typically used only to support the execution of batch files, which can 
open and close a file repeatedly as they execute. 

If a client has no oplock, it can cache neither read nor write data locally and instead must 
retrieve data from the server and send all modifications directly to the server. 
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An example, shown in Figure 11-7, will help illustrate oplock operation. The server 
automatically grants a Level I oplock to the first client to open a server file for access. The 
redirector on the client caches the file data for both reads and writes in the file cache of the client 
machine. If a second client opens the file, it too requests a Level I oplock. However, because there 
are now two clients accessing the same file, the server must take steps to present a consistent view 
of the file’s data to both clients. If the first client has written to the file, as is the case in Figure 
11-7, the server revokes its oplock and grants neither client an oplock. When the first client’s 
oplock is revoked, or broken, the client flushes any data it has cached for the file back to the 
server. 

  

If the first client hadn’t written to the file, the first client’s oplock would have been broken to 
a Level II oplock, which is the same type of oplock the server would grant to the second client. 
Now both clients can cache reads, but if either writes to the file, the server revokes their oplocks 
so that noncached operation commences. Once oplocks are broken, they aren’t granted again for 
the same open instance of a file. However, if a client closes a file and then reopens it, the server 
reassesses what level of oplock to grant the client based on which other clients have the file open 
and whether or not at least one of them has written to the file. 

eXPeriMeNT: Viewing the list of registered File Systems 

When the I/O manager loads a device driver into memory, it typically names the driver object 
it creates to represent the driver so that it’s placed in the \Driver object manager directory. The 
driver objects for any driver the I/O manager loads that have a Type attribute value of 
SERVICE_FILE_SYSTEM_DRIVER (2) are placed in the \FileSystem directory by the I/O 
manager. Thus, using a tool such as WinObj (from Sysinternals), you can see the file systems that 
have registered on a system, as shown in the following screen shot. (Note that some file system 
drivers also place device objects in the \FileSystem directory.) 
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Another way to see registered file systems is to run the System Information viewer. Run 
Msinfo32 from the Start menu’s Run dialog box and select System Drivers under Software 
Environment. Sort the list of drivers by clicking the Type column, and drivers with a Type 
attribute of SERVICE_FILE_SYSTEM_DRIVER group together. 

  

Note that just because a driver registers as a file system driver type doesn’t mean that it is a 
local or remote FSD. For example, Npfs (Named Pipe File System), which is visible in the list just 
shown, is a network API driver that supports named pipes but implements a private namespace, 
and therefore is in some ways like a file system driver. See Chapter 12 for an experiment that 
reveals the Npfs namespace. 

11.2.3 File System Operation 

Applications and the system access files in two ways: directly, via file I/O functions (such as 
ReadFile and WriteFile), and indirectly, by reading or writing a portion of their address space that 
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represents a mapped file section. (See Chapter 9 for more information on mapped files.) Figure 
11-8 is a simplified diagram that shows the components involved in these file system operations 
and the ways in which they interact. As you can see, an FSD can be invoked through several 
paths: 

■ From a user or system thread performing explicit file I/O 

■ From the memory manager’s modified and mapped page writers 

■ Indirectly from the cache manager’s lazy writer 

■ Indirectly from the cache manager’s read-ahead thread 

■ From the memory manager’s page fault handler 

  

The following sections describe the circumstances surrounding each of these scenarios and 
the steps FSDs typically take in response to each one. You’ll see how much FSDs rely on the 
memory manager and the cache manager. 

Explicit File I/O 

The most obvious way an application accesses files is by calling Windows I/O functions such 
as CreateFile, ReadFile, and WriteFile. An application opens a file with CreateFile and then reads, 
writes, or deletes the file by passing the handle returned from CreateFile to other Windows 
functions. The CreateFile function, which is implemented in the Kernel32.dll Windows client-side 
DLL, invokes the native function NtCreateFile, forming a complete rootrelative pathname for the 
path that the application passed to it (processing “.” and “..” symbols in the pathname) and 
prepending the path with “\??” (for example, \??\C:\Daryl\Todo.txt). 

The NtCreateFile system service uses ObOpenObjectByName to open the file, which parses 
the name starting with the object manager root directory and the first component of the path name 
(“??”). Chapter 3 includes a thorough description of object manager name resolution and its use of 
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process device maps, but we’ll review the steps it follows here with a focus on volume drive letter 
lookup. 

The first step the object manager takes is to translate \?? to the process’s per-session 
namespace directory that the DosDevicesDirectory field of the device map structure in the process 
object references (which was propagated from the first process in the logon session by using the 
logon session references field in the logon session’s token). Only volume names for network 
shares and drive letters mapped by the Subst.exe utility are typically stored in the per-session 
directory, so on those systems when a name (C: in this example) is not present in the per-session 
directory, the object manager restarts its search in the directory referenced by the 
GlobalDosDevicesDirectory field of the device map associated with the per-session directory. The 
GlobalDosDevicesDirectory always points at the \Global?? directory, which is where Windows 
stores volume drive letters for local volumes. (See the section “Session Namespace” in Chapter 3 
for more information.) 

The symbolic link for a volume drive letter points to a volume device object under \Device, 
so when the object manager encounters the volume object, the object manager hands the rest of 
the pathname to the parse function that the I/O manager has registered for device objects, 
IopParseDevice. (In volumes on dynamic disks, a symbolic link points to an intermediary 
symbolic link, which points to a volume device object.) Figure 11-9 shows how volume objects 
are accessed through the object manager namespace. The figure shows how the \GLOBAL??\C: 
symbolic link points to the \Device\HarddiskVolume3 volume device object.  

After locking the caller’s security context and obtaining security information from the 
caller’s token, IopParseDevice creates an I/O request packet (IRP) of type IRP_MJ_CREATE, 
creates a file object that stores the name of the file being opened, follows the VPB of the volume 
device object to find the volume’s mounted file system device object, and uses IoCallDriver to 
pass the IRP to the file system driver that owns the file system device object. When an FSD 
receives an IRP_MJ_CREATE IRP, it looks up the specified file, performs security  validation, 
and if the file exists and the user has permission to access the file in the way requested, returns a 
success code. The object manager creates a handle for the file object in the process’s handle table, 
and the handle propagates back through the calling chain, finally reaching the application as a 
return parameter from CreateFile. If the file system fails the create operation, the I/O manager 
deletes the file object it created for it. 

We’ve skipped over the details of how the FSD locates the file being opened on the volume, 
but a ReadFile function call operation shares many of the FSD’s interactions with the cache 
manager and storage driver. Both ReadFile and CreateFile are system calls that map to I/O 
manager functions, but the NtReadFile system service doesn’t need to perform a name lookup—it 
calls on the object manager to translate the handle passed from ReadFile into a file object pointer. 
If the handle indicates that the caller obtained permission to read the file when the file was opened, 
NtReadFile proceeds to create an IRP of type IRP_MJ_READ and sends it to the FSD on which 
the file resides. NtReadFile obtains the FSD’s device object, which is stored in the file object, and 
calls IoCallDriver, and the I/O manager locates the FSD from the device object and gives the IRP 
to the FSD. 
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If the file being read can be cached (that is, the FILE_FLAG_NO_BUFFERING flag wasn’t 
passed to CreateFile when the file was opened), the FSD checks to see whether caching has 
already been initiated for the file object. The PrivateCacheMap field in a file object points to a 
private cache map data structure (which we described in Chapter 10) if caching is initiated for a 
file object. If the FSD hasn’t initialized caching for the file object (which it does the first time a 
file object is read from or written to), the PrivateCacheMap field will be null. The FSD calls the 
cache manager CcInitializeCacheMap function to initialize caching, which involves the cache 
manager creating a private cache map and, if another file object referring to the same file hasn’t 
initiated caching, a shared cache map and a section object.  

After it has verified that caching is enabled for the file, the FSD copies the requested file data 
from the cache manager’s virtual memory to the buffer that the thread passed to the ReadFile 
function. The file system performs the copy within a try/except block so that it catches any faults 
that are the result of an invalid application buffer. The function the file system uses to perform the 
copy is the cache manager’s CcCopyRead function. CcCopyRead takes as parameters a file object, 
file offset, and length.  

When the cache manager executes CcCopyRead, it retrieves a pointer to a shared cache map, 
which is stored in the file object. Recall from Chapter 10 that a shared cache map stores pointers 
to virtual address control blocks (VACBs), with one VACB entry for each 256-KB block of the 
file. If the VACB pointer for a portion of a file being read is null, CcCopyRead allocates a VACB, 
reserving a 256-KB view in the cache manager’s virtual address space, and maps (using 
MmMapViewInSystemCache) the specified portion of the file into the view. Then CcCopyRead 
simply copies the file data from the mapped view to the buffer it was passed (the buffer originally 
passed to ReadFile). If the file data isn’t in physical memory, the copy operation generates page 
faults, which are serviced by MmAccessFault.  



 823

When a page fault occurs, MmAccessFault examines the virtual address that caused the fault 
and locates the virtual address descriptor (VAD) in the VAD tree of the process that caused the 
fault. (See Chapter 9 for more information on VAD trees.) In this scenario, the VAD describes the 
cache manager’s mapped view of the file being read, so MmAccessFault calls MiDispatchFault to 
handle a page fault on a valid virtual memory address. MiDispatchFault locates the control area 
(which the VAD points to) and through the control area finds a file object representing the open 
file. (If the file has been opened more than once, there might be a list of file objects linked through 
pointers in their private cache maps.) 

With the file object in hand, MiDispatchFault calls the I/O manager function IoPageRead to 
build an IRP (of type IRP_MJ_READ) and sends the IRP to the FSD that owns the device object 
the file object points to. Thus, the file system is reentered to read the data that it requested via 
CcCopyRead, but this time the IRP is marked as noncached and paging I/O. These flags signal the 
FSD that it should retrieve file data directly from disk, and it does so by determining which 
clusters on disk contain the requested data and sending IRPs to the volume manager that owns the 
volume device object on which the file resides. The volume parameter block (VPB) field in the 
FSD’s device object points to the volume device object.  

The memory manager waits for the FSD to complete the IRP read and then returns control to 
the cache manager, which continues the copy operation that was interrupted by a page fault. When 
CcCopyRead completes, the FSD returns control to the thread that called NtReadFile, having 
copied the requested file data—with the aid of the cache manager and the memory manager—to 
the thread’s buffer. 

The path for WriteFile is similar except that the NtWriteFile system service generates an IRP 
of type IRP_MJ_WRITE and the FSD calls CcCopyWrite instead of CcCopyRead. CcCopyWrite, 
like CcCopyRead, ensures that the portions of the file being written are mapped into the cache and 
then copies to the cache the buffer passed to WriteFile. If a file’s data is already stored in the 
system’s working set, there are several variants on the scenario we’ve just described. If a file’s 
data is already stored in the cache, CcCopyRead doesn’t incur page faults. Also, under certain 
conditions, NtReadFile and NtWriteFile call an FSD’s fast I/O entry point instead of immediately 
building and sending an IRP to the FSD. Some of these conditions follow: the portion of the file 
being read must reside in the first 4 GB of the file, the file can have no locks, and the portion of 
the file being read or written must fall within the file’s currently allocated size. 

The fast I/O read and write entry points for most FSDs call the cache manager’s 
CcFastCopy-Read and CcFastCopyWrite functions. These variants on the standard copy routines 
ensure that the file’s data is mapped in the file system cache before performing a copy operation. 
If this condition isn’t met, CcFastCopyRead and CcFastCopyWrite indicate that fast I/O isn’t 
possible. When fast I/O isn’t possible, NtReadFile and NtWriteFile fall back on creating an IRP. 
(See the section “Fast I/O” in Chapter 10 for a more complete description of fast I/O.)  

Memory Manager’s Modified and Mapped Page Writer 

The memory manager’s modified and mapped page writer threads wake up periodically and 
when available memory runs low to flush modified pages. The threads call 
IoAsynchronousPageWrite to create IRPs of type IRP_MJ_WRITE and write pages to either a 
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paging file or a file that was modified after being mapped. Like the IRPs that MiDispatchFault 
creates, these IRPs are flagged as noncached and paging I/O. Thus, an FSD bypasses the file 
system cache and issues IRPs directly to a storage driver to write the memory to disk.  

Cache Manager’s Lazy Writer 

The cache manager’s lazy writer thread also plays a role in writing modified pages because it 
periodically flushes views of file sections mapped in the cache that it knows are dirty. The flush 
operation, which the cache manager performs by calling MmFlushSection, triggers the memory 
manager to write any modified pages in the portion of the section being flushed to disk. Like the 
modified and mapped page writers, MmFlushSection uses IoSynchronousPageWrite to send the 
data to the FSD. 

Cache Manager’s Read-Ahead Thread 

The cache manager includes a thread that is responsible for attempting to read data from files 
before an application, a driver, or a system thread explicitly requests it. The read-ahead thread 
uses the history of read operations that were performed on a file, which are stored in a file object’s 
private cache map, to determine how much data to read. When the thread performs a read-ahead, it 
simply maps the portion of the file it wants to read into the cache (allocating VACBs as necessary) 
and touches the mapped data. The page faults caused by the memory accesses invoke the page 
fault handler, which reads the pages into the system’s working set. 

Memory Manager’s Page Fault Handler 

We described how the page fault handler is used in the context of explicit file I/O and cache 
manager read-ahead, but it is also invoked whenever any application accesses virtual memory that 
is a view of a mapped file and encounters pages that represent portions of a file that aren’t part of 
the application’s working set. The memory manager’s MmAccessFault handler follows the same 
steps it does when the cache manager generates a page fault from CcCopyRead or CcCopyWrite, 
sending IRPs via IoPageRead to the file system on which the file is stored. 

11.2.4 File System Filter Drivers 

A filter driver that layers over a file system driver is called a file system filter driver. (See 
Chapter 7 for more information on filter drivers.) The ability to see all file system requests and 
optionally modify or complete them enables a range of applications, including remote file 
replication services, file encryption, efficient backup, and licensing. Every commercial onaccess 
virus scanner includes a file system filter driver that intercepts IRPs that deliver IRP_MJ_ 
CREATE commands that issue whenever an application opens a file. Before propagating the IRP 
to the file system driver to which the command is directed, the virus scanner examines the file 
being opened to ensure that it’s clean of a virus. If the file is clean, the virus scanner passes the 
IRP on, but if the file is infected the virus scanner communicates with its associated Windows 
service process to quarantine or clean the file. If the file can’t be cleaned, the driver fails the IRP 
(typically with an access-denied error) so that the virus cannot become active.  

Process Monitor 
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Process Monitor (Procmon), a system activity monitoring utility from Sysinternals that has 
been used throughout this book, is an example of a passive filter driver, which is one that does not 
modify the flow of IRPs between applications and file system drivers. Windows includes the 
Filesystem Filter Manager (%SystemRoot%\System32\Drivers\Fltmgr.sys) as part of a 
port/miniport model for file system filter drivers. The Filesystem Filter Manager greatly simplifies 
the development of filter drivers by interfacing a filter miniport driver to the Windows I/O system 
and providing services for querying file names, attaching to volumes, and interacting with other 
filters. Process Monitor’s file system monitoring is implemented as a minifilter driver. 

Process Monitor works by extracting a file system filter device driver from its executable 
image (Procmon.exe) the first time you run it after a boot, installing the driver in memory, and 
then deleting the driver image from disk. Through the Process Monitor GUI, you can direct the 
driver to monitor file system activity on local volumes that have assigned drive letters, network 
shares, named pipes, and mail slots. When the driver receives a command to start monitoring a 
volume, it registers filtering callbacks with the Filter Manager, which is attached to the device 
object that represents a mounted file system on the volume. After an attach operation, the I/O 
manager redirects an IRP targeted at the underlying device object to the driver owning the 
attached device, in this case the Filter Manager, which sends the event to registered minifilter 
drivers, in this case Process Monitor. 

When the Process Monitor driver intercepts an IRP, it records information about the IRP’s 
command, including target file name and other parameters specific to the command (such as read 
and write lengths and offsets) to a nonpaged kernel buffer. Twice a second the Process Monitor 
GUI sends an IRP to Process Monitor’s interface device object, which requests a copy of the 
buffer containing the latest activity and displays the activity in its output  window.  Process 
Monitor’s use is described further in the next section, “Troubleshooting File System Problems.” 

11.3 Troubleshooting File System Problems 

Chapter 4 describes the way that the system and applications store data in the registry. 
Registry-related problems such as misconfigured security and missing registry values and keys are 
the source of many system and application failures. The system and applications also use files to 
store data, and they access executable and DLL image files. Misconfigured NTFS security and 
missing files or directories are therefore also a common source of system and application failures 
because the system and applications often make assumptions about what they should be able to 
access and then misbehave in unexpected ways when the assumptions are violated. 

Process Monitor shows all file activity as it occurs, which makes it an ideal tool for 
troubleshooting file system–related system and application failures. To run Process Monitor the 
first time on a system, an account must have the Load Driver and Debug privileges. After loading, 
the driver remains resident, so subsequent executions require only the Debug privilege.  

Process Monitor Basic vs. Advanced Modes 
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When you run Process Monitor, it starts in basic mode, which shows the file system activity 
most often useful for troubleshooting. When in basic mode, Process Monitor omits certain file 
system operations from being displayed, including: 

■ I/O to NTFS metadata files 

■ I/O to the paging file 

■ I/O generated by the System process 

■ I/O generated by the Process Monitor process 

While in basic mode, Process Monitor also reports file I/O operations with friendly names 
rather than with the IRP types used to represent them. For example, both IRP_MJ_WRITE and 
FASTIO_WRITE operations display as WriteFile, and IRP_MJ_CREATE operations show as 
Open if they represent an open operation and as Create for the creation of new files. 

eXPeriMeNT: Viewing File System activity on an idle System 

Windows file system drivers implement support for file change notification, which enables 
applications to request notifications of file system changes without polling for them. The 
Windows functions for doing so include ReadDirectoryChangesW and the 
FindFirstChangeNotification, FindNextChangeNotification pair. When you run Process Monitor 
on a system that’s idle, you should therefore not see the repeated accesses to files or directories 
because that activity unnecessarily negatively affects a system’s overall performance. 

Run Process Monitor, and after several seconds examine the output log to see whether you 
can spot polling behavior. Right-click on an output line associated with polling, click Properties 
on the context menu, and then click the Process tab in the Properties dialog box to view details of 
the process performing the activity.  

Process Monitor Troubleshooting Techniques 

The two basic Process Monitor troubleshooting techniques for file system problems are 
identical to those for registry-related problems: looking in a Process Monitor trace at the last thing 
an application did before it failed, or comparing a Process Monitor trace of a failing application 
with a trace from a working system. See the section “Process Monitor Troubleshooting 
Techniques” in Chapter 4 for more information on these techniques. 

Entries in a Process Monitor trace that have values of NAME NOT FOUND, NO SUCH 
FILE, PATH NOT FOUND, SHARING VIOLATION, and ACCESS DENIED in the Result 
column are ones that you should investigate. The first three are reported when an application or 
the system attempts to open a nonexistent file or directory. In many cases, these errors do not 
indicate a serious problem. When you execute a program from the Start menu’s Run dialog box 
without specifying its full path, for instance, Windows Explorer will search the directories listed in 
the system PATH environment variable for the image file until it locates the file or has searched 
all the listed directories. Each attempt to find the image in a directory that does not contain it 
results in a Process Monitor output line similar to this: 

1. 25314 7:44:27.4180943 PM Explorer.EXE 1640 CreateFile C:\Program Files\   

2. Microsoft Windows Performance Toolkit\test.exe NAME NOT FOUND Desired Access: Read   
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3. Attributes, Disposition: Open, Options: Open Reparse Point, Attributes: n/a, ShareMode:   

4. Read, Write, Delete, AllocationSize: n/a  

Access-denied errors are a common source of file system–related application failures, and 
they occur when an application does not have permission to open the file or directory for the 
access types it desires. Some applications do not check error codes or perform error recovery, and 
they fail by crashing or terminating; others display misleading error messages that mask the root 
cause of the error. 

Buffer-overflow exploits are a serious security concern, but a code result of BUFFER 
OVERFLOW is simply a file system driver’s way to indicate to an application that the buffer it 
specified to store result data was too small to hold the data. Application developers use this 
behavior to determine how large a buffer should be because the file system driver also returns the 
size of the buffer required to store the data. Operations with a buffer overflow result are usually 
followed by the same operation with a successful result. 

Process Monitor has been used extensively within Microsoft and other organizations to solve 
difficult or nearly impossible-to-diagnose problems. 

11.4 Common log File System 

Transactional semantics for a database or a journaled file system often require keeping track 
of changes made to the data and metadata contained in the files or entries. Typically, these 
changes are stored in data structures called log records through an operation called logging. These 
log records can then be used to undo (roll back), redo, or validate the changes at a later time, even 
across system reboots. 

Windows provides this kind of logging service through the Common Log File System (CLFS) 
to support the transactional features built into Windows, including transactional NTFS (TxF) and 
transactional registry (TxR), and to enable third-party developers to take advantage of similar 
technology. CLFS provides both user-mode and kernel-mode services for creating, reading, and 
writing CLFS log files. The services are flexible and extensible, which allows the implementation 
details and structure of the log records stored in a log file to be defined by a caller. 

Although CLFS calls itself a file system, it actually provides a virtual abstraction layer on top 
of NTFS by using streams and containers, described later. What CLFS exposes as a single virtual 
log file could actually be a single physical log file, a single log file divided into multiple physical 
files, or even different log files each divided into multiple physical files. Later, we’ll describe how 
NTFS interacts with CLFS to provide transactional support. 

Marshalling 

Internally, CLFS encapsulates the functionality of the Algorithm for Recovery and Isolation 
Exploiting Semantics (ARIES), which allows it to provide reliable recovery and replication of 
operations by using an industry-approved standard. However, CLFS is not limited to supporting 
ARIES; it is well suited to a variety of logging scenarios. You can find the full ARIES 
specification at www.sai.msu.su/~megera/postgres/gist/papers/concurrency/p94-mohan.pdf. The 
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primary job of any high-performance transactional log is to allow log clients to accurately repeat 
history. CLFS does this by marshalling client log records into memory buffers, forcing them to 
stable storage, and reading records back on request. After a record makes it to stable storage and 
the storage media is intact, CLFS is able to read the record across system failures. 

Both user-mode and kernel-mode clients marshal data buffers into log records that are part of 
a marshalling area maintained in the client’s address space. When creating a marshalling area, a 
client must specify the number and size of the log I/O buffers it wants to maintain in its 
marshaling area. The marshalling runtime implements policy on allocating log I/O buffers, 
appending them to the log internal queue and flushing them to disk. Clients can override the 
default marshalling code policy by forcing queue appends and flushes to disk via API calls.  

One of the design goals of the CLFS marshalling runtime is to minimize kernel transitions, 
which it achieves, among other things, through log-space reservation, a requirement for supporting 
scenarios such as transaction rollbacks. Every time the log marshalling area talks to the CLFS 
driver (which implies a kernel transition for user-mode clients), the marshalling area tries to 
negotiate a desired amount of reserved space, usually larger than what is currently required. This 
means that if the client requires more space in the future, the marshalling area can immediately 
satisfy the new request without issuing a new kernel transition. Note, however, that if the amount 
of the reservation cannot be satisfied, the marshalling area will try to get just enough of the 
reservation to satisfy the user’s request (without extra reserved space), which could potentially 
lead to additional kernel transitions. 

Log Types 

CLFS supports two types of logs: dedicated logs and multiplexed logs (also called common 
logs). A dedicated log has a single stream of log records that is used by all the log’s clients. A 
multiplexed log has several streams: each stream has its own clients and its own memory buffers 
for marshalling log records, but the records from all those buffers are multiplexed into a single 
queue and written to a single log on stable storage. Multiplexing allows the I/O operations of 
several streams to be consolidated. When a log is created or opened, CLFS determines whether the 
log is dedicated or multiplexed depending on whether a dedicated log path or a multiplexed log 
path is specified. 

If the request is for a client on a dedicated log (called a physical client), CLFS locates the 
physical file control block (FCB) object for the file proper and handles the request. 

If the request is for a client on a multiplexed log (called a virtual client), CLFS locates the 
corresponding virtual FCB and context control block (CCB) objects to translate the request into an 
operation on the physical FCB object. CLFS then handles the operation on the CLFS physical 
FCB object as just described. 

In either case, if the request is a cached read, CLFS uses the cache manager’s services for 
accessing cached data. (For more information on the cache manager, see Chapter 10.) Just as it 
does for requests from other file system drivers, the cache manager maps a view of the file and 
references the view, which might cause the memory manager to issue noncached reads to CLFS 
against the physical log. For flushes and noncached reads, CLFS finds the target container object 
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through the log metadata and issues IRPs to NTFS directly. Figure 11-10 shows the possible 
CLFS paths for a request coming from user mode or kernel mode. 

  

Because each stream of a multiplexed log provides its clients with the illusion that their 
stream is the entire log, CLFS must include metadata in the physical log that identifies which 
client each data block belongs to. This data is called the owner page and is always exactly one 
page (4 KB) in size. Each 512 KB of client data results in an owner page to describe it. Since 
dedicated logs require no tracking of client and data mapping, they don’t include owner pages. 
Figure 11-11 shows two clients writing log records to a multiplexed log and how the writes are 
kept together in a unified flush queue that can then be uniformly flushed to physical storage 
through a single I/O operation. 

  

The flush queue will be emptied in the following conditions: 
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■ The amount of data in the flush queue exceeds a certain threshold. (The default is 40,000 
bytes.) 

■ The CLFS flush API is called. 

■ A restart area is being written, and the log needs to be flushed beyond the restart area. 

When flushing, CLFS scans the flush queue and determines how many entries need to be 
flushed. It then issues IRPs to NTFS for the corresponding log files of each of the entries and 
waits for all the IRPs to complete. If some IRPs fail, CLFS may re-issue IRPs (failures such as 
low memory condition, lack of quota, and so on are subject to retry) to redo the work and wait 
again. 

Log Layout 

A log file is made up of a base log file (BLF) that contains metadata and up to 1,023 
containers that hold the actual data. The base log file is initially 64 KB in size and grows as 
needed. The log metadata stores information about the log, including the beginning of the log, the 
container size, the container path, the location from which restart operations should be performed, 
the log state, the log name, and the log clients. For consistency in case a system failure occurs 
during a log update, the base log file stores two copies of the log metadata, and when it makes 
updates it overwrites the older copy. The BFL stores a value, the dump count, that indicates which 
copy is newer. 

A container is the unit of allocation for an active physical log stream. All the containers in a 
log have the same size, which is a multiple of 512 KB with a 4 GB maximum size. A CLFS client 
grows or shrinks a log stream by adding or deleting containers from the log file. CLFS implements 
containers as contiguous files on the volume on which the BLF resides. Figure 11-12 shows the 
relationship between a base log file and the associated log data stored in containers. 

  

Internally, the CLFS driver places the containers in a container queue to give clients a logical 
view of a single contiguous physical log stream; in doing so, the CLFS driver maps the physical 
container identifier to a logical container identifier. Containers are recycled when the tail of the 
active log migrates beyond the last sector of the container. Recycling a container involves moving 
it from the tail to the head of the container queue and appropriately updating its logical container 
identifier. 
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Log Sequence Numbers 

When a client writes a record to a stream, CLFS returns a log sequence number (LSN) that 
identifies the log record for future reference. The LSNs assigned to the records that are written to a 
particular stream form an increasing sequence. That is, the LSN assigned to a record that is written 
to a stream is always greater than the LSN assigned to the previous record written to that same 
stream. Two critical LSNs that the base log file keeps track of are the log start LSN and the restart 
LSN, which, as described earlier, are stored in the BLF metadata. 

An LSN is 64 bits wide and consists of three parts, as shown in Figure 11-13: 

■ A 32-bit container index that identifies the log container where the log record resides 

■ A 23-bit block offset that identifies an offset within a container 

■ A 9-bit record offset that identifies a record within a block 

  

Log Blocks 

Because it is possible that a write to a log might fail, which is called a torn write, CLFS uses 
log blocks to track whether log records are fully committed to storage. CLFS stores log records 
within log blocks, which correspond to 512-byte sectors, and reads and writes data to a log using 
log blocks. Each log block includes a 2-byte sector signature at the end of each sector in the block 
that stores a sequence number and flags, as well as a copy of the most recently committed 
signatures in a signature array at the end of the block, as shown in Figure 11-14. Only if all the 
sector signatures in a log block are valid and match the signatures in the array, does CLFS 
consider the block valid. If a log block is partially written and a system failure occurs, for example, 
the signatures won’t match, and CLFS considers the log block invalid. 

  

Owner Pages 

As mentioned previously, each 512-KB block of data in a multiplexed log (called a region) is 
correlated with its virtual log through an owner page. Each region consists of 4-KB pages, and 
each page contains one or more sectors, which contain log blocks. The owner page is the last page 
of a region, as shown in Figure 11-15. Because the owner page is itself a log block, CLFS can 
detect torn writes on the owner page, just as for a log record, by using the log block signature 
array. 
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An owner page contains two kinds of information: 

■ For each sector in the region, the virtual log to which the sector belongs as well as the 
sector’s serial number (starting from 0). Because the sector size is 512 bytes, there can be at most 
1,024 sectors in a region. 

■ For each virtual log, the minimum and maximum virtual log LSN for the region. These 
values give the range of valid virtual LSNs for the region. 

CLFS can tell by looking at the owner page of a virtual log LSN whether the record specified 
by the LSN resides in the current region or not. If the record does not reside in the current region, 
CLFS can decide whether it should search the previous region or the next region by comparing the 
virtual log LSN with the virtual log LSN range for the region. 

When CLFS inserts log blocks into a multiplexed log’s physical FCB flush queue, if it finds 
that the current log block will overlap the owner page of the current region, it splits the current log 
block and inserts an owner page log block after the first half of the split log block (as shown in 
Figure 11-15). In other words, the owner page is only written to disk after the region that it 
describes becomes full. When a client reopens a multiplexed log file, CLFS scans the regions and 
rebuilds an in-memory owner page describing the latest region for which it hasn’t written an 
owner page log block. 

Note that when reopening the log file, CLFS doesn’t know exactly where the log end LSN is, 
so it must find the LSN to avoid losing data or using corrupted data. For a dedicated log, CLFS 
reads the log blocks sequentially until an invalid log block is found and then sets the end of the log 
there. For a multiplexed log, CLFS reads the last owner page (the base log file saves a copy of the 
last flushed owner page’s LSN when the log metadata is last flushed) and verifies it is indeed valid. 
CLFS then reads the next region’s owner page repeatedly until an invalid owner page is found. 
After that, CLFS scans backward to find the first region with only valid log data blocks. CLFS 
then assumes the end of the log must fall within the next region. It will scan log block by log 
block until an invalid log block is found and then set the end of the log there. 

Translating Virtual LSNs to Physical LSNs 

CLFS relies on physical LSNs to identify log blocks within a physical log. However, CLFS 
combines several virtual logs in a physical log for multiplexed logs and uses virtual LSNs to 
locate log blocks in a virtual log. Therefore, for a virtual log client, a log block can be addressed 
both by a physical LSN and by a virtual LSN. 

To translate a virtual log LSN to a physical log LSN, CLFS follows these steps: 

1. Reads the owner page for the region indicated by the virtual log LSN. 
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2. Checks the owner page’s virtual LSN region to see whether the virtual LSN is actually in 
the region or not. Most of the time the log block will be in the region. 

3. If the virtual LSN is in the region, CLFS refers to the sector to client mapping in the owner 
page to find the physical LSN’s block offset. Given a client’s virtual LSN and its size, CLFS can 
calculate the virtual LSN of the next log block. Applying this rule, CLFS can deterministically 
calculate the physical LSN of every virtual log block in the region, as shown in Figure 11-16. 

4. If the virtual LSN is not in the region, CLFS searches either the previous region or the next 
region depending on whether the virtual LSN is smaller or larger than the current region’s virtual 
LSN range. 

  

Management Policies 

Each CLFS log can be defined by a set of management policies that are configurable by the 
client. Table 11-4 lists these policies and their usage. 
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11.5 NTFS Design goals and Features 

In the following section, we’ll look at the requirements that drove the design of NTFS. Then 
in the subsequent section, we’ll examine the advanced features of NTFS.  

11.5.1 High-End File System Requirements 

From the start, NTFS was designed to include features required of an enterprise-class file 
system. To minimize data loss in the face of an unexpected system outage or crash, a file system 
must ensure that the integrity of its metadata is guaranteed at all times; and to protect sensitive 
data from unauthorized access, a file system must have an integrated security model. Finally, a file 
system must allow for software-based data redundancy as a low-cost alternative to 
hardware-redundant solutions for protecting user data. In this section, you’ll find out how NTFS 
implements each of these capabilities. 

Recoverability 

To address the requirement for reliable data storage and data access, NTFS provides file 
system recovery based on the concept of an atomic transaction. Atomic transactions are a 
technique for handling modifications to a database so that system failures don’t affect the 
correctness or integrity of the database. The basic tenet of atomic transactions is that some 
database operations, called transactions, are all-or-nothing propositions. (A transaction is defined 
as an I/O operation that alters file system data or changes the volume’s directory structure.) The 
separate disk updates that make up the transaction must be executed atomically—that is, once the 
transaction begins to execute, all its disk updates must be completed. If a system failure interrupts 
the transaction, the part that has been completed must be undone, or rolled back. The rollback 
operation returns the database to a previously known and consistent state, as if the transaction had 
never occurred. 

NTFS uses atomic transactions to implement its file system recovery feature. If a program 
initiates an I/O operation that alters the structure of an NTFS volume—that is, changes the 
directory structure, extends a file, allocates space for a new file, and so on—NTFS treats that 
operation as an atomic transaction. It guarantees that the transaction is either completed or, if the 
system fails while executing the transaction, rolled back. The details of how NTFS does this are 
explained in the section “NTFS Recovery Support” later in the chapter. In addition, NTFS uses 
redundant storage for vital file system information so that if a sector on the disk goes bad, NTFS 
can still access the volume’s critical file system data. 

Security 

Security in NTFS is derived directly from the Windows object model. Files and directories 
are protected from being accessed by unauthorized users. (For more information on Windows 
security, see Chapter 6.) An open file is implemented as a file object with a security descriptor 
stored on disk as a part of the file. Before a process can open a handle to any object, including a 
file object, the Windows security system verifies that the process has appropriate authorization to 
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do so. The security descriptor, combined with the requirement that a user log on to the system and 
provide an identifying password, ensures that no process can access a file unless given specific 
permission to do so by a system administrator or by the file’s owner. (For more information about 
security descriptors, see the section “Security Descriptors and Access Control” in Chapter 6, and 
for more details about file objects, see the section “Opening Devices” in Chapter 7.) 

Data Redundancy and Fault Tolerance 

In addition to recoverability of file system data, some customers require that their own data 
not be endangered by a power outage or catastrophic disk failure. The NTFS recovery capabilities 
do ensure that the file system on a volume remains accessible, but they make no guarantees for 
complete recovery of user files. Protection for applications that can’t risk losing file data is 
provided through data redundancy. 

Data redundancy for user files is implemented via the Windows layered driver model 
(explained in Chapter 7), which provides fault-tolerant disk support. NTFS communicates with a 
volume manager, which in turn communicates with a hard disk driver to write data to disk. A 
volume manager can mirror, or duplicate, data from one disk onto another disk so that a redundant 
copy can always be retrieved. This support is commonly called RAID level 1. Volume managers 
also allow data to be written in stripes across three or more disks, using the equivalent of one disk 
to maintain parity information. If the data on one disk is lost or becomes inaccessible, the driver 
can reconstruct the disk’s contents by means of exclusive-OR operations. This support is called 
RAID level 5. (See Chapter 8 for more information on striped volumes, mirrored volumes, and 
RAID-5 volumes.) 

11.5.2 Advanced Features of NTFS 

In addition to NTFS being recoverable, secure, reliable, and efficient for mission-critical 
systems, it includes the following advanced features that allow it to support a broad range of 
applications. Some of these features are exposed as APIs for applications to leverage, and others 
are internal features: 

■ Multiple data streams 

■ Unicode-based names 

■ General indexing facility 

■ Dynamic bad-cluster remapping 

■ Hard links 

■ Symbolic (soft) links and junctions 

■ Compression and sparse files 

■ Change logging 

■ Per-user volume quotas 
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■ Link tracking 

■ Encryption 

■ POSIX support 

■ Defragmentation 

■ Read-only support and dynamic partitioning 

The following sections provide an overview of these features. 

Multiple Data Streams 

In NTFS, each unit of information associated with a file—including its name, its owner, its 
time stamps, its contents, and so on—is implemented as a file attribute (NTFS object attribute).  

Each attribute consists of a single stream—that is, a simple sequence of bytes. This generic 
implementation makes it easy to add more attributes (and therefore more streams) to a file. 
Because a file’s data is “just another attribute” of the file and because new attributes can be added, 
NTFS files (and file directories) can contain multiple data streams.  

An NTFS file has one default data stream, which has no name. An application can create 
additional, named data streams and access them by referring to their names. To avoid altering the 
Windows I/O APIs, which take a string as a file name argument, the name of the data stream is 
specified by appending a colon (:) to the file name. Because the colon is a reserved character, it 
can serve as a separator between the file name and the data stream name, as illustrated in this 
example:  

1. myfile.dat:stream2  

Each stream has a separate allocation size (which defines how much disk space has been 
reserved for it), actual size (which is how many bytes the caller has used), and valid data length 
(which is how much of the stream has been initialized). In addition, each stream is given a 
separate file lock that is used to lock byte ranges and to allow concurrent access.  

One component in Windows that uses multiple data streams is the Attachment Execution 
Service, which is invoked whenever the standard Windows API for saving Internet-based 
attachments is used by applications such as Internet Explorer or Outlook. Depending on which 
zone the file was downloaded from (such as the My Computer zone, the Intranet zone or the 
Untrusted zone), Windows Explorer might warn the user that the file came from a possibly 
untrusted location or even completely block access to the file. For example, Figure 11-17 shows 
the dialog box that’s displayed when executing Process Explorer after it was downloaded from the 
Sysinternals site. 
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Other applications can use the multiple data stream feature as well. A backup utility, for 
example, might use an extra data stream to store backup-specific time stamps on files. Or an 
archival utility might implement hierarchical storage in which files that are older than a certain 
date or that haven’t been accessed for a specified period of time are moved to tape. The utility 
could copy the file to tape, set the file’s default data stream to 0, and add a data stream that 
specifies the name and location of the tape on which the file is stored. 

eXPeriMeNT: looking at Streams  

Most Windows applications aren’t designed to work with alternate named streams, but both 
the echo and more commands are. Thus, a simple way to view streams in action is to create a 
named stream using echo and then display it using more. The following command sequence 
creates a file named test with a stream named stream: 

1. C:\>echo hello > test:stream   
2. C:\>more < test:stream   
3. hello   
4. C:\>  
If you perform a directory listing, test’s file size doesn’t reflect the data stored in the alternate 
stream because NTFS returns the size of only the unnamed data stream for file query operations, 
including directory listings.  
1. C:\>dir test   
2. Volume in drive C is WINDOWS   
3. Volume Serial Number is 3991-3040  
4. Directory of C:\   
5. 08/01/00 02:37p 0 test   
6. 1 File(s) 0 bytes   
7. 112,558,080 bytes free  
You can determine what files and directories on your system have alternate data streams with the 
Streams utility from Sysinternals (see the following output) or by using the /r switch in the dir 
command.  
1. C:\>streams test   
2. Streams v1.56 - Enumerate alternate NTFS data streams   
3. Copyright (C) 1999-2007 Mark Russinovich   
4. Sysinternals - www.sysinternals.com   
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5. C:\Temp\test:   
6. :stream:$DATA 8  
Unicode-Based Names  

Like Windows as a whole, NTFS is fully Unicode enabled, using Unicode characters to store 
names of files, directories, and volumes. Unicode, a 16-bit character-coding scheme, allows each 
character in each of the world’s major languages to be uniquely represented, which aids in moving 
data easily from one country to another. Unicode is an improvement over the traditional 
representation of international characters—using a double-byte coding scheme that stores some 
characters in 8 bits and others in 16 bits, a technique that requires loading various code pages to 
establish the available characters. Because Unicode has a unique representation for each character, 
it doesn’t depend on which code page is loaded. Each directory and file name in a path can be as 
many as 255 characters long and can contain Unicode characters, embedded spaces, and multiple 
periods. 

General Indexing Facility 

The NTFS architecture is structured to allow indexing of file attributes on a disk volume. 
This structure enables the file system to efficiently locate files that match certain criteria—for 
example, all the files in a particular directory. The FAT file system indexes file names but doesn’t 
sort them, making lookups in large directories slow. 

Several NTFS features take advantage of general indexing, including consolidated security 
descriptors, in which the security descriptors of a volume’s files and directories are stored in a 
single internal stream, have duplicates removed, and are indexed using an internal security 
identifier that NTFS defines. The use of indexing by these features is described in the section 
“NTFS On-Disk Structure” later in this chapter. 

Dynamic Bad-Cluster Remapping 

Ordinarily, if a program tries to read data from a bad disk sector, the read operation fails and 
the data in the allocated cluster becomes inaccessible. If the disk is formatted as a faulttolerant 
NTFS volume, however, the Windows fault-tolerant driver dynamically retrieves a good copy of 
the data that was stored on the bad sector and then sends NTFS a warning that the sector is bad. 
NTFS allocates a new cluster, replacing the cluster in which the bad sector resides, and copies the 
data to the new cluster. It flags the bad cluster and no longer uses it. This data recovery and 
dynamic bad-cluster remapping is an especially useful feature for file servers and fault-tolerant 
systems or for any application that can’t afford to lose data. If the volume manager isn’t loaded 
when a sector goes bad, NTFS still replaces the cluster and doesn’t reuse it, but it can’t recover the 
data that was on the bad sector. 

Hard Links 

A hard link allows multiple paths to refer to the same file. (Hard links are not supported on 
directories.) If you create a hard link named C:\Documents\Spec.doc that refers to the existing file 
C:\Users\Administrator\Documents\Spec.doc, the two paths link to the same on-disk file and you 
can make changes to the file using either path. Processes can create hard links with the Windows 
CreateHardLink function or the ln POSIX function. 
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NTFS implements hard links by keeping a reference count on the actual data, where each 
time a hard link is created for the file, an additional file name reference is made to the data. This 
means that if you have multiple hard links for a file, you can delete the original file name that 
referenced the data (C:\Users\Administrator\Documents\Spec.doc in our example), and the other 
hard links (C:\Documents\Spec.doc) will remain and point to the data. However, because hard 
links are on-disk local references to data (represented by file reference records), they can exist 
only within the same volume and can’t span volumes or computers. 

eXPeriMeNT: Creating a Hard link 

There are two ways you can create a hard link: the fsutil hardlink create command or the 
mklink utility with the /H option. In this experiment we’ll use mklink because we’ll use this utility 
later to create a symbolic link as well. First, create a file called test.txt and add some text to it, as 
shown here. 

1. C:\>echo hello > test.txt  
Now create a hard link called hard.txt as shown here:  
1. C:\>mklink hard.txt test.txt /H   
2. Hardlink created for hard.txt <<===>> test.txt  
If you list the directory’s contents, you’ll notice that the two files will be identical in every way, 
with the same creation date, permissions, and file size; only the file names differ.  
1. C:\>dir *.txt   
2. Volume in drive C is OS   
3. Volume Serial Number is 38D4-EA71  
4. Directory of C:\   
5. 10/18/2008 11:55 PM 8 hard.txt   
6. 10/18/2008 11:55 PM 8 test.txt   
7. 2 File(s) 16 bytes   
8. 0 Dir(s) 10,646,011,904 bytes free  

Symbolic (Soft) Links and Junctions  

In addition to hard links, NTFS supports another type of file-name aliasing called symbolic 
links or soft links. Unlike hard links, symbolic links are strings that are interpreted dynamically 
and can be relative or absolute paths that refer to locations on any storage device, including ones 
on a different local volume or even a share on a different system. This means that symbolic links 
don’t actually increase the reference count of the original file, so deleting the original file will 
result in the loss of the data, and a symbolic link that points to a non-existing file will be left 
behind. Finally, unlike hard links, symbolic links can point to directories, not just files, which 
gives them an added advantage. 

For example, if the path C:\Drivers is a directory symbolic link that redirects to 
C:\%SystemRoot%\ System32\Drivers, an application reading C:\Drivers\Ntfs.sys actually reads 
C:\%System Root%\ System\Drivers\Ntfs.sys. Directory symbolic links are a useful way to lift 
directories that are deep in a directory tree to a more convenient depth without disturbing the 
original tree’s structure or contents. The example just cited lifts the Drivers directory to the 
volume’s root directory, reducing the directory depth of Ntfs.sys from three levels to one when 
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Ntfs.sys is accessed through the directory symbolic link. File symbolic links work much the same 
way—you can think of them as shortcuts, except they are actually implemented on the file system 
instead of being .lnk files managed by Windows Explorer. Just like hard links,  symbolic links 
can be created with the mklink utility (without the /H option) or through the CreateSymbolicLink 
API. 

Because certain legacy applications might not behave securely in the presence of symbolic 
links, especially across different machines, the creation of symbolic links requires the 
SeCreateSymbolicLink privilege, which is typically granted only to administrators. The file 
system also has a behavior option called SymLinkEvaluation that can be configured with the 
following command: 

1. fsutil behavior set SymLinkEvaluation  
By default, the Windows default symbolic link evaluation policy allows only local-to-local and 
local-to-remote symbolic links but not the opposite, as shown here:  
1. C:\>fsutil behavior query SymLinkEvaluation   
2. Local to local symbolic links are enabled   
3. Local to remote symbolic links are enabled.   
4. Remote to local symbolic links are disabled.   
5. Remote to Remote symbolic links are disabled.  
Symbolic links are based on an NTFS mechanism called reparse points. (Reparse points are 
discussed further in the section “Reparse Points” later in this chapter.) A reparse point is a file or 
directory that has a block of data called reparse data associated with it. Reparse data is 
user-defined data about the file or directory, such as its state or location, that can be read from the 
reparse point by the application that created the data, a file system filter driver, or the I/O manager. 
When NTFS encounters a reparse point during a file or directory lookup, it returns a reparse status 
code, which signals file system filter drivers that are attached to the volume and the I/O manager 
to examine the reparse data. Each reparse point type has a unique reparse tag. The reparse tag 
allows the component responsible for interpreting the reparse point’s reparse data to recognize the 
reparse point without having to check the reparse data. A reparse tag owner, either a file system 
filter driver or the I/O manager, can choose one of the following options when it recognizes 
reparse data:  

■ The reparse tag owner can manipulate the pathname specified in the file I/O operation that 
crosses the reparse point and let the I/O operation reissue with the altered pathname. Junctions 
(described shortly) take this approach to redirect a directory lookup, for example. 

■ The reparse tag owner can remove the reparse point from the file, alter the file in some way, 
and then reissue the file I/O operation. 

There are no Windows functions for creating reparse points. Instead, processes must use the 
FSCTL_SET_REPARSE_POINT file system control code with the Windows DeviceIoControl 
function. A process can query a reparse point’s contents with the FSCTL_GET_REPARSE 
_POINT file system control code. The FILE_ATTRIBUTE_REPARSE_POINT flag is set in a 
reparse point’s file attributes, so applications can check for reparse points by using the Windows 
GetFileAttributes function. 
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Another type of reparse point that NTFS supports is the junction. Junctions are a legacy 
NTFS concept and work almost identically to directory symbolic links, except they can only be 
local to a volume. There is no advantage to using a junction instead of a directory symbolic link, 
except that junctions are compatible with older versions of Windows, while directory symbolic 
links are not. 

eXPeriMeNT: Creating a Symbolic link 

This experiment shows you the main difference between a symbolic link and a hard link, 
even when dealing with files on the same volume. Create a symbolic link called soft.txt as shown 
here, pointing to the test.txt file created in the previous experiment: 

1. C:\>mklink soft.txt test.txt   
2. symbolic link created for soft.txt <<===>> test.txt  

If you list the directory’s contents, you’ll notice that the symbolic link doesn’t have a file size 
and is identified by the type. Furthermore, you’ll note that the creation time is that of the symbolic 
link, not of the target file. The symbolic link can also have security permissions that are different 
from the permissions on the target file. 

1. C:\>dir *.txt   
2. Volume in drive C is OS   
3. Volume Serial Number is 38D4-EA71  
4. Directory of C:\   
5. 10/18/2008 11:55 PM 8 hard.txt   
6. 10/19/2008 12:28 AM  soft.txt [test.txt]   
7. 10/18/2008 11:55 PM 8 test.txt   
8. 3 File(s) 16 bytes   
9. 0 Dir(s) 10,636,480,512 bytes free  

Finally, if you delete the original test.txt file, you can verify that both the hard link and 
symbolic link still exist but that the symbolic link does not point to a valid file anymore, while the 
hard link references the file data. 

Compression and Sparse Files 

NTFS supports compression of file data. Because NTFS performs compression and 
decompression procedures transparently, applications don’t have to be modified to take advantage 
of this feature. Directories can also be compressed, which means that any files subsequently 
created in the directory are compressed. 

Applications compress and decompress files by passing DeviceIoControl the 
FSCTL_SET_COMPRESSION file system control code. They query the compression state of a 
file or directory with the FSCTL_GET_COMPRESSION file system control code. A file or 
directory that is compressed has the FILE_ATTRIBUTE_COMPRESSED flag set in its attributes, 
so applications can also determine a file or directory’s compression state with GetFileAttributes. 

A second type of compression is known as sparse files. If a file is marked as sparse, NTFS 
doesn’t allocate space on a volume for portions of the file that an application designates as empty. 
NTFS returns 0-filled buffers when an application reads from empty areas of a sparse file. This 
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type of compression can be useful for client/server applications that implement circular-buffer 
logging, in which the server records information to a file and clients asynchronously read the 
information. Because the information that the server writes isn’t needed after a client has read it, 
there’s no need to store the information in the file. By making such a file sparse, the client can 
specify the portions of the file it reads as empty, freeing up space on the volume. The server can 
continue to append new information to the file without fear that the file will grow to consume all 
available space on the volume. 

As for compressed files, NTFS manages sparse files transparently. Applications specify a 
file’s sparseness state by passing the FSCTL_SET_SPARSE file system control code to 
DeviceIoControl. To set a range of a file to empty, applications use the FSCTL_SET_ZERO_ 
DATA code, and they can ask NTFS for a description of what parts of a file are sparse by using 
the control code FSCTL_QUERY_ALLOCATED_RANGES. One application of sparse files is 
the NTFS change journal, described next. 

Change Logging 

Many types of applications need to monitor volumes for file and directory changes. For 
example, an automatic backup program might perform an initial full backup and then incremental 
backups based on file changes. An obvious way for an application to monitor a volume for 
changes is for it to scan the volume, recording the state of files and directories, and on a 
subsequent scan detect differences. This process can adversely affect system performance, 
however, especially on computers with thousands or tens of thousands of files.  

An alternate approach is for an application to register a directory notification by using the 
FindFirstChangeNotification or ReadDirectoryChangesW Windows function. As an input 
parameter, the application specifies the name of a directory it wants to monitor, and the function 
returns whenever the contents of the directory change. Although this approach is more efficient 
than volume scanning, it requires the application to be running at all times. Using these functions 
can also require an application to scan directories because FindFirstChangeNotification doesn’t 
indicate what changed—just that something in the directory has changed. An application can pass 
a buffer to ReadDirectoryChangesW that the FSD fills in with change records. If the buffer 
overflows, however, the application must be prepared to fall back on scanning the directory. 

NTFS provides a third approach that overcomes the drawbacks of the first two: an application 
can configure the NTFS change journal facility by using the DeviceIoControl function’s 
FSCTL_CREATE_USN_JOURNAL file system control code to have NTFS record information 
about file and directory changes to an internal file called the change journal. A change journal is 
usually large enough to virtually guarantee that applications get a chance to process changes 
without missing any. Applications use the FSCTL_QUERY_USN_JOURNAL file system control 
code to read records from a change journal, and they can specify that the DeviceIoControl 
function not complete until new records are available. 

Per-User Volume Quotas 

Systems administrators often need to track or limit user disk space usage on shared storage 
volumes, so NTFS includes quota-management support. NTFS quota-management support allows 
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for per-user specification of quota enforcement, which is useful for usage tracking and tracking 
when a user reaches warning and limit thresholds. NTFS can be configured to log an event 
indicating the occurrence to the System event log if a user surpasses his warning limit. Similarly, 
if a user attempts to use more volume storage then her quota limit permits, NTFS can log an event 
to the System event log and fail the application file I/O that would have caused the quota violation 
with a “disk full” error code. 

NTFS tracks a user’s volume usage by relying on the fact that it tags files and directories 
with the security ID (SID) of the user who created them. (See Chapter 6 for a definition of SIDs.) 
The logical sizes of files and directories a user owns count against the user’s administratordefined 
quota limit. Thus, a user can’t circumvent his or her quota limit by creating an empty sparse file 
that is larger than the quota would allow and then fill the file with nonzero data.Similarly, whereas 
a 50-KB file might compress to 10 KB, the full 50 KB is used for quota accounting. 

By default, volumes don’t have quota tracking enabled. You need to use the Quota tab of a 
volume’s Properties dialog box, shown in Figure 11-18, to enable quotas, to specify default 
warning and limit thresholds, and to configure the NTFS behavior that occurs when a user hits the 
warning or limit threshold. The Quota Entries tool, which you can launch from this dialog box, 
enables an administrator to specify different limits and behavior for each user. 

Applications that want to interact with NTFS quota management use COM quota interfaces, 
including IDiskQuotaControl, IDiskQuotaUser, and IDiskQuotaEvents. 

  

Link Tracking  

Shell shortcuts allow users to place files in their shell namespace (on their desktop, for 
example) that link to files located in the file system namespace. The Windows Start menu uses 
shell shortcuts extensively. Similarly, object linking and embedding (OLE) links allow documents 
from one application to be transparently embedded in the documents of other applications. The 
products of the Microsoft Office suite, including PowerPoint, Excel, and Word, use OLE linking. 
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Although shell and OLE links provide an easy way to connect files with one another and with 
the shell namespace, they can be difficult to manage if a user moves the source of a shell or OLE 
link (a link source is the file or directory to which a link points). NTFS in Windows includes 
support for a service application called distributed link-tracking, which maintains the integrity of 
shell and OLE links when link targets move. Using the NTFS link-tracking support, if a link target 
located on an NTFS volume moves to any other NTFS volume within the originating volume’s 
domain, the link-tracking service can transparently follow the movement and update the link to 
reflect the change. 

NTFS link-tracking support is based on an optional file attribute known as an object ID. An 
application can assign an object ID to a file by using the FSCTL_CREATE_OR_GET_ 
OBJECT_ID (which assigns an ID if one isn’t already assigned) and FSCTL_SET_OBJECT_ID 
file system control codes. Object IDs are queried with the FSCTL_CREATE_OR_GET_ 
OBJECT_ID and FSCTL_GET_OBJECT_ID file system control codes. The FSCTL_DELETE_ 
OBJECT_ID file system control code lets applications delete object IDs from files. 

Encryption 

Corporate users often store sensitive information on their computers. Although data stored on 
company servers is usually safely protected with proper network security settings and physical 
access control, data stored on laptops can be exposed when a laptop is lost or stolen. NTFS file 
permissions don’t offer protection because NTFS volumes can be fully accessed without regard to 
security by using NTFS file-reading software that doesn’t require Windows to be running. 
Furthermore, NTFS file permissions are rendered useless when an alternate Windows installation 
is used to access files from an administrator account. Recall from Chapter 6 that the administrator 
account has the take-ownership and backup privileges, both of which allow it to access any 
secured object by overriding the object’s security settings.  

NTFS includes a facility called Encrypting File System (EFS), which users can use to encrypt 
sensitive data. The operation of EFS, as that of file compression, is completely transparent to 
applications, which means that file data is automatically decrypted when an application running in 
the account of a user authorized to view the data reads it and is automatically encrypted when an 
authorized application changes the data. 

Note NTFS doesn’t permit the encryption of files located in the system volume’s root 
directory or in the \Windows directory because many files in these locations are required during 
the boot process and EFS isn’t active during the boot process. BitLocker, described in Chapter 6, 
is a technology much better suited for environments in which this is a requirement because it 
supports full-volume encryption. 

EFS relies on cryptographic services supplied by Windows in user mode, so it consists of 
both a kernel-mode component that tightly integrates with NTFS as well as user-mode DLLs that 
communicate with the Local Security Authority Subsystem (Lsass) and cryptographic DLLs. Files 
that are encrypted can be accessed only by using the private key of an account’s EFS 
private/public key pair, and private keys are locked using an account’s password. Thus, 
EFSencrypted files on lost or stolen laptops can’t be accessed using any means (other than a 
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brute-force cryptographic attack) without the password of an account that is authorized to view the 
data. 

Applications can use the EncryptFile and DecryptFile Windows API functions to encrypt and 
decrypt files, and FileEncryptionStatus to retrieve a file or directory’s EFS-related attributes, such 
as whether the file or directory is encrypted. A file or directory that is encrypted has the 
FILE_ATTRIBUTE_ENCRYPTED flag set in its attributes, so applications can also determine a 
file or directory’s encryption state with GetFileAttributes. 

POSIX Support 

As explained in Chapter 2, one of the mandates for Windows was to fully support the POSIX 
1003.1 standard. In the file system area, the POSIX standard requires support for casesensitive file 
and directory names, traversal permissions (where security for each directory of a path is used 
when determining whether a user has access to a file or directory), a “filechange-time” time stamp 
(which is different from the MS-DOS “time-last-modified” stamp), and hard links. NTFS 
implements each of these features. 

Defragmentation 

Even though NTFS makes efforts to keep files contiguous, a volume’s files can still become 
fragmented over time, especially when there is limited free space. A file is fragmented if its data 
occupies discontiguous clusters. For example, Figure 11-19 shows a fragmented file consisting of 
five fragments. However, like most file systems (including versions of FAT on Windows), NTFS 
makes no special efforts to keep files contiguous, other than to reserve a region of disk space 
known as the master file table (MFT) zone for the MFT. (NTFS lets other files allocate from the 
MFT zone when volume free space runs low.) Keeping an area free for the MFT can help it stay 
contiguous, but it, too, can become fragmented. (See the section “Master File Table” later in this 
chapter for more information on MFTs.) 

  

To facilitate the development of third-party disk defragmentation tools, Windows includes a 
defragmentation API that such tools can use to move file data so that files occupy contiguous 
clusters. The API consists of file system controls that let applications obtain a map of a volume’s 
free and in-use clusters (FSCTL_GET_VOLUME_BITMAP), obtain a map of a file’s cluster 
usage (FSCTL_GET_RETRIEVAL_POINTERS), and move a file (FSCTL_MOVE_FILE). 

Windows includes a built-in defragmentation tool that is accessible by using the Disk 
Defragmenter utility (\%SystemRoot%\System32\Dfrgui.exe), shown in Figure 11-20, as well as a 
command-line interface, \%SystemRoot%\System32\Defrag.exe, that you can run interactively or 
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schedule but that does not produce detailed reports or offer control—such as excluding files or 
directories—over the defragmentation process. 

  

The only limitation imposed by the defragmentation implementation in NTFS is that paging 
files and NTFS log files cannot be defragmented. 

Dynamic Partitioning 

The NTFS driver allows users to dynamically resize any partition, including the system 
partition, either shrinking or expanding it (if enough space is available). Expanding a partition is 
easy if enough space exists on the disk and is performed through the 
FSCTL_EXPAND_VOLUME file system control code. Shrinking a partition is a more 
complicated process, because it requires moving any file system data that is currently in the area 
to be thrown away to the region that will still remain after the shrinking process (a mechanism 
similar to defragmentation). Shrinking is implemented by two components: the shrinking engine 
and the file system driver. 

The shrinking engine is implemented in user mode. It communicates with NTFS to determine 
the maximum number of reclaimable bytes—that is, how much data can be moved from the region 
that will be resized into the region that will remain. The shrinking engine uses the standard 
defragmentation mechanism shown earlier, which doesn’t support relocating page file fragments 
that are in use or any other files that have been marked as unmovable with the 
FSCTL_MARK_HANDLE file system control code (like the hibernation file). The master file 
table backup and other NTFS metadata files (described later), including the change journal, also 
cannot be moved, which limits the minimum size of the shrunk volume and causes wasted space. 

The file system driver shrinking code is responsible for ensuring that the volume remains in a 
consistent state throughout the shrinking process. To do so, it exposes an interface that uses three 
requests that describe the current operation, which are sent through the FSCTL_SHRINK_ 
VOLUME control code: 

■ The ShrinkPrepare request, which must be issued before any other operation. This request 
takes the desired size of the new volume in sectors and is used so that the file system can block 
further allocations outside the new volume boundary. The prepare request doesn’t verify whether 
the volume can actually be shrunk by the specified amount, but it does make sure that the amount 
is numerically valid and that there aren’t any other shrinking operations ongoing. Note that after a 
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prepare operation, the file handle to the volume becomes associated with the shrink request. If the 
file handle is closed, the operation is assumed to be aborted. 

■ The ShrinkCommit request, which the shrinking engine issues after a ShrinkPrepare 
request. In this state, the file system attempts the removal of the requested number of clusters in 
the most recent prepare request. (If multiple prepare requests have been sent with different sizes, 
the last one is the determining one.) The ShrinkCommit request assumes that the shrinking engine 
has completed and will fail if any allocated blocks remain in the area to be shrunk. 

■ The ShrinkAbort request, which can be issued by the shrinking engine or caused by events 
such as the closure of the file handle to the volume. This request undoes the commit operation by 
returning the partition to its original size and allows new allocations outside the shrunk region to 
occur again. However, defragmentation changes made by the shrinking engine remain. 

If a system is rebooted during a shrinking operation, NTFS restores the file system to a 
consistent state via its metadata recovery mechanism, explained later in the chapter. Because the 
actual shrink operation isn’t executed until all other operations have been completed, the volume 
retains its original size and only defragmentation operations that had already been flushed out to 
disk persist. 

Finally, shrinking a volume has several effects on the volume shadow copy mechanism (for 
more information on VSS, see Chapter 8). Recall that the copy-on-write mechanism allows VSS 
to simply retain parts of the file that were actually modified while still linking to the original file 
data. For deleted files, this file data will not be associated with visible files but appear as free 
space instead—free space that will likely be located in the area that is about to be shrunk. The 
shrinking engine therefore communicates with VSS to engage it in the shrinking process. In 
summary, the VSS mechanism’s job is to copy deleted file data into its differencing area and to 
increase the differencing area as required to accommodate additional data. This detail is important 
because it poses another constraint on the size to which even volumes with ample free space can 
shrink. 

11.6  NTFS File System Driver 

As described in Chapter 7, in the framework of the Windows I/O system, NTFS and other file 
systems are loadable device drivers that run in kernel mode. They are invoked indirectly by 
applications that use Windows or other I/O APIs (such as POSIX). As Figure 11-21 shows, the 
Windows environment subsystems call Windows system services, which in turn locate the 
appropriate loaded drivers and call them. (For a description of system service dispatching, see the 
section “System Service Dispatching” in Chapter 3.)  
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The layered drivers pass I/O requests to one another by calling the Windows executive’s I/O 
manager. Relying on the I/O manager as an intermediary allows each driver to maintain 
independence so that it can be loaded or unloaded without affecting other drivers. In addition, the 
NTFS driver interacts with the three other Windows executive components, shown in the  left 
side of Figure 11-22, that are closely related to file systems. 

The log file service (LFS) is the part of NTFS that provides services for maintaining a log of 
disk writes. The log file that LFS writes is used to recover an NTFS-formatted volume in the case 
of a system failure. (See the section “Log File Service (LFS)” later in the chapter.) 

  

The cache manager is the component of the Windows executive that provides systemwide 
caching services for NTFS and other file system drivers, including network file system drivers 
(servers and redirectors). All file systems implemented for Windows access cached files by 
mapping them into system address space and then accessing the virtual memory. The cache 
manager provides a specialized file system interface to the Windows memory manager for this 
purpose. When a program tries to access a part of a file that isn’t loaded into the cache (a cache 
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miss), the memory manager calls NTFS to access the disk driver and obtain the file contents from 
disk. The cache manager optimizes disk I/O by using its lazy writer threads to call the memory 
manager to flush cache contents to disk as a background activity (asynchronous disk writing). (For 
a complete description of the cache manager, see Chapter 10.) 

NTFS participates in the Windows object model by implementing files as objects. This 
implementation allows files to be shared and protected by the object manager, the component of 
Windows that manages all executive-level objects. (The object manager is described in the section 
“Object Manager” in Chapter 3.) 

An application creates and accesses files just as it does other Windows objects: by means of 
object handles. By the time an I/O request reaches NTFS, the Windows object manager and 
security system have already verified that the calling process has the authority to access the file 
object in the way it is attempting to. The security system has compared the caller’s access token to 
the entries in the access control list for the file object. (See Chapter 6 for more information about 
access control lists.) The I/O manager has also transformed the file handle into a pointer to a file 
object. NTFS uses the information in the file object to access the file on disk. 

Figure 11-23 shows the data structures that link a file handle to the file system’s on-disk 
structure. 

  

NTFS follows several pointers to get from the file object to the location of the file on disk. 
As Figure 11-23 shows, a file object, which represents a single call to the open-file system service, 
points to a stream control block (SCB) for the file attribute that the caller is trying to read or write. 
In Figure 11-23, a process has opened both the unnamed data attribute and a named stream 
(alternate data attribute) for the file. The SCBs represent individual file attributes and contain 
information about how to find specific attributes within a file. All the SCBs for a file point to a 
common data structure called a file control block (FCB). The FCB contains a pointer (actually, a 
file reference, explained in the section “File Reference Numbers” later in this chapter) to the file’s 
record in the disk-based master file table (MFT), which is described in detail in the following 
section. 
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11.7  NTFS On-Disk Structure 

This section describes the on-disk structure of an NTFS volume, including how disk space is 
divided and organized into clusters, how files are organized into directories, how the actual file 
data and attribute information is stored on disk, and finally, how NTFS data compression works. 

Volumes 

The structure of NTFS begins with a volume. A volume corresponds to a logical partition on 
a disk, and it is created when you format a disk or part of a disk for NTFS. You can also create a 
RAID volume that spans multiple disks by using the Windows Disk Management MMC snapin or 
the diskpart command available from the Windows command prompt. 

A disk can have one volume or several. NTFS handles each volume independently of the 
others. Three sample disk configurations for a 150-MB hard disk are illustrated in Figure 11-24. 

  

A volume consists of a series of files plus any additional unallocated space remaining on the 
disk partition. In the FAT file system, a volume also contains areas specially formatted for use by 
the file system. An NTFS volume, however, stores all file system data, such as bitmaps and 
directories, and even the system bootstrap, as ordinary files. 

Note The on-disk format of NTFS volumes on Windows Vista and Windows Server 2008 is 
version 3.1, the same as on Windows XP and Windows Server 2003. The version number of a 
volume is stored in its $Volume metadata file. 

Clusters 

The cluster size on an NTFS volume, or the cluster factor, is established when a user formats 
the volume with either the format command or the Disk Management MMC snap-in. The default 
cluster factor varies with the size of the volume, but it is an integral number of physical sectors, 
always a power of 2 (1 sector, 2 sectors, 4 sectors, 8 sectors, and so on). The cluster factor is 
expressed as the number of bytes in the cluster, such as 512 bytes, 1 KB, or 2 KB.  

Internally, NTFS refers only to clusters. (However, NTFS forms low-level volume I/O 
operations such that clusters are sector-aligned and have a length that is a multiple of the sector 
size.) NTFS uses the cluster as its unit of allocation to maintain its independence from physical 
sector sizes. This independence allows NTFS to efficiently support very large disks by using a 
larger cluster factor or to support nonstandard disks that have a sector size other than 512 bytes. 
On a larger volume, use of a larger cluster factor can reduce fragmentation and speed allocation, at 
a small cost in terms of wasted disk space. Both the format command available from the command 
prompt and the Format menu option under the All Tasks option on the Action menu in the Disk 
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Management MMC snap-in choose a default cluster factor based on the volume size, but you can 
override this size. 

NTFS refers to physical locations on a disk by means of logical cluster numbers (LCNs). 
LCNs are simply the numbering of all clusters from the beginning of the volume to the end. To 
convert an LCN to a physical disk address, NTFS multiplies the LCN by the cluster factor to get 
the physical byte offset on the volume, as the disk driver interface requires. NTFS refers to the 
data within a file by means of virtual cluster numbers (VCNs). VCNs number the clusters 
belonging to a particular file from 0 through m. VCNs aren’t necessarily physically contiguous, 
however; they can be mapped to any number of LCNs on the volume.  

Master File Table 

In NTFS, all data stored on a volume is contained in files, including the data structures used 
to locate and retrieve files, the bootstrap data, and the bitmap that records the allocation state of 
the entire volume (the NTFS metadata). Storing everything in files allows the file system to easily 
locate and maintain the data, and each separate file can be protected by a security descriptor. In 
addition, if a particular part of the disk goes bad, NTFS can relocate the metadata files to prevent 
the disk from becoming inaccessible. 

The MFT is the heart of the NTFS volume structure. The MFT is implemented as an array of 
file records. The size of each file record is fixed at 1 KB, regardless of cluster size. (The structure 
of a file record is described in the “File Records” section later in this chapter.) Logically, the MFT 
contains one record for each file on the volume, including a record for the MFT itself. In addition 
to the MFT, each NTFS volume includes a set of metadata files containing the information that’s 
used to implement the file system structure. Each of these NTFS metadata files has a name that 
begins with a dollar sign ($), although the signs are hidden. For example, the file name of the 
MFT is $MFT. The rest of the files on an NTFS volume are normal user files and directories, as 
shown in Figure 11-25.  

Usually, each MFT record corresponds to a different file. If a file has a large number of 
attributes or becomes highly fragmented, however, more than one record might be needed for a 
single file. In such cases, the first MFT record, which stores the locations of the others, is called 
the base file record. 
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When it first accesses a volume, NTFS must mount it—that is, read metadata from the disk 
and construct internal data structures so that it can process application file system accesses. To 
mount the volume, NTFS looks in the boot sector to find the physical disk address of the MFT. 
The MFT’s own file record is the first entry in the table; the second file record points to a file 
located in the middle of the disk called the MFT mirror (file name $MFTMirr) that contains a 
copy of the first few rows of the MFT. This partial copy of the MFT is used to locate metadata 
files if part of the MFT file can’t be read for some reason. 

Once NTFS finds the file record for the MFT, it obtains the VCN-to-LCN mapping 
information in the file record’s data attribute and stores it in memory. Each run (runs are explained 
later in this chapter in the section “Resident and Nonresident Attributes”) has a VCN-to-LCN 
mapping and a run length because that’s all the information necessary to locate an LCN for any 
VCN. This mapping information tells NTFS where the runs composing the MFT are located on 
the disk. NTFS then processes the MFT records for several more metadata files and opens the files. 
Next, NTFS performs its file system recovery operation (described in the section “Recovery”), 
and finally, it opens its remaining metadata files. The volume is now ready for user access. 

Note For the sake of clarity, the text and diagrams in this chapter depict a run as including a 
VCN, an LCN, and a run length. NTFS actually compresses this information on disk into an LCN/ 
next-VCN pair. Given a starting VCN, NTFS can determine the length of a run by subtracting the 
starting VCN from the next VCN. 

As the system runs, NTFS writes to another important metadata file, the log file (file name 
$LogFile). NTFS uses the log file to record all operations that affect the NTFS volume structure, 
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including file creation or any commands, such as copy, that alter the directory structure. The log 
file is used to recover an NTFS volume after a system failure and is also described in the 
“Recovery” section later in this chapter. 

Another entry in the MFT is reserved for the root directory (also known as “\”). Its file record 
contains an index of the files and directories stored in the root of the NTFS directory structure. 
When NTFS is first asked to open a file, it begins its search for the file in the root directory’s file 
record. After opening a file, NTFS stores the file’s MFT file reference so that it can directly access 
the file’s MFT record when it reads and writes the file later. 

NTFS records the allocation state of the volume in the bitmap file (file name $BitMap). The 
data attribute for the bitmap file contains a bitmap, each of whose bits represents a cluster on the 
volume, identifying whether the cluster is free or has been allocated to a file. The security file (file 
name $Secure) stores the volume-wide security descriptor database.  

NTFS files and directories have individually settable security descriptors, but to conserve 
space, NTFS stores the settings in a common file, which allows files and directories that have the 
same security settings to reference the same security descriptor. In most environments, entire 
directory trees have the same security settings, so this optimization provides a significant savings. 

Another system file, the boot file (file name $Boot), stores the Windows bootstrap code. For 
the system to boot, the bootstrap code must be located at a specific disk address. During 
formatting, however, the format command defines this area as a file by creating a file record for it. 
Creating the boot file allows NTFS to adhere to its rule of making everything on the disk a file. 
The boot file as well as NTFS metadata files can be individually protected by means of the 
security descriptors that are applied to all Windows objects. Using this “everything on the disk is a 
file” model also means that the bootstrap can be modified by normal file I/O, although the boot 
file is protected from editing. 

NTFS also maintains a bad-cluster file (file name $BadClus) for recording any bad spots on 
the disk volume and a file known as the volume file (file name $Volume), which contains the 
volume name, the version of NTFS for which the volume is formatted, and a bit that when set 
signifies that a disk corruption has occurred and must be repaired by the Chkdsk utility. (The 
Chkdsk utility is covered in more detail later in the chapter.) The uppercase file (file name 
$UpCase) includes a translation table between lowercase and uppercase characters. NTFS 
maintains a file containing an attribute definition table (file name $AttrDef) that defines the 
attribute types supported on the volume and indicates whether they can be indexed, recovered 
during a system recovery operation, and so on. 

NTFS stores several metadata files in the extensions (directory name $Extend) metadata 
directory, including the object identifier file (file name $ObjId), the quota file (file name $Quota), 
the change journal file (file name $UsnJrnl), the reparse point file (file name $Reparse), and the 
default resource manager  directory (directory name $RmMetadata). These files store information 
related to optional features of NTFS. The object identifier file stores file object IDs, the quota file 
stores quota limit and behavior information on volumes that have quotas enabled, the change 
journal file records file and directory changes, and the reparse point file stores information about 
which files and directories on the volume include reparse point data.  
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The default resource manager directory contains directories related to transactional NTFS 
(TxF) support, including the transaction log directory (directory name $TxfLog), the transaction 
isolation directory (directory name $Txf), and the transaction repair directory (file name $Repair). 
The transaction log directory contains the TxF base log file (file name $TxfLog.blf) and any 
number of log container files, depending on the size of the transaction log, but it always contains 
at least two: one for the Kernel Transaction Manager (KTM) log stream (file name 
$TxfLogContainer00000000000000000001), and one for the TxF log stream (file name 
$TxfLogContainer00000000000000000002). The transaction log directory also contains the TxF 
old page stream (file name $Tops), which we’ll describe later. 

eXPeriMeNT: Viewing NTFS information 

You can use the built-in Fsutil.exe command-line program to view information about an 
NTFS volume, including the placement and size of the MFT and MFT zone: 

1. C:\Users\Administrator>fsutil fsinfo ntfsinfo c:   
2. NTFS Volume Serial Number : 0x9a38d50e38d4ea71  
3. Version : 3.1  
4. Number Sectors : 0x0000000015c82ff0  
5. Total Clusters : 0x0000000002b905fe   
6. Free Clusters : 0x000000000013c332  
7. Total Reserved : 0x0000000000000780  
8. Bytes Per Sector : 512  
9. Bytes Per Cluster : 4096  
10. Bytes Per FileRecord Segment : 1024  
11. Clusters Per FileRecord Segment : 0  
12. Mft Valid Data Length : 0x0000000023db0000  
13. Mft Start Lcn : 0x00000000000c0000  
14. Mft2 Start Lcn : 0x00000000016082ff   
15. Mft Zone Start : 0x0000000002751f60  
16. Mft Zone End : 0x000000000275cd60  
17. RM Identifier: CF7234E7-39E3-11DC-BDCE-00188BDD5F49  

File Reference Numbers 

A file on an NTFS volume is identified by a 64-bit value called a file reference. The file 
reference consists of a file number and a sequence number. The file number corresponds to the 
position of the file’s file record in the MFT minus 1 (or to the position of the base file record 
minus 1 if the file has more than one file record). The sequence number, which is incremented 
each time an MFT file record position is reused, enables NTFS to perform internal consistency 
checks. A file reference is illustrated in Figure 11-26. 

  

File Records 
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Instead of viewing a file as just a repository for textual or binary data, NTFS stores files as a 
collection of attribute/value pairs, one of which is the data it contains (called the unnamed data 
attribute). Other attributes that comprise a file include the file name, time stamp information, and 
possibly additional named data attributes. Figure 11-27 illustrates an MFT record for a small file. 

  

Each file attribute is stored as a separate stream of bytes within a file. Strictly speaking, 
NTFS doesn’t read and write files—it reads and writes attribute streams. NTFS supplies these 
attribute operations: create, delete, read (byte range), and write (byte range). The read and write 
services normally operate on the file’s unnamed data attribute. However, a caller can specify a 
different data attribute by using the named data stream syntax. 

Table 11-5 lists the attributes for files on an NTFS volume. (Not all attributes are present for 

every file.) 
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Table 11-5 shows attribute names; however, attributes actually correspond to numeric type 
codes, which NTFS uses to order the attributes within a file record. The file attributes in an MFT 
record are ordered by these type codes (numerically in ascending order), with some attribute types 
appearing more than once—if a file has multiple data attributes, for example, or multiple file 
names. 

Each attribute in a file record is identified with its attribute type code and has a value and an 
optional name. An attribute’s value is the byte stream composing the attribute. For example, the 
value of the $FILE_NAME attribute is the file’s name; the value of the $DATA attribute is 
whatever bytes the user stored in the file.  

Most attributes never have names, although the index-related attributes and the $DATA 
attribute often do. Names distinguish between multiple attributes of the same type that a file can 
include. For example, a file that has a named data stream has two $DATA attributes: an unnamed 
$DATA attribute storing the default unnamed data stream and a named $DATA attribute having 
the name of the alternate stream and storing the named stream’s data. 

File Names 

Both NTFS and FAT allow each file name in a path to be as many as 255 characters long. 
File names can contain Unicode characters as well as multiple periods and embedded spaces. 
However, the FAT file system supplied with MS-DOS is limited to 8 (non-Unicode) characters for 
its file names, followed by a period and a 3-character extension. Figure 11-28 provides a visual 
representation of the different file namespaces Windows supports and shows how they intersect. 

  

The POSIX subsystem requires the biggest namespace of all the application execution 
environments that Windows supports, and therefore the NTFS namespace is equivalent to the 
POSIX namespace. The POSIX subsystem can create names that aren’t visible to Windows and 
MS-DOS applications, including names with trailing periods and trailing spaces. Ordinarily, 
creating a file using the large POSIX namespace isn’t a problem because you would do that only if 
you intended the POSIX subsystem or POSIX client systems to use that file.  

The relationship between 32-bit Windows (Windows) applications and MS-DOS and 16-bit 
Windows applications is a much closer one, however. The Windows area in Figure 11-28 
represents file names that the Windows subsystem can create on an NTFS volume but that 
MS-DOS and 16-bit Windows applications can’t see. This group includes file names longer than 
the 8.3 format of MS-DOS names, those containing Unicode (international) characters, those with 
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multiple period characters or a beginning period, and those with embedded spaces. When a file is 
created with such a name, NTFS automatically generates an alternate, MS-DOS-style file name 
for the file. Windows displays these short names when you use the /x option with the dir 
command. 

The MS-DOS file names are fully functional aliases for the NTFS files and are stored in the 
same directory as the long file names. The MFT record for a file with an autogenerated MS-DOS 
file name is shown in Figure 11-29. 

  

The NTFS name and the generated MS-DOS name are stored in the same file record and 
therefore refer to the same file. The MS-DOS name can be used to open, read from, write to, or 
copy the file. If a user renames the file using either the long file name or the short file name, the 
new name replaces both the existing names. If the new name isn’t a valid MS-DOS name, NTFS 
generates another MS-DOS name for the file (note that NTFS only generates MS-DOS-style file 
names for the first file name). 

Note Hard links are implemented in a similar way. When a hard link to a file is created, 
NTFS adds another file name attribute to the file’s MFT file record. The two situations differ in 
one regard, however. When a user deletes a file that has multiple names (hard links), the file 
record and the file remain in place. The file and its record are deleted only when the last file name 
(hard link) is deleted. If a file has both an NTFS name and an autogenerated MS-DOS name, 
however, a user can delete the file using either name. 

Here’s the algorithm NTFS uses (the algorithm is actually implemented in the kernel function 
RtlGenerate8dot3Name and is also used by other drivers, such as CDFS, FAT, and third-party file 
systems) to generate an MS-DOS name from a long file name: 

1. Remove from the long name any characters that are illegal in MS-DOS names, including 
spaces and Unicode characters. Remove preceding and trailing periods. Remove all other 
embedded periods, except the last one. 

2. Truncate the string before the period (if present) to six characters (it may already be six or 
fewer because this algorithm is applied when any character that is illegal in MS-DOS is present in 
the name); if it is two or fewer characters, generate and concatenate a four-character hex 
checksum string. Append the string ~n (where n is a number, starting with 1, that is used to 
distinguish different files that truncate to the same name). Truncate the string after the period (if 
present) to three characters. 

3. Put the result in uppercase letters. MS-DOS is case-insensitive, and this step guarantees 
that NTFS won’t generate a new name that differs from the old only in case. 
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4. If the generated name duplicates an existing name in the directory, increment the ~n string. 
If n is greater than 4, and a checksum was not concatenated already, truncate the string before the 
period to two characters and generate and concatenate a fourcharacter hex checksum string. 

Table 11-6 shows the long Windows file names from Figure 11-28 and their NTFS-generated 
MS-DOS versions. The current algorithm and the examples in Figure 11-28 should give you an 
idea of what NTFS-generated MS-DOS-style file names look like.  

Note Although not generally recommended because it can cause incompatibilities with 
applications that rely on them, you can disable short name generation by setting 
HKLM\SYSTEM\CurrentControlSet\Control\FileSystem\NtfsDisable8dot3NameCreation in the 
registry to a DWORD value of 1. 

  

Tunneling 

NTFS uses the concept of tunneling to allow compatibility with older programs that depend 
on the file system to cache certain file metadata for a period of time even after the file is gone, 
such as when it has been deleted or renamed. With tunneling, any new file created with the same 
name as the original file, and within a certain period of time, will keep some of the same metadata. 
The idea is to replicate behavior expected by MS-DOS programs when using the safe save 
programming method, in which modified data is copied to a temporary file, the original file is 
deleted, and then the temporary file is renamed to the original name. The expected behavior in this 
case is that the renamed temporary file should appear to be the same as the original file, otherwise 
the creation time would continuously update itself with each modification (which is how the 
modified time is used). 

NTFS uses tunneling so that when a file name is removed from a directory, its long name and 
short name, as well as its creation time, are saved into a cache. When a new file is added to a 
directory, the cache is searched to see whether there is any tunneled data to restore. Because these 
operations apply to directories, each directory instance has its own cache, which is deleted if the 
directory is removed. NTFS will use tunneling for the following series of operations if the names 
used result in the deletion and re-creation of the same file name: 

■ Delete + Create 

■ Delete + Rename 
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■ Rename + Create 

■ Rename + Rename 

By default, NTFS keeps the tunneling cache for 15 seconds, although you can modify this 
timeout by modifying the MaximumTunnelEntryAgeInSeconds value in the HKLM\SYSTEM 
\CurrentControlSet\Control\FileSystem registry key. Tunneling can also be completely disabled 
by creating a new value called MaximumTunnelEntries and setting it to 0; however, this will 
cause older applications to break if they rely on the compatibility behavior. 

You can see tunneling in action with the following simple experiment in the command 
prompt: 

1. Create a file called file1. 

2. Wait for more than 15 seconds (the default tunnel cache timeout). 

3. Create a file called file2. 

4. Perform a dir /TC. Note the creation times. 

5. Rename file1 to file. 

6. Rename file2 to file1. 

7. Perform a dir /TC. Note that the creation times are identical. 

If a file is small, all its attributes and their values (its data, for example) fit in the file record. 
When the value of an attribute is stored directly in the MFT, the attribute is called a resident 
attribute. (In Figure 11-29, for example, all attributes are resident.) Several attributes are defined 
as always being resident so that NTFS can locate nonresident attributes. The standard information 
and index root attributes are always resident, for example.  

Each attribute begins with a standard header containing information about the attribute, 
information that NTFS uses to manage the attributes in a generic way. The header, which is 
always resident, records whether the attribute’s value is resident or nonresident. For resident 
attributes, the header also contains the offset from the header to the attribute’s value and the length 
of the attribute’s value, as Figure 11-30 illustrates for the filename attribute. 

  

When an attribute’s value is stored directly in the MFT, the time it takes NTFS to access the 
value is greatly reduced. Instead of looking up a file in a table and then reading a succession of 
allocation units to find the file’s data (as the FAT file system does, for example), NTFS accesses 
the disk once and retrieves the data immediately. 
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The attributes for a small directory, as well as for a small file, can be resident in the MFT, as 
Figure 11-31 shows. For a small directory, the index root attribute contains an index of file 
references for the files and the subdirectories in the directory. 

  

Of course, many files and directories can’t be squeezed into a 1-KB, fixed-size MFT record. 
If a particular attribute, such as a file’s data attribute, is too large to be contained in an MFT file 
record, NTFS allocates clusters for the attribute’s data separate from the MFT. This area is called 
a run (or an extent). If the attribute’s value later grows (if a user appends data to the file, for 
example), NTFS allocates another run for the additional data. Attributes whose values are stored 
in runs rather than in the MFT are called nonresident attributes. The file system decides whether a 
particular attribute is resident or nonresident; the location of the data is transparent to the process 
accessing it. 

When an attribute is nonresident, as the data attribute for a large file might be, its header 
contains the information NTFS needs to locate the attribute’s value on the disk. Figure 11-32 
shows a nonresident data attribute stored in two runs. 

  

Among the standard attributes, only those that can grow can be nonresident. For files, the 
attributes that can grow are the data and the attribute list (not shown in Figure 11-32). The 
standard information and filename attributes are always resident. 

A large directory can also have nonresident attributes (or parts of attributes), as Figure 11-33 
shows. In this example, the MFT file record doesn’t have enough room to store the index of files 
that make up this large directory. A part of the index is stored in the index root attribute, and the 
rest of the index is stored in nonresident runs called index buffers. The index root, index allocation, 
and bitmap attributes are shown here in a simplified form. They are described in more detail in the 
next section. The standard information and filename attributes are always resident. The header and 
at least part of the value of the index root attribute are also resident for directories. 
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When a file’s (or a directory’s) attributes can’t fit in an MFT file record and separate 
allocations are needed, NTFS keeps track of the runs by means of VCN-to-LCN mapping pairs. 
LCNs represent the sequence of clusters on an entire volume from 0 through n. VCNs number the 
clusters belonging to a particular file from 0 through m. For example, the clusters in the runs of a 
nonresident data attribute are numbered as shown in Figure 11-34. 

  

If this file had more than two runs, the numbering of the third run would start with VCN 8. 
As Figure 11-35 shows, the data attribute header contains VCN-to-LCN mappings for the two 
runs here, which allows NTFS to easily find the allocations on the disk. 

  

Although Figure 11-34 shows just data runs, other attributes can be stored in runs if there 
isn’t enough room in the MFT file record to contain them. And if a particular file has too many 
attributes to fit in the MFT record, a second MFT record is used to contain the additional attributes 
(or attribute headers for nonresident attributes). In this case, an attribute called the attribute list is 
added. The attribute list attribute contains the name and type code of each of the file’s attributes 
and the file reference of the MFT record where the attribute is located. The attribute list attribute is 
provided for those cases in which a file grows so large or so fragmented that a single MFT record 
can’t contain the multitude of VCN-to-LCN mappings needed to find all its runs. Files with more 
than 200 runs typically require an attribute list. 
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Data Compression and Sparse Files 

NTFS supports compression on a per-file, per-directory, or per-volume basis. (NTFS 
compression is performed only on user data, not file system metadata.) You can tell whether a 
volume is compressed by using the Windows GetVolumeInformation function. To retrieve the 
actual compressed size of a file, use the Windows GetCompressedFileSize function. Finally, to 
examine or change the compression setting for a file or directory, use the Windows 
DeviceIoControl function. (See the FSCTL_GET_COMPRESSION and FSCTL_SET_ 
COMPRESSION file system control codes.) Keep in mind that although setting a file’s 
compression state compresses (or decompresses) the file right away, setting a directory’s or 
volume’s compression state doesn’t cause any immediate compression or decompression. Instead, 
setting a directory’s or volume’s compression state sets a default compression state that will be 
given to all newly created files and subdirectories within that directory or volume. 

The following section introduces NTFS compression by examining the simple case of 
compressing sparse data. The subsequent sections extend the discussion to the compression of 
ordinary files and sparse files. 

Compressing Sparse Data 

Sparse data is often large but contains only a small amount of nonzero data relative to its size. 
A sparse matrix is one example of sparse data. As described earlier, NTFS uses VCNs, from 0 
through m, to enumerate the clusters of a file. Each VCN maps to a corresponding LCN, which 
identifies the disk location of the cluster. Figure 11-36 illustrates the runs (disk allocations) of a 
normal, noncompressed file, including its VCNs and the LCNs they map to. 

  

This file is stored in 3 runs, each of which is 4 clusters long, for a total of 12 clusters. Figure 
11-37 shows the MFT record for this file. As described earlier, to save space the MFT record’s 
data attribute, which contains VCN-to-LCN mappings, records only one mapping for each run, 
rather than one for each cluster. Notice, however, that each VCN from 0 through 11 has a 
corresponding LCN associated with it. The first entry starts at VCN 0 and covers 4 clusters, the 
second entry starts at VCN 4 and covers 4 clusters, and so on. This entry format is typical for a 
noncompressed file. 
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When a user selects a file on an NTFS volume for compression, one NTFS compression 
technique is to remove long strings of zeros from the file. If the file’s data is sparse, it typically 
shrinks to occupy a fraction of the disk space it would otherwise require. On subsequent writes to 
the file, NTFS allocates space only for runs that contain nonzero data. Figure 11-38 depicts the 
runs of a compressed file containing sparse data. Notice that certain ranges of the file’s VCNs 
(16–31 and 64–127) have no disk allocations. 

  

The MFT record for this compressed file omits blocks of VCNs that contain zeros and 
therefore have no physical storage allocated to them. The first data entry in Figure 11-39, for 
example, starts at VCN 0 and covers 16 clusters. The second entry jumps to VCN 32 and covers 
16 clusters. 

   

When a program reads data from a compressed file, NTFS checks the MFT record to 
determine whether a VCN-to-LCN mapping covers the location being read. If the program is 
reading from an unallocated “hole” in the file, it means that the data in that part of the file consists 
of zeros, so NTFS returns zeros without accessing the disk. If a program writes nonzero data to a 
“hole,” NTFS quietly allocates disk space and then writes the data. This technique is very efficient 
for sparse file data that contains a lot of zero data. 

Compressing Nonsparse Data 

The preceding example of compressing a sparse file is somewhat contrived. It describes 
“compression” for a case in which whole sections of a file were filled with zeros but the remaining 
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data in the file wasn’t affected by the compression. The data in most files isn’t sparse, but it can 
still be compressed by the application of a compression algorithm.  

In NTFS, users can specify compression for individual files or for all the files in a directory. 
(New files created in a directory marked for compressed are automatically compressed—existing 
files must be compressed individually.) When it compresses a file, NTFS divides the file’s 
unprocessed data into compression units 16 clusters long (equal to 8 KB for a 512-byte cluster, for 
example). Certain sequences of data in a file might not compress much, if at all; so for each 
compression unit in the file, NTFS determines whether compressing the unit will save at least 1 
cluster of storage. If compressing the unit won’t free up at least 1 cluster, NTFS allocates a 
16-cluster run and writes the data in that unit to disk without compressing it. If the data in a 
16-cluster unit will compress to 15 or fewer clusters, NTFS allocates only the number of clusters 
needed to contain the compressed data and then writes it to disk. Figure 11-40 illustrates the 
compression of a file with four runs. The unshaded areas in this figure represent the actual storage 
locations that the file occupies after compression. The first, second, and fourth runs were 
compressed; the third run wasn’t. Even with one noncompressed run, compressing this file saved 
26 clusters of disk space, or 41 percent. 

  

Note Although the diagrams in this chapter show contiguous LCNs, a compression unit need 
not be stored in physically contiguous clusters. Runs that occupy noncontiguous clusters produce 
slightly more complicated MFT records than the one shown in Figure 11-40. 

When it writes data to a compressed file, NTFS ensures that each run begins on a virtual 
16-cluster boundary. Thus the starting VCN of each run is a multiple of 16, and the runs are no 
longer than 16 clusters. NTFS reads and writes at least one compression unit at a time when it 
accesses compressed files. When it writes compressed data, however, NTFS tries to store 
compression units in physically contiguous locations so that it can read them all in a single I/O 
operation. The 16-cluster size of the NTFS compression unit was chosen to reduce internal 
fragmentation: the larger the compression unit, the less the overall disk space needed to store the 
data. This 16-cluster compression unit size represents a trade-off between producing smaller 
compressed files and slowing read operations for programs that randomly access files. The 
equivalent of 16 clusters must be decompressed for each cache miss. (A cache miss is more likely 
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to occur during random file access.) Figure 11-41 shows the MFT record for the compressed file 
shown in Figure 11-40. 

  

One difference between this compressed file and the earlier example of a compressed file 
containing sparse data is that three of the compressed runs in this file are less than 16 clusters long. 
Reading this information from a file’s MFT file record enables NTFS to know whether data in the 
file is compressed. Any run shorter than 16 clusters contains compressed data that NTFS must 
decompress when it first reads the data into the cache. A run that is exactly 16 clusters long 
doesn’t contain compressed data and therefore requires no decompression. 

If the data in a run has been compressed, NTFS decompresses the data into a scratch buffer 
and then copies it to the caller’s buffer. NTFS also loads the decompressed data into the cache, 
which makes subsequent reads from the same run as fast as any other cached read.  

NTFS writes any updates to the file to the cache, leaving the lazy writer to compress and 
write the modified data to disk asynchronously. This strategy ensures that writing to a compressed 
file produces no more significant delay than writing to a noncompressed file would. NTFS keeps 
disk allocations for a compressed file contiguous whenever possible. As the LCNs indicate, the 
first two runs of the compressed file shown in Figure 11-39 are physically contiguous, as are the 
last two. When two or more runs are contiguous, NTFS performs disk read-ahead, as it does with 
the data in other files. Because the reading and decompression of contiguous file data take place 
asynchronously before the program requests the data, subsequent read operations obtain the data 
directly from the cache, which greatly enhances read performance. 

Sparse Files 

Sparse files (the NTFS file type, as opposed to files that consist of sparse data, described 
earlier) are essentially compressed files for which NTFS doesn’t apply compression to the file’s 
nonsparse data. However, NTFS manages the run data of a sparse file’s MFT record the same way 
it does for compressed files that consist of sparse and nonsparse data. 

The Change Journal File 

The change journal file, \$Extend\$UsnJrnl, is a sparse file in which NTFS stores records of 
changes to files and directories. Applications like the Windows File Replication Service (FRS) 
and the Windows Search service make use of the journal to respond to file and directory changes 
as they occur. 
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The journal stores change entries in the $J data stream and the maximum size of the journal 
in the $Max data stream. Entries are versioned and include the following information about a file 
or directory change: 

■ The time of the change 

■ The reason for the change (see Table 11-7) 

■ The file or directory’s attributes 

■ The file or directory’s name 

■ The file or directory’s file reference number 

■ The file reference number of the file’s parent directory 

■ The security ID 

■ The update sequence number (USN) of the record 
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eXPeriMeNT: reading the Change Journal 

You can use the Usndump.exe command-line program from Winsider Seminars & Solutions 
(www.winsiderss.com/tools/usndump/usndump.htm) to dump the contents of the change journal if 
the current volume has one. You can also create, delete, or query journal information with the 
built-in Fsutil.exe utility, as shown here: 

1. C:\>fsutil usn queryjournal c:   
2. Usn Journal ID : 0x01c89ddaec1b9648  
3. First Usn : 0x0000000038140000  
4. Next Usn : 0x000000003a22fa50  
5. Lowest Valid Usn : 0x0000000000000000  
6. Max Usn : 0x00000fffffff0000  
7. Maximum Size : 0x0000000002000000  
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8. Allocation Delta : 0x0000000000400000  

The output indicates the maximum size of the change journal on the volume and its current state. 
As a simple experiment to see how NTFS records changes in the journal, create a file called 
Usn.txt in the current directory, rename it to UsnNew.txt, and then dump the journal with 
Usndump, as shown here: 

1. C:\>echo hello > Usn.txt   
2. C:\>ren Usn.txt UsnNew.txt   
3. C:\>Usndump.exe   
4. ...   
5. File Ref# : 0x00670000000006BF   
6. ParentFile Ref# : 0x0005000000000005  
7. Usn : 0x0000000000000000  
8. SecurityId : 0x00000000  
9. Reason : 0x00000100 (USN_REASON_FILE_CREATE)   
10. Name (014) : usn.txt   
11. File Ref# : 0x00670000000006BF   
12. ParentFile Ref# : 0x0005000000000005  
13. Usn : 0x0000000000000050  
14. SecurityId : 0x00000000  
15. Reason : 0x00000102 (USN_REASON_FILE_CREATE | USN_REASON_DATA_EXTEND)   

16. Name (014) : usn.txt   
17. File Ref# : 0x00670000000006BF   
18. ParentFile Ref# : 0x0005000000000005  
19. Usn : 0x00000000000000A0  
20. SecurityId : 0x00000000  
21. Reason : 0x80000102 (USN_REASON_FILE_CREATE | USN_REASON_DATA_EXTEND)   

22. Name (014) : usn.txt   
23. File Ref# : 0x00670000000006BF   
24. ParentFile Ref# : 0x0005000000000005  
25. Usn : 0x0000000000000138  
26. SecurityId : 0x00000000  
27. Reason : 0x00001000 (USN_REASON_RENAME_OLD_NAME)   
28. Name (014) : usn.txt   
29. File Ref# : 0x00670000000006BF   
30. ParentFile Ref# : 0x0005000000000005  
31. Usn : 0x0000000000000188  
32. SecurityId : 0x00000000  
33. Reason : 0x00002000 (USN_REASON_RENAME_NEW_NAME)   
34. Name (020) : UsnNew.txt   
35. File Ref# : 0x00670000000006BF   
36. ParentFile Ref# : 0x0005000000000005  
37. Usn : 0x00000000000001D8  
38. SecurityId : 0x00000000  
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39. Reason : 0x80002000 (USN_REASON_CLOSE | USN_REASON_RENAME_NEW_NAME)   

40. Name (020) : UsnNew.txt  

The entries reflect the individual modification operations involved in the operations 
underlying the command-line operations. 

The journal is sparse so that it never overflows; when the journal’s on-disk size exceeds the 
maximum defined for the file, NTFS simply begins zeroing the file data that precedes the window 
of change information having a size equal to the maximum journal size, as shown in Figure 11-42. 
To prevent constant resizing when an application is continuously exceeding the journal’s size, 
NTFS shrinks the journal only when its size is twice an application-defined value over the 
maximum configured size. 

  

Indexing 

In NTFS, a file directory is simply an index of file names—that is, a collection of file names 
(along with their file references) organized in a particular way for quick access. To create a 
directory, NTFS indexes the filename attributes of the files in the directory. The MFT record for 
the root directory of a volume is shown in Figure 11-43. 
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Conceptually, an MFT entry for a directory contains in its index root attribute a sorted list of 
the files in the directory. For large directories, however, the file names are actually stored in 4-KB, 
fixed-size index buffers that contain and organize the file names. Index buffers implement a b-tree 
data structure, which minimizes the number of disk accesses needed to find a particular file, 
especially for large directories. The index root attribute contains the first level of the b-tree (root 
subdirectories) and points to index buffers containing the next level (more subdirectories, perhaps, 
or files). 

Figure 11-43 shows only file names in the index root attribute and the index buffers (file6, 
for example), but each entry in an index also contains the file reference in the MFT where the file 
is described and time stamp and file size information for the file. NTFS duplicates the time stamp 
and file size information from the file’s MFT record. This technique, which is used by FAT and 
NTFS, requires updated information to be written in two places. Even so, it’s a significant speed 
optimization for directory browsing because it enables the file system to display each file’s time 
stamps and size without opening every file in the directory.  

The index allocation attribute maps the VCNs of the index buffer runs to the LCNs that 
indicate where the index buffers reside on the disk, and the bitmap attribute keeps track of which 
VCNs in the index buffers are in use and which are free. Figure 11-43 shows one file entry per 
VCN (that is, per cluster), but file name entries are actually packed into each cluster. Each 4-KB 
index buffer can contain about 20 to 30 file name entries. 

The b-tree data structure is a type of balanced tree that is ideal for organizing sorted data 
stored on a disk because it minimizes the number of disk accesses needed to find an entry. In the 
MFT, a directory’s index root attribute contains several file names that act as indexes into the 
second level of the b-tree. Each file name in the index root attribute has an optional pointer 
associated with it that points to an index buffer. The index buffer it points to contains file names 
with lexicographic values less than its own. In Figure 11-43, for example, file4 is a first-level 
entry in the b-tree. It points to an index buffer containing file names that are (lexicographically) 
less than itself—the file names file0, file1, and file3. Note that the names file1, file3, and so on 
that are used in this example are not literal file names but names intended to show the relative 
placement of files that are lexicographically ordered according to the displayed sequence. 

Storing the file names in b-trees provides several benefits. Directory lookups are fast because 
the file names are stored in a sorted order. And when higher-level software enumerates the files in 
a directory, NTFS returns already-sorted names. Finally, because b-trees tend to grow wide rather 
than deep, NTFS’s fast lookup times don’t degrade as directories grow. NTFS also provides 
general support for indexing data besides file names, and several NTFS features—including object 
IDs, quota tracking, and consolidated security—use indexing to manage internal data. 

Object IDs 

In addition to storing the object ID assigned to a file or directory in the $OBJECT_ID 
attribute of its MFT record, NTFS also keeps the correspondence between object IDs and their file 
reference numbers in the $O index of the \$Extend\$ObjId metadata file. The index collates 
entries by object ID, making it easy for NTFS to quickly locate a file based on its ID. This feature 
allows applications, using undocumented native API functionality, to open a file or directory using 
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its object ID. Figure 11-44 demonstrates the correspondence of the $ObjId metadata file and 
$OBJECT_ID attributes in MFT records. 

  

Quota Tracking 

NTFS stores quota information in the \$Extend\$Quota metadata file, which consists of the 
indexes $O and $Q. Figure 11-45 shows the organization of these indexes. Just as NTFS assigns 
each security descriptor a unique internal security ID, NTFS assigns each user a unique user ID. 
When an administrator defines quota information for a user, NTFS allocates a user ID that 
corresponds to the user’s SID. In the $O index, NTFS creates an entry that maps an SID to a user 
ID and sorts the index by user ID; in the $Q index, NTFS creates a quota control entry. A quota 
control entry contains the value of the user’s quota limits, as well as the amount of disk space the 
user consumes on the volume. 

  

When an application creates a file or directory, NTFS obtains the application user’s SID and 
looks up the associated user ID in the $O index. NTFS records the user ID in the new file or 
directory’s $STANDARD_INFORMATION attribute, which counts all disk space allocated to the 
file or directory against that user’s quota. Then NTFS looks up the quota entry in the $Q index and 
determines whether the new allocation causes the user to exceed his or her warning or limit 
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threshold. When a new allocation causes the user to exceed a threshold, NTFS takes appropriate 
steps, such as logging an event to the System event log or not letting the user create the file or 
directory. As a file or directory changes size, NTFS updates the quota control entry associated 
with the user ID stored in the $STANDARD_INFORMATION attribute. NTFS uses general 
indexing to efficiently correlate user IDs with account SIDs, and, given a user ID, to efficiently 
look up a user’s quota control information. 

Consolidated Security 

NTFS has always supported security, which lets an administrator specify which users can and 
can’t access individual files and directories. NTFS optimizes disk utilization for security 
descriptors by using a central metadata file named $Secure to store only one instance of each 
security descriptor on a volume. 

The $Secure file contains two index attributes—$SDH and $SII—and a data-stream attribute 
named $SDS, as Figure 11-46 shows. NTFS assigns every unique security descriptor on a volume 
an internal NTFS security ID (not to be confused with an SID, which uniquely identifies 
computers and user accounts) and hashes the security descriptor according to a simple hash 
algorithm. A hash is a potentially nonunique shorthand representation of a descriptor. Entries in 
the $SDH index map the security descriptor hashes to the security descriptor’s storage location 
within the $SDS data attribute, and the $SII index entries map NTFS security IDs to the security 
descriptor’s location in the $SDS data attribute. 

When you apply a security descriptor to a file or directory, NTFS obtains a hash of the 
descriptor and looks through the $SDH index for a match. NTFS sorts the $SDH index entries 
according to the hash of their corresponding security descriptor and stores the entries in a b-tree. If 
NTFS finds a match for the descriptor in the $SDH index, NTFS locates the offset of the entry’s 
security descriptor from the entry’s offset value and reads the security descriptor from the $SDS 
attribute. If the hashes match but the security descriptors don’t, NTFS looks for another matching 
entry in the $SDH index. When NTFS finds a precise match, the file or directory to which you’re 
applying the security descriptor can reference the existing security descriptor in the $SDS attribute. 
NTFS makes the reference by reading the NTFS security identifier from the $SDH entry and 
storing it in the file or directory’s $STANDARD_INFORMATION attribute. The NTFS 
$STANDARD_INFORMATION attribute, which all files and directories have, stores basic 
information about a file, including its attributes, time stamp information, and security identifier. 



 874

  

If NTFS doesn’t find in the $SDH index an entry that has a security descriptor that matches 
the descriptor you’re applying, the descriptor you’re applying is unique to the volume and NTFS 
assigns the descriptor a new internal security ID. NTFS internal security IDs are 32-bit values, 
whereas SIDs are typically several times larger, so representing SIDs with NTFS security IDs 
saves space in the $STANDARD_INFORMATION attribute. NTFS then adds the security 
descriptor to the $SDS attribute, which is sorted in a b-tree by the NTFS security ID, and it adds to 
the $SDH and $SII indexes entries that reference the descriptor’s offset in the $SDS data. 

When an application attempts to open a file or directory, NTFS uses the $SII index to look up 
the file or directory’s security descriptor. NTFS reads the file or directory’s internal security ID 
from the MFT entry’s $STANDARD_INFORMATION attribute. It then uses the $Secure file’s 
$SII index to locate the ID’s entry in the $SDS attribute. The offset into the $SDS attribute lets 
NTFS read the security descriptor and complete the security check. NTFS stores the 32 most 
recently accessed security descriptors with their $SII index entries in a cache so that it will access 
the $Secure file only when the $SII isn’t cached. NTFS doesn’t delete entries in the $Secure file, 
even if no file or directory on a volume references the entry. Not deleting these entries doesn’t 
significantly decrease disk space because most volumes, even those used for long periods, have 
relatively few unique security descriptors. 

NTFS’s use of general indexing lets files and directories that have the same security settings 
efficiently share security descriptors. The $SII index lets NTFS quickly look up a security 
descriptor in the $Secure file while performing security checks, and the $SDH index lets NTFS 
quickly determine whether a security descriptor being applied to a file or directory is already 
stored in the $Secure file and can be shared. 

Reparse Points 

As described earlier in the chapter, a reparse point is a block of up to 16 KB of 
applicationdefined reparse data and a 32-bit reparse tag that are stored in the $REPARSE_POINT 
attribute of a file or directory. Whenever an application creates or deletes a reparse point, NTFS 
updates the \$Extend\$Reparse metadata file, in which NTFS stores entries that identify the file 
record numbers of files and directories that contain reparse points. Storing the records in a central 
location enables NTFS to provide interfaces for applications to enumerate all a volume’s reparse 
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points or just specific types of reparse points, such as mount points. (See Chapter 8 for more 
information on mount points.) The \$Extend\$Reparse file uses the general indexing facility of 
NTFS by collating the file’s entries (in an index named $R) by reparse point tags. 

Transaction Support 

By leveraging the Kernel Transaction Manager (KTM) support in the kernel, as well as the 
facilities provided by the Common Log File System that were described earlier, NTFS implements 
a transactional model called Transactional NTFS or TxF. TxF provides a set of usermode APIs 
that applications can use for transacted operations on their files and directories and also a file 
system control (FSCTL) interface for managing its resource managers. 

Note Support for TxF was added to the NTFS driver starting with Windows Vista and 
Windows Server 2008 without actually changing the format of the NTFS data structures, which is 
why the NTFS format version number, 3.1, is the same as for Windows XP and Windows Server 
2003. TxF achieves backward compatibility by reusing the attribute type that was previously used 
only for EFS support instead of adding a new one. 

The overall architecture for TxF, shown in Figure 11-47, uses several components: 

■ Transacted APIs implemented in the Kernel32.dll library 

■ A library for reading TxF logs (%SystemRoot%\System32\Txfw32.dll) 

■ A COM component for TxF logging functionality (%SystemRoot\System32\Txflog.dll) 

■ The transactional NTFS library inside the NTFS driver 

■ The CLFS infrastructure for reading and writing log records 

  

Isolation 

Although transactional file operations are opt-in, just like the transactional registry (TxR) 
operations described in Chapter 4, TxF has an impact on regular applications that are not 
transaction-aware because it ensures that the transactional operations are isolated. For example, if 
an antivirus program is scanning a file that’s currently being modified by another application via a 
transacted operation, TxF must make sure that the scanner reads the pretransaction data, while 
applications that access the file within the transaction work with the modified data. This model is 
called read-committed isolation. 
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Read-committed isolation involves the concept of transacted writers and transacted readers. 
The former always view the most up-to-date version of a file, including all changes made by the 
transaction that is currently associated with the file. At any given time, there can be only one 
transacted writer for a file, which means that its write access is exclusive. Transacted readers, on 
the other hand, only have access to the committed version of the file at the time they open the file. 
They are therefore isolated from changes made by transacted writers. This allows for readers to 
have a consistent view of a file, even when a transacted writer commits its changes. To see the 
updated data, the transacted reader must open a new handle to the modified file. 

Nontransacted writers, on the other hand, are prevented from opening the file by both 
transacted writers and transacted readers, so they cannot make changes to the file without being 
part of the transaction. Nontransacted readers act similarly to transacted readers in that they see 
only the file contents that were last committed when the file handle was open. Unlike transacted 
readers, however, they do not receive read-committed isolation, and as such they always receive 
the updated view of the latest committed version of a transacted file without having to open a new 
file handle. This allows non-transaction-aware applications to behave as expected. 

To summarize, TxF’s read-committed isolation model has the following characteristics: 

■ Changes are isolated from transacted readers 

■ Changes are rolled back (undone) if the associated transaction is rolled back, if the machine 
crashes, or if the volume is forcibly dismounted. 

■ Changes are flushed to disk if the associated transaction is committed. 

eXPeriMeNT: understanding and Managing Transactions 

In this experiment we’ll use the Transactdemo.exe tool to create a new file, add some data to 
it as part of a transaction, and see how nontransacted clients interact with the file while the 
transaction is active. First, open a Command Prompt window and run Transactdemo.exe: 

1. C:\>Transactdemo.exe   
2. Transaction Demo v1.0  
3. by Mark Russinovich   
4. Transaction created: {5CD5E900-9DA8-11DD-8379-005056C00008}   
5. Created C:\TransactionDemo.txt.   
6. Pass TransDemo the GUID listed above to see the transacted file.   
7. Rollback or commit transaction? (r/c):  

Transactdemo creates c:\TransactionDemo.txt within a transaction that it has not committed. 
Open a second Command Prompt window, and use the dir command to look for the presence of 
the TransactionDemo.txt file: 

1. C:\>dir transactiondemo.txt   
2. Volume in drive C is OS   
3. Volume Serial Number is 0C30-686E   
4. Directory of C:\   
5. File Not Found   
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According to this second command prompt, the file doesn’t even exist. Now simulate a 
nontransacted writer by trying to add data to the file via the echo command: 

1. C:\>echo Hello > TransactionDemo.txt   
2. The function attempted to use a name that is reserved for use by another transaction.  

As expected, nontransacted writers are blocked from modifying the file. 

The Ktmutil and Fsutil built-in applications can be very useful for dealing with transactional 
operations on the file system. For example, you can get a list of all current transactions on the 
system with the following command: 

1. C:\>ktmutil list transactions   
2. TxGuid Description   
3. -------------------------------------- -----------------------------------------------   
4. {5cd5e900-9da8-11dd-8379-005056c00008} Demo Transaction?  

Note that the GUID matches what Transactdemo returned. With the GUID, you can now use 
the Fsutil command to query information about the transaction and to commit it or roll it back. For 
example, here’s how to list the files part of the transaction and the owner account: 

1. C:\>fsutil transaction query all {5cd5e900-9da8-11dd-8379-005056c00008}   
2. dwOutcome: 1  
3. dwIsolationLevel: 0  
4. dwIsolationFlags: 0  
5. dwTimeout: -1  
6. Owner: BUILTIN\Administrators   
7. Number of Files: 1  
8. ---- \TransactionDemo.txt   

Although the Transactdemo tool presents you with the option to roll back or commit the 
current transaction, the Fsutil utility allows commits or rollbacks to any ongoing transaction your 
account has access to. Go back to the command prompt where you ran Transactdemo and press C 
to commit the transaction, after which the file becomes a standard nontransacted file. 

Transactional APIs 

TxF implements transacted versions of the Windows file I/O APIs, which use the suffix 
Transacted: 

■ Create APIs CreateDirectoryTransacted, CreateFileTransacted, CreateHardLinkTransacted, 
CreateSymbolicLinkTransacted 

■ Find APIs FindFirstFileNameTransacted, FindFirstFileTransacted, 
FindFirstStreamTransacted 

■ Query APIs GetCompressedFileSizeTransacted, GetFileAttributesTransacted, 
GetFullPathNameTransacted, GetLongPathNameTransacted 

■ Delete APIs DeleteFileTransacted, RemoveDirectoryTransacted 

■ Copy and Move/Rename APIs CopyFileTransacted, MoveFileTransacted 
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■ Set APIs SetFileAttributesTransacted 

In addition, some APIs automatically participate in transacted operations when the file handle 
they are passed is part of a transaction, like one created by the CreateFileTransacted API. Table 
11-8 lists Windows APIs that have modified behavior when dealing with a transacted file handle. 

  

Resource Managers 

Just like TxR uses a resource manager (RM) to keep track of transactional metadata and log 
files, TxF uses a default resource manager, one for each volume, to keep track of its transactional 
state. TxF, however, also supports additional resource managers called secondary resource 
managers. These resource managers can be defined by application writers and have their metadata 
located in any directory of the application’s choosing, defining their own transactional work units 
for undo, backup, restore, and redo operations. TxF uses the default resource manager for 
transacted APIs, and applications that use transactions with the Distributed Transaction 
Coordinator or the .NET Framework’s System.Transaction classes create and manage secondary 
TxF resource managers with TxF resource manager file system control commands. Applications 
can create and manage secondary RMs by using file system control codes defined for TxF, such as 
FSCTL_TXFS_CREATE_SECONDARY_RM, FSCTL_TXFS_START_RM, and  FSCTL_ 
TXFS_SHUTDOWN_RM. When a secondary RM is created, it must be made consistent by one 
or more FSCTL_TXFS_ROLLFORWARD_REDO calls followed by  FSCTL_TXFS_ 
ROLLFORWARD_UNDO, which redo and/or undo operations that  were stored in the log but 
never committed (such as in the case of a machine crash). We’ll cover the recovery procedure for 
resource managers shortly. Both the default resource manager and secondary resource managers 
contain a number of metadata files and directories that describe their current state: 

■ The $Txf directory, which is where files are linked when they are deleted or overwritten by 
transactional operations. If a file is deleted in a transaction, read-isolation rules specify that 
nontransacted readers should still be able to access the file before the delete operation is actually 
committed. This isolation is achieved by moving the transaction-deleted file into the $Txf 
directory. The NTFS driver will then keep track of the isolation by inserting a temporary structure 
in the SCB of the parent directory where the deleted file was originally located. In this way, the 
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file will continue to show up if the parent is enumerated, and it will store the file reference, 
allowing the file to be opened. When the transaction is committed, NTFS deletes the temporary 
structure and deletes the file from the $Txf directory. On the other hand, if the transaction is rolled 
back, NTFS moves the file back to its original directory. 

■ The $Tops, or TxF Old Page Stream (TOPS) file, which contains a default data stream and 
an alternate stream called $T. The default stream for the TOPS file contains metadata about the 
resource manager, such as its GUID, its CLFS log policy, and the LSN at which recovery should 
start. The $T stream contains file data that is partially overwritten by a transactional writer (as 
opposed to a full overwrite, which would move the file into the $Txf directory). NTFS keeps a 
structure in memory that keeps track of which parts of a file are being modified under a 
transaction so that nontransacted readers can still access the noncommitted data by having their 
reads forwarded to $Tops:$T. When the transaction is committed or aborted, the pages are either 
moved from the $T stream into the original file or simply thrown out in the case of an abort. 

■ The TxF log files, which are CLFS log files storing transaction records. For the default 
resource manager, these files are part of the $TxfLog directory, but secondary resource managers 
can store them anywhere. TxF uses a multiplexed base log file called $TxfLog.blf, which contains 
two streams: the KtmLog stream used for Kernel Transaction Manager metadata records, and the 
TxfLog stream, which contains the TxF log records. Each stream is stored in CLFS log containers 
that start with $TxfLogContainer and are followed by a unique, increasing ID, such as 
00000000000000000001. As the TxF log grows, more container files are created. 

As described earlier, the default resource manager stores its files in the 
\$Extend\$RmMetadata directory on each NTFS-formatted volume on the machine. 

eXPeriMeNT: Querying resource Manager information  

You can use the built-in Fsutil.exe command-line program to query information about the 
default resource manager, as well as to create, start, and stop secondary resource managers and 
configure their logging policies and behaviors. The following command queries information about 
the default resource manager, which is identified by the root directory (\): 

1. C:\>fsutil resource info \   
2. RM Identifier: CF7234E7-39E3-11DC-BDCE-00188BDD5F49  
3. KTM Log Path for RM: \Device\HarddiskVolume3\$Extend\$RmMetadata\$TxfLog\   
4. $TxfLog::KtmLog   
5. Space used by TOPS: 79 Mb   
6. TOPS free space: 100%  
7. RM State: Active   
8. Running transactions: 0  
9. One phase commits: 0  
10. Two phase commits: 1  
11. System initiated rollbacks: 0  
12. Age of oldest transaction: 00:00:00  
13. Logging Mode: Simple   
14. Number of containers: 2  
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15. Container size: 10 Mb   
16. Total log capacity: 20 Mb   
17. Total free log space: 14 Mb   
18. Minimum containers: 2  
19. Maximum containers: 20  
20. Log growth increment: 2 container(s)   
21. Auto shrink: Not enabled   
22. RM prefers availability over consistency.   
As mentioned, the fsutil resource command has many options for configuring TxF resource 
managers, including the ability to create a secondary resource manager in any directory of your 
choice. For example, you can use the fsutil resource create c:\rmtest command to create a 
secondary resource manager in the Rmtest directory, followed by the fsutil resource start c:\rmtest 
command to initiate it. Note the presence of the $Tops and $TxfLogContainer* files and of the 
TxfLog and $Txf directories in this folder. 

On-Disk Implementation 

As shown earlier in Table 11-5, TxF uses the $LOGGED_UTILITY_STREAM attribute type 
to store additional data for files and directories that are or have been part of a transaction. This 
attribute is called $TXF_DATA and contains important information that allows TxF to keep active 
offline data for a file part of a transaction. The attribute is permanently stored in the MFT; that is, 
even after the file is not part of a transaction anymore, the stream remains, for reasons we’ll 
explain shortly. The major components of the attribute are shown in Figure 11-48. 

  

The first field shown is the file reference to the root of the resource manager responsible for 
the transaction associated with this file. For the default resource manager, the file reference ID is 5, 
which is the file record for the root directory (\), as shown earlier in Figure 11-25. TxF needs this 
information when it creates an FCB for the file so that it can link it to the correct resource 
manager, which in turn needs to create an enlistment for the transaction when a transacted file 
request is received by NTFS. (For more information on enlistments and transactions, see the KTM 
section in Chapter 3.) 

Another important piece of data stored in the $TXF_DATA attribute is the TxF file ID, or 
TxID, and this explains why $TXF_DATA attributes are never deleted. Because NTFS writes file 
names to its records when writing to the transaction log, it needs a way to uniquely identify files in 
the same directory that may have had the same name. For example, if sample.txt is deleted from a 
directory in a transaction and later a new file with the same name is created in the same directory 
(and as part of the same transaction), TxF needs a way to uniquely identify the two instances of 
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sample.txt. This identification is provided by a 64-bit unique number, the TxID, that TxF 
increments when a new file (or an instance of a file) becomes part of a transaction. Because they 
can never be reused, TxIDs are permanent, so the $TXF_DATA attribute will never be removed 
from a file. 

Last but not least, three CLFS LSNs are stored for each file part of a transaction. Whenever a 
transaction is active, such as during create, rename, or write operations, TxF writes a log record to 
its CLFS log. Each record is assigned an LSN, and that LSN gets written to the appropriate field in 
the $TXF_DATA attribute. The first LSN is used to store the log record that identifies the changes 
to NTFS metadata in relation to this file. For example, if the standard attributes of a file are 
changed as part of a transacted operation, TxF must update the relevant MFT file record, and the 
LSN for the log record describing the change is stored. TxF uses the second LSN when the file’s 
data is modified. Finally, TxF uses the third LSN when the file name index for the directory 
requires a change related to a transaction the file took part in, or when a directory was part of a 
transaction and received a TxID. 

The $TXF_DATA attribute also stores internal flags that describe the state information to 
TxF and the index of the USN record that was applied to the file on commit. A TxF transaction 
can span multiple USN records that may have been partly updated by NTFS’s recovery 
mechanism (described shortly), so the index tells TxF how many more USN records must be 
applied after a recovery. 

Logging Implementation 

As mentioned earlier, each time a change is made to the disk because of an ongoing 
transaction, TxF writes a record of the change to its log. TxF uses a variety of log record types to 
keep track of transactional changes, but regardless of the record type, all TxF log records have a 
generic header that contains information identifying the type of the record, the action related to the 
record, the TxID that the record applies to, and the GUID of the KTM transaction that the record 
is associated with. 

A redo record specifies how to reapply a change part of a transaction that’s already been 
committed to the volume if the transaction has actually never been flushed from cache to disk. An 
undo record, on the other hand, specifies how to reverse a change part of a transaction that hasn’t 
been committed at the time of a rollback. Some records are redo-only, meaning they don’t contain 
any equivalent undo data, while other records contain both redo and undo information. 

Through the TOPS file, TxF maintains two critical pieces of data, the base LSN and the 
restart LSN. The base LSN determines the LSN of the first valid record in the log, while the restart 
LSN indicates at which LSN recovery should begin when starting the resource manager. When 
TxF writes a restart record, it updates these two values, indicating that changes have been made to 
the volume and flushed out to disk—meaning that the file system is fully consistent up to the new 
restart LSN. 

TxF also writes compensating log records or CLRs. These records store the actions that are 
being performed during transaction rollback (explained next). They’re primarily used to store the 
undo-next LSN, which allows the recovery process to avoid repeated undo operations by 
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bypassing undo records that have already been processed, a situation that can happen if the system 
fails during the recovery phase and has already performed part of the undo pass. 

Finally, TxF also deals with prepare records, abort records, and commit records, which 
describe the state of the KTM transactions related to TxF. 

Recovery Implementation 

When a resource manager starts because of an FSCTL_TXFS_START_RM call (or, for the 
default resource manager, as soon as the volume is mounted), TxF runs the recovery process. It 
reads the TOPS file to determine the restart LSN, where the recovery process should start, and 
then reads each record forward through the log (called the redo pass). As each record is being 
processed, TxF opens the file referenced by the record and compares the LSN in the $TXF_DATA 
attribute with the LSN in the record. If the LSN stored in the attribute is greater than or equal to 
the LSN of the log record, the action is not applied because the on-disk copy of the file is as new 
or newer than that of the log record action. If the LSN is not greater than or equal to the LSN in 
the record, the log contains information about the file that was never written to the file itself. In 
this case, TxF applies whichever action was recorded in the log record and updates the LSN in the 
$TXF_DATA attribute with the LSN from the record.  

As TxF is processing its redo pass, it builds its transaction table, which describes the 
operations that it has completed; if it encounters an abort or commit record along the way, TxF 
discards the related transactions. By the end of the redo pass, TxF parses the final transaction table 
and connects to the KTM to see whether the KTM recorded a commit or an abort for the 
transactions. (KTM stores this information in the KtmLog stream of the TxF multiplexed log, as 
explained earlier.) After TxF has finished communicating with the KTM, it looks at any leftover 
transactions in the transaction table and begins the undo pass. In the undo pass, TxF aborts all the 
remaining transactions in the transaction table by traversing each transaction’s undo LSN chain 
and applying the undo action for each log record. At the end of the undo pass, the resource 
manager is consistent and initialized. 

This process is very similar to the log file service’s recovery procedure, which is described 
later in more detail. You should refer to this description for a complete picture of the standard 
transactional recovery mechanisms. 

11.8 NTFS recovery Support 

NTFS recovery support ensures that if a power failure or a system failure occurs, no file 
system operations (transactions) will be left incomplete and the structure of the disk volume will 
remain intact without the need to run a disk repair utility. The NTFS Chkdsk utility is used to 
repair catastrophic disk corruption caused by I/O errors (bad disk sectors, electrical anomalies, or 
disk failures, for example) or software bugs. But with the NTFS recovery capabilities in place, 
Chkdsk is rarely needed.  

As mentioned earlier (in the section “Recoverability”), NTFS uses a transaction-processing 
scheme to implement recoverability. This strategy ensures a full disk recovery that is also 
extremely fast (on the order of seconds) for even the largest disks. NTFS limits its recovery 
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procedures to file system data to ensure that at the very least the user will never lose a volume 
because of a corrupted file system; however, unless an application takes specific action (such as 
flushing cached files to disk), NTFS’s recovery support doesn’t guarantee user data to be fully 
updated if a crash occurs. This is the job of Transactional NTFS (TxF).  

The following sections detail the transaction-logging scheme NTFS uses to record 
modifications to file system data structures and explain how NTFS recovers a volume if the 
system fails. 

11.8.1 Design 

NTFS implements the design of a recoverable file system. These file systems ensure volume 
consistency by using logging techniques (sometimes called journaling) originally developed for 
transaction processing. If the operating system crashes, the recoverable file system restores 
consistency by executing a recovery procedure that accesses information that has been stored in a 
log file. Because the file system has logged its disk writes, the recovery procedure takes only 
seconds, regardless of the size of the volume. The recovery procedure for a recoverable file 
system is exact, guaranteeing that the volume will be restored to a consistent state. 

A recoverable file system incurs some costs for the safety it provides. Every transaction that 
alters the volume structure requires that one record be written to the log file for each of the 
transaction’s suboperations. This logging overhead is ameliorated by the file system’s batching of 
log records—writing many records to the log file in a single I/O operation. In addition, the 
recoverable file system can employ the optimization techniques of a lazy write file system. It can 
even increase the length of the intervals between cache flushes because the file system can be 
recovered if the system crashes before the cache changes have been flushed to disk. This gain over 
the caching performance of lazy write file systems makes up for, and often exceeds, the overhead 
of the recoverable file system’s logging activity. 

Neither careful write nor lazy write file systems guarantee protection of user file data. If the 
system crashes while an application is writing a file, the file can be lost or corrupted. Worse, the 
crash can corrupt a lazy write file system, destroying existing files or even rendering an entire 
volume inaccessible. 

The NTFS recoverable file system implements several strategies that improve its reliability 
over that of the traditional file systems. First, NTFS recoverability guarantees that the volume 
structure won’t be corrupted, so all files will remain accessible after a system failure. Second, 
although NTFS doesn’t guarantee protection of user data in the event of a system crash—some 
changes can be lost from the cache—applications can take advantage of the NTFS write-through 
and cache-flushing capabilities to ensure that file modifications are recorded on disk at appropriate 
intervals. 

Both cache write-through—forcing write operations to be immediately recorded on 
disk—and cache flushing—forcing cache contents to be written to disk—are efficient operations.  

NTFS doesn’t have to do extra disk I/O to flush modifications to several different file system 
data structures because changes to the data structures are recorded—in a single write 
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operation—in the log file; if a failure occurs and cache contents are lost, the file system 
modifications can be recovered from the log. Furthermore, unlike the FAT file system, NTFS 
guarantees that user data will be consistent and available immediately after a write-through 
operation or a cache flush, even if the system subsequently fails. 

11.8.2 Metadata Logging 

NTFS provides file system recoverability by using the same logging technique used by TxF, 
which consists of recording all operations that modify file system metadata to a log file. Unlike 
TxF, however, NTFS’s built-in file system recovery support doesn’t make use of CLFS but uses 
an internal logging implementation called the log file service. Another difference is that while TxF 
is used only when callers opt-in for transacted operations, NTFS records all metadata changes so 
that the file system can be made consistent in the face of a system failure. 

Log File Service 

The log file service (LFS) is a series of kernel-mode routines inside the NTFS driver that 
NTFS uses to access the log file. NTFS passes the LFS a pointer to an open file object, which 
specifies a log file to be accessed. The LFS either initializes a new log file or calls the Windows 
cache manager to access the existing log file through the cache, as shown in Figure 11-49.  

Note that although LFS and CLFS have similar sounding names, they are separate logging 
implementations used for different reasons, although their operation is similar in many ways.  

  

The LFS divides the log file into two regions: a restart area and an “infinite” logging area, as 
shown in Figure 11-50. 
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NTFS calls the LFS to read and write the restart area. NTFS uses the restart area to store 
context information such as the location in the logging area at which NTFS will begin to read 
during recovery after a system failure. The LFS maintains a second copy of the restart data in case 
the first becomes corrupted or otherwise inaccessible. The remainder of the log file is the logging 
area, which contains transaction records NTFS writes to recover a volume in the event of a system 
failure. The LFS makes the log file appear infinite by reusing it circularly (while guaranteeing that 
it doesn’t overwrite information it needs). Just like CLFS, the LFS uses LSNs to identify records 
written to the log file. As the LFS cycles through the file, it increases the values of the LSNs. 
NTFS uses 64 bits to represent LSNs, so the number of possible LSNs is so large as to be virtually 
infinite. 

NTFS never reads transactions from or writes transactions to the log file directly. The LFS 
provides services that NTFS calls to open the log file, write log records, read log records in 
forward or backward order, flush log records up to a particular LSN, or set the beginning of the 
log file to a higher LSN. During recovery, NTFS calls the LFS to perform the same actions as 
described in the TxF recovery section: a redo pass for nonflushed committed changes, followed by 
an undo pass for noncommitted changes. 

Here’s how the system guarantees that the volume can be recovered:  

1. NTFS first calls the LFS to record in the (cached) log file any transactions that will modify 
the volume structure. 

2. NTFS modifies the volume (also in the cache). 

3. The cache manager prompts the LFS to flush the log file to disk. (The LFS implements the 
flush by calling the cache manager back, telling it which pages of memory to flush. Refer back to 
the calling sequence shown in Figure 11-49.) 

4. After the cache manager flushes the log file to disk, it flushes the volume changes (the 
metadata operations themselves) to disk. 

These steps ensure that if the file system modifications are ultimately unsuccessful, the 
corresponding transactions can be retrieved from the log file and can be either redone or undone as 
part of the file system recovery procedure. 

File system recovery begins automatically the first time the volume is used after the system is 
rebooted. NTFS checks whether the transactions that were recorded in the log file before the crash 
were applied to the volume, and if they weren’t, it redoes them. NTFS also guarantees that 
transactions not completely logged before the crash are undone so that they don’t appear on the 
volume. 

Log Record Types 

The NTFS recovery mechanism uses similar log record types as the TxF recovery mechanism: 
update records, which correspond to the redo and undo records that TxF uses, and checkpoint 
records, which are similar to the restart records used by TxF. Figure 11-51 shows three update 
records in the log file. Each record represents one suboperation of a transaction, creating a new 
file. The redo entry in each update record tells NTFS how to reapply the suboperation to the 
volume, and the undo entry tells NTFS how to roll back (undo) the suboperation. 
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After logging a transaction (in this example, by calling the LFS to write the three update 
records to the log file), NTFS performs the suboperations on the volume itself, in the cache. When 
it has finished updating the cache, NTFS writes another record to the log file, recording the entire 
transaction as complete—a suboperation known as committing a transaction. Once a transaction is 
committed, NTFS guarantees that the entire transaction will appear on the volume, even if the 
operating system subsequently fails. 

When recovering after a system failure, NTFS reads through the log file and redoes each 
committed transaction. Although NTFS completed the committed transactions from before the 
system failure, it doesn’t know whether the cache manager flushed the volume modifications to 
disk in time. The updates might have been lost from the cache when the system failed. Therefore, 
NTFS executes the committed transactions again just to be sure that the disk is up to date. 

After redoing the committed transactions during a file system recovery, NTFS locates all the 
transactions in the log file that weren’t committed at failure and rolls back each suboperation that 
had been logged. In Figure 11-51, NTFS would first undo the T1c suboperation and then follow 
the backward pointer to T1b and undo that suboperation. It would continue to follow the backward 
pointers, undoing suboperations, until it reached the first suboperation in the transaction. By 
following the pointers, NTFS knows how many and which update records it must undo to roll 
back a transaction. 

Redo and undo information can be expressed either physically or logically. As the lowest 
layer of software maintaining the file system structure, NTFS writes update records with physical 
descriptions that specify volume updates in terms of particular byte ranges on the disk that are to 
be changed, moved, and so on, unlike TxF, which uses logical descriptions that express updates in 
terms of operations such as “delete file A.dat.” NTFS writes update records (usually several) for 
each of the following transactions: 

■ Creating a file 

■ Deleting a file 

■ Extending a file 

■ Truncating a file 

■ Setting file information 

■ Renaming a file 

■ Changing the security applied to a file 
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The redo and undo information in an update record must be carefully designed because 
although NTFS undoes a transaction, recovers from a system failure, or even operates normally, it 
might try to redo a transaction that has already been done or, conversely, to undo a transaction that 
never occurred or that has already been undone. Similarly, NTFS might try to redo or undo a 
transaction consisting of several update records, only some of which are complete on disk. The 
format of the update records must ensure that executing redundant redo or undo operations is 
idempotent, that is, has a neutral effect. For example, setting a bit that is already set has no effect, 
but toggling a bit that has already been toggled does. The file system must also handle 
intermediate volume states correctly. In addition to update records, NTFS periodically writes a 
checkpoint record to the log file, as illustrated in Figure 11-52. 

 

A checkpoint record helps NTFS determine what processing would be needed to recover a 
volume if a crash were to occur immediately. Using information stored in the checkpoint record, 
NTFS knows, for example, how far back in the log file it must go to begin its recovery. After 
writing a checkpoint record, NTFS stores the LSN of the record in the restart area so that it can 
quickly find its most recently written checkpoint record when it begins file system recovery after a 
crash occurs—this is similar to the restart LSN used by TxF for the same reason. 

Although the LFS presents the log file to NTFS as if it were infinitely large, it isn’t. The 
generous size of the log file and the frequent writing of checkpoint records (an operation that 
usually frees up space in the log file) make the possibility of the log file filling up a remote one.  

Nevertheless, the LFS, just like CLFS, accounts for this possibility by tracking several 
numbers: 

■ The available log space 

■ The amount of space needed to write an incoming log record and to undo the write, should 
that be necessary 

■ The amount of space needed to roll back all active (noncommitted) transactions, should 
that be necessary 

If the log file doesn’t contain enough available space to accommodate the total of the last two 
items, the LFS returns a “log file full” error, and NTFS raises an exception. The NTFS exception 
handler rolls back the current transaction and places it in a queue to be restarted later. 

To free up space in the log file, NTFS must momentarily prevent further transactions on files. 
To do so, NTFS blocks file creation and deletion and then requests exclusive access to all system 
files and shared access to all user files. Gradually, active transactions either are completed 
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successfully or receive the “log file full” exception. NTFS rolls back and queues the transactions 
that receive the exception. 

Once it has blocked transaction activity on files as just described, NTFS calls the cache 
manager to flush unwritten data to disk, including unwritten log file data. After everything is 
safely flushed to disk, NTFS no longer needs the data in the log file. It resets the beginning of the 
log file to the current position, making the log file “empty.” Then it restarts the queued 
transactions. Beyond the short pause in I/O processing, the “log file full” error has no effect on 
executing programs. 

This scenario is one example of how NTFS uses the log file not only for file system recovery 
but also for error recovery during normal operation. You’ll find out more about error recovery in 
the following section. 

11.8.3 Recovery 

NTFS automatically performs a disk recovery the first time a program accesses an NTFS 
volume after the system has been booted. (If no recovery is needed, the process is trivial.) 
Recovery depends on two tables NTFS maintains in memory: a transaction table, which behaves 
just like the one TxF maintains, and a dirty page table, which records which pages in the cache 
contain modifications to the file system structure that haven’t yet been written to disk. This data 
must be flushed to disk during recovery. 

NTFS writes a checkpoint record to the log file once every 5 seconds. Just before it does, it 
calls the LFS to store a current copy of the transaction table and of the dirty page table in the log 
file. NTFS then records in the checkpoint record the LSNs of the log records containing the copied 
tables. When recovery begins after a system failure, NTFS calls the LFS to locate the log records 
containing the most recent checkpoint record and the most recent copies of the transaction and 
dirty page tables. It then copies the tables to memory. 

The log file usually contains more update records following the last checkpoint record. These 
update records represent volume modifications that occurred after the last checkpoint record was 
written. NTFS must update the transaction and dirty page tables to include these operations. After 
updating the tables, NTFS uses the tables and the contents of the log file to update the volume 
itself. 

To effect its volume recovery, NTFS scans the log file three times, loading the file into 
memory during the first pass to minimize disk I/O. Each pass has a particular purpose: 

1. Analysis 

2. Redoing transactions 

3. Undoing transactions 

Analysis Pass 

During the analysis pass, as shown in Figure 11-53, NTFS scans forward in the log file from 
the beginning of the last checkpoint operation to find update records and use them to update the 
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transaction and dirty page tables it copied to memory. Notice in the figure that the checkpoint 
operation stores three records in the log file and that update records might be interspersed among 
these records. NTFS therefore must start its scan at the beginning of the checkpoint operation. 

  

Most update records that appear in the log file after the checkpoint operation begins represent 
a modification to either the transaction table or the dirty page table. If an update record is a 
“transaction committed” record, for example, the transaction the record represents must be 
removed from the transaction table. Similarly, if the update record is a “page update” record that 
modifies a file system data structure, the dirty page table must be updated to reflect that change. 

Once the tables are up to date in memory, NTFS scans the tables to determine the LSN of the 
oldest update record that logs an operation that hasn’t been carried out on disk. The transaction 
table contains the LSNs of the noncommitted (incomplete) transactions, and the dirty page table 
contains the LSNs of records in the cache that haven’t been flushed to disk. The LSN of the oldest 
update record that NTFS finds in these two tables determines where the redo pass will begin. If the 
last checkpoint record is older, however, NTFS will start the redo pass there instead. 

Note In the TxF recovery model, there is no distinct analysis pass. Instead, as described in 
the TxF recovery section, TxF performs the equivalent work in the redo pass. 

Redo Pass 

During the redo pass, as shown in Figure 11-54, NTFS scans forward in the log file from the 
LSN of the oldest update record, which it found during the analysis pass. It looks for “page 
update” records, which contain volume modifications that were written before the system failure 
but that might not have been flushed to disk. NTFS redoes these updates in the cache. 

  

When NTFS reaches the end of the log file, it has updated the cache with the necessary 
volume modifications, and the cache manager’s lazy writer can begin writing cache contents to 
disk in the background. 

Undo Pass 
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After it completes the redo pass, NTFS begins its undo pass, in which it rolls back any 
transactions that weren’t committed when the system failed. Figure 11-55 shows two transactions 
in the log file; transaction 1 was committed before the power failure, but transaction 2 wasn’t. 
NTFS must undo transaction 2. 

  

Suppose that transaction 2 created a file, an operation that comprises three suboperations, 
each with its own update record. The update records of a transaction are linked by backward 
pointers in the log file because they are usually not contiguous. 

The NTFS transaction table lists the LSN of the last-logged update record for each 
noncommitted transaction. In this example, the transaction table identifies LSN 4049 as the last 
update record logged for transaction 2. As shown from right to left in Figure 11-56, NTFS rolls 
back transaction 2. 

  

After locating LSN 4049, NTFS finds the undo information and executes it, clearing bits 3 
through 9 in its allocation bitmap. NTFS then follows the backward pointer to LSN 4048, which 
directs it to remove the new file name from the appropriate file name index. Finally, it follows the 
last backward pointer and deallocates the MFT file record reserved for the file, as the update 
record with LSN 4046 specifies. Transaction 2 is now rolled back. If there are other noncommitted 
transactions to undo, NTFS follows the same procedure to roll them back. Because undoing 
transactions affects the volume’s file system structure, NTFS must log the undo operations in the 
log file. After all, the power might fail again during the recovery, and NTFS would have to redo 
its undo operations! 

When the undo pass of the recovery is finished, the volume has been restored to a consistent 
state. At this point, NTFS is prepared to flush the cache changes to disk to ensure that the volume 
is up to date. Before doing so, however, it executes a callback that TxF registers for notifications 
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of LFS flushes. Because TxF and NTFS both use write-ahead logging, TxF must flush its log 
through CLFS before the NTFS log is flushed to ensure consistency of its own metadata. (And 
similarly, the TOPS file must be flushed before the CLFS-managed log files.) NTFS then writes 
an “empty” LFS restart area to indicate that the volume is consistent and that no recovery need be 
done if the system should fail again immediately. Recovery is complete. 

NTFS guarantees that recovery will return the volume to some preexisting consistent state, 
but not necessarily to the state that existed just before the system crash. NTFS can’t make that 
guarantee because, for performance, it uses a “lazy commit” algorithm, which means that the log 
file isn’t immediately flushed to disk each time a “transaction committed” record is written. 
Instead, numerous “transaction committed” records are batched and written together, either when 
the cache manager calls the LFS to flush the log file to disk or when the LFS writes a checkpoint 
record (once every 5 seconds) to the log file. Another reason the recovered volume might not be 
completely up to date is that several parallel transactions might be active when the system crashes 
and some of their “transaction committed” records might make it to disk whereas others might not. 
The consistent volume that recovery produces includes all the volume updates whose “transaction 
committed” records made it to disk and none of the updates whose “transaction committed” 
records didn’t make it to disk.  

NTFS uses the log file to recover a volume after the system fails, but it also takes advantage 
of an important “freebie” it gets from logging transactions. File systems necessarily contain a lot 
of code devoted to recovering from file system errors that occur during the course of normal file 
I/O. Because NTFS logs each transaction that modifies the volume structure, it can use the log file 
to recover when a file system error occurs and thus can greatly simplify its error handling code. 
The “log file full” error described earlier is one example of using the log file for error recovery. 

Most I/O errors a program receives aren’t file system errors and therefore can’t be resolved 
entirely by NTFS. When called to create a file, for example, NTFS might begin by creating a file 
record in the MFT and then enter the new file’s name in a directory index. When it tries to allocate 
space for the file in its bitmap, however, it could discover that the disk is full and the create 
request can’t be completed. In such a case, NTFS uses the information in the log file to undo the 
part of the operation it has already completed and to deallocate the data structures it reserved for 
the file. Then it returns a “disk full” error to the caller, which in turn must respond appropriately to 
the error. 

11.8.4 NTFS Bad-Cluster Recovery 

The volume manager included with Windows (VolMgr) can recover data from a bad sector 
on a fault-tolerant volume, but if the hard disk doesn’t use the SCSI protocol or runs out of spare 
sectors, a volume manager can’t perform sector sparing to replace the bad sector. (See Chapter 8 
for more information on the volume manager.) When the file system reads from the sector, the 
volume manager instead recovers the data and returns the warning to the file system that there is 
only one copy of the data. 

The FAT file system doesn’t respond to this volume manager warning. Moreover, neither 
FAT nor the volume manager keeps track of the bad sectors, so a user must run the Chkdsk or 
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Format utility to prevent the volume manager from repeatedly recovering data for the file system. 
Both Chkdsk and Format are less than ideal for removing bad sectors from use. Chkdsk can take a 
long time to find and remove bad sectors, and Format wipes all the data off the partition it’s 
formatting. 

In the file system equivalent of a volume manager’s sector sparing, NTFS dynamically 
replaces the cluster containing a bad sector and keeps track of the bad cluster so that it won’t be 
reused. (Recall that NTFS maintains portability by addressing logical clusters rather than physical 
sectors.) NTFS performs these functions when the volume manager can’t perform sector sparing. 
When a volume manager returns a bad-sector warning or when the hard disk driver returns a 
bad-sector error, NTFS allocates a new cluster to replace the one containing the bad sector. NTFS 
copies the data that the volume manager has recovered into the new cluster to reestablish data 
redundancy. 

Figure 11-57 shows an MFT record for a user file with a bad cluster in one of its data runs as 
it existed before the cluster went bad. When it receives a bad-sector error, NTFS reassigns the 
cluster containing the sector to its bad-cluster file. This prevents the bad cluster from being 
allocated to another file. NTFS then allocates a new cluster for the file and changes the file’s 
VCN-to-LCN mappings to point to the new cluster. This bad-cluster remapping (introduced earlier 
in this chapter) is illustrated in Figure 11-57. Cluster number 1357, which contains the bad sector, 
must be replaced by a good cluster. 

  

Bad-sector errors are undesirable, but when they do occur, the combination of NTFS and the 
volume manager provides the best possible solution. If the bad sector is on a redundant volume, 
the volume manager recovers the data and replaces the sector if it can. If it can’t replace the sector, 
it returns a warning to NTFS, and NTFS replaces the cluster containing the bad sector. 

If the volume isn’t configured as a redundant volume, the data in the bad sector can’t be 
recovered. When the volume is formatted as a FAT volume and the volume manager can’t recover 
the data, reading from the bad sector yields indeterminate results. If some of the file system’s 
control structures reside in the bad sector, an entire file or group of files (or potentially, the whole 
disk) can be lost. At best, some data in the affected file (often, all the data in the file beyond the 
bad sector) is lost. Moreover, the FAT file system is likely to reallocate the bad sector to the same 
or another file on the volume, causing the problem to resurface. Like the other file systems, NTFS 
can’t recover data from a bad sector without help from a volume manager. However, NTFS 
greatly contains the damage a bad sector can cause. If NTFS discovers the bad sector during a read 
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operation, it remaps the cluster the sector is in, as shown in Figure 11-58. If the volume isn’t 
configured as a redundant volume, NTFS returns a “data read” error to the calling program. 
Although the data that was in that cluster is lost, the rest of the file—and the file system—remains 
intact; the calling program can respond appropriately to the data loss, and the bad cluster won’t be 
reused in future allocations. If NTFS discovers the bad cluster on a write operation rather than a 
read, NTFS remaps the cluster before writing and thus loses no data and generates no error. 

The same recovery procedures are followed if file system data is stored in a sector that goes 
bad. If the bad sector is on a redundant volume, NTFS replaces the cluster dynamically, using the 
data recovered by the volume manager. If the volume isn’t redundant, the data can’t be recovered, 
and NTFS sets a bit in the volume file that indicates corruption on the volume. The NTFS Chkdsk 
utility checks this bit when the system is next rebooted, and if the bit is set, Chkdsk executes, 
fixing the file system corruption by reconstructing the NTFS metadata.  

 

In rare instances, file system corruption can occur even on a fault-tolerant disk configuration. 
A double error can destroy both file system data and the means to reconstruct it. If the system 
crashes while NTFS is writing the mirror copy of an MFT file record—of a file name index or of 
the log file, for example—the mirror copy of such file system data might not be fully updated. If 
the system were rebooted and a bad-sector error occurred on the primary disk at exactly the same 
location as the incomplete write on the disk mirror, NTFS would be unable to recover the correct 
data from the disk mirror. NTFS implements a special scheme for detecting such corruptions in 
file system data. If it ever finds an inconsistency, it sets the corruption bit in the volume file, 
which causes Chkdsk to reconstruct the NTFS metadata when the system is next rebooted. 
Because file system corruption is rare on a fault-tolerant disk configuration, Chkdsk is seldom 
needed. It is supplied as a safety precaution rather than as a first-line data recovery strategy. 
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The use of Chkdsk on NTFS is vastly different from its use on the FAT file system. Before 
writing anything to disk, FAT sets the volume’s dirty bit and then resets the bit after the 
modification is complete. If any I/O operation is in progress when the system crashes, the dirty bit 
is left set and Chkdsk runs when the system is rebooted. On NTFS, Chkdsk runs only when 
unexpected or unreadable file system data is found and NTFS can’t recover the data from a 
redundant volume or from redundant file system structures on a single volume. (The system boot 
sector is duplicated, as are the parts of the MFT required for booting the system and running the 
NTFS recovery procedure. This redundancy ensures that NTFS will always be able to boot and 
recover itself.) 

Table 11-9 summarizes what happens when a sector goes bad on a disk volume formatted for 
one of the Windows-supported file systems according to various conditions we’ve described in 
this section. 

 

If the volume on which the bad sector appears is a fault-tolerant volume (a mirrored or 
RAID-5 volume) and if the hard disk is one that supports sector sparing (and that hasn’t run out of 
spare sectors), it doesn’t matter which file system you’re using (FAT or NTFS). The volume 
manager replaces the bad sector without the need for user or file system intervention. If a bad 
sector is located on a hard disk that doesn’t support sector sparing, the file system is responsible 
for replacing (remapping) the bad sector or—in the case of NTFS—the cluster in which the bad 
sector resides. The FAT file system doesn’t provide sector or cluster remapping. The benefits of 
NTFS cluster remapping are that bad spots in a file can be fixed without harm to the file (or harm 
to the file system, as the case may be) and that the bad cluster won’t be reallocated to the same or 
another file. 

11.8.5 Self-Healing 

With today’s multiterabyte storage devices, taking a volume offline for a consistency check 
can result in a service outage of many hours. Recognizing that many disk corruptions are localized 
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to a single file or portion of metadata, NTFS implements a self-healing feature to repair damage 
while a volume remains online. When NTFS detects corruption, it prevents access to the damaged 
file or files and creates a system worker thread that executes Chkdsklike corrections to the 
corrupted data structures, allowing access to the repaired files when it has finished. Access to 
other files continues normally during this operation, minimizing service disruption. 

You can use the fsutil repair set command to view and set a volume’s repair options, which 
are summarized in Table 11-10. The Fsutil utility uses the FSCTL_SET_REPAIR file system 
control code to set these settings, which are saved in the VCB for the volume. 

  

In all cases, including when the visual warning is disabled (the default), NTFS will log any 
selfhealing operation it undertook in the System event log. 

Apart from periodic automatic self-healing, NTFS also supports manually initiated 
selfhealing cycles through the FSCTL_INITIATE_REPAIR and FSCTL_WAIT_FOR_REPAIR 
control codes, which can be initiated with the fsutil repair initiate and fsutil repair wait commands.  

This allows the user to force the repair of a specific file and to wait until repair of that file is 
complete. 

To check the status of the self-healing mechanism, the FSCTL_QUERY_REPAIR control 
code or the fsutil repair query command can be used, as shown here: 

1. C:\>fsutil repair query c:   
2. Self healing is enabled for volume c: with flags 0x1.   
3. flags: 0x01 - enable general repair   
4. 0x08 - warn about potential data loss   
5. 0x10 - disable general repair and bugcheck once on first corruption  

11.9 Encrypting File System Security 

EFS security relies on cryptography support. The first time a file is encrypted, EFS assigns 
the account of the user performing the encryption a private/public key pair for use in file 
encryption. Users can encrypt files via Windows Explorer by opening a file’s Properties dialog 
box, clicking Advanced, and then selecting the Encrypt Contents To Secure Data option, as shown 
in Figure 11-59. Users can also encrypt files via a command-line utility named cipher. Windows 
automatically encrypts files that reside in directories that are designated as encrypted directories. 
When a file is encrypted, EFS generates a random number for the file that EFS calls the file’s file 
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encryption key (FEK). EFS uses the FEK to encrypt the file’s contents with a stronger variant of 
the Data Encryption Standard (DES) algorithm—Triple-DES (3DES) or Advanced Encryption 
Standard (AES). EFS stores the file’s FEK with the file but encrypts the FEK with the user’s EFS 
public key by using the RSA public key–based encryption algorithm. After EFS completes these 
steps, the file is secure: other users can’t decrypt the data without the file’s decrypted FEK, and 
they can’t decrypt the FEK without the private key. 

  

eFS FeK Key Strength 

The default FEK encryption algorithm is AES. The Windows AES algorithm uses 256-bit 
keys. Use of 3DES allows access to larger sized keys, so if you require greater key strength you 
can enable 3DES encryption in one of two ways: either as the algorithm for all system 
cryptographic services or just for EFS. 

To have 3DES be the encryption algorithm for all system cryptographic services, open the 
Local Security Policy Editor by entering secpol.msc in the Run dialog box from the Start menu 
and open the Security Options node under Local Policies. View the properties of System 
Cryptography: Use FIPS Compliant Algorithms For Encryption, Hashing And Signing, and enable 
it. 

To enable 3DES for EFS only, create the DWORD value HKLM\SOFTWARE\Microsoft 
\Windows NT\CurrentVersion\EFS\AlgorithmID, set it to 0x6603, and reboot.  

EFS uses a private/public key algorithm to encrypt FEKs. To encrypt file data, EFS uses AES 
or 3DES because both are symmetric encryption algorithms, which means that they use the same 
key to encrypt and decrypt data. Symmetric encryption algorithms are typically very fast, which 
makes them suitable for encrypting large amounts of data, such as file data. However, symmetric 
encryption algorithms have a weakness: you can bypass their security if you obtain the key. If 
multiple users want to share one encrypted file protected only by AES or 3DES, each user would 
require access to the file’s FEK. Leaving the FEK unencrypted would obviously be a security 
problem, but encrypting the FEK once would require all the users to share the same FEK 
decryption key—another potential security problem.  

Keeping the FEK secure is a difficult problem, which EFS addresses with the public 
key–based half of its encryption architecture. Encrypting a file’s FEK for individual users who 
access the file lets multiple users share an encrypted file. EFS can encrypt a file’s FEK with each 
user’s public key and can store each user’s encrypted FEK with the file. Anyone can access a 
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user’s public key, but no one can use a public key to decrypt the data that the public key 
encrypted.  

The only way users can decrypt a file is with their private key, which the operating system 
must access. A user’s private key decrypts the user’s encrypted copy of a file’s FEK. Public 
key–based algorithms are usually slow, but EFS uses these algorithms only to encrypt FEKs. 
Splitting key management between a publicly available key and a private key makes key 
management a little easier than symmetric encryption algorithms do and solves the dilemma of 
keeping the FEK secure. 

Windows stores a user’s private keys in the user’s profile directory (typically under \Users) 
within the AppData\Roaming\Microsoft\Crypto\RSA subdirectory. To protect private keys, 
Windows encrypts all files within the RSA folder with a random symmetric key called the user’s 
master key. The master key is 64 bytes in length and is generated by a strong random number 
generator. The master key is also stored in the user’s profile under the AppData\Roaming 
\Microsoft\Protect directory and is 3DES-encrypted with a key that’s in part based on the user’s 
password. When a user changes his or her password, master keys are automatically unencrypted 
and re-encrypted using the new password. 

Several components work together to make EFS work, as the diagram of EFS architecture in 
Figure 11-60 shows. EFS support is merged into the NTFS driver. Whenever NTFS encounters an 
encrypted file, NTFS executes EFS functions that it contains. The EFS functions encrypt and 
decrypt file data as applications access encrypted files. Although EFS stores an FEK with a file’s 
data, users’ public keys encrypt the FEK. To encrypt or decrypt file data, EFS must decrypt the 
file’s FEK with the aid of cryptography services that reside in user mode. 

  

The Local Security Authority Subsystem (Lsass; \%SystemRoot%\System32\Lsass.exe) 
manages logon sessions but also handles EFS key management chores. For example, when EFS 
needs to decrypt an FEK to decrypt file data a user wants to access, NTFS sends a request to Lsass. 
EFS sends the request via an advanced local procedure call (ALPC) message. The KSecDD 
(\%SystemRoot%\System32\Drivers\Ksecdd.sys) device driver exports functions for other drivers 
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that need to send ALPC messages to Lsass. The Local Security Authority Server (Lsasrv; 
\%SystemRoot%\System32\Lsasrv.dll) component of Lsass that listens for remote procedure call 
(RPC) requests passes requests to decrypt an FEK to the appropriate EFS-related decryption 
function, which also resides in Lsasrv. Lsasrv uses functions in Microsoft CryptoAPI (also 
referred to as CAPI) to decrypt the FEK, which the NTFS driver sent to Lsass in encrypted form. 

CryptoAPI comprises cryptographic service provider (CSP) DLLs that make various 
cryptography services (such as encryption/decryption and hashing) available to applications. The 
CSP DLLs manage retrieval of user private and public keys, for example, so that Lsasrv doesn’t 
need to concern itself with the details of how keys are protected or even with the details of the 
encryption algorithms. EFS uses the RSA encryption algorithms provided by the Microsoft 
Enhanced Cryptographic provider (\%SystemRoot%\System32\Rsaenh.dll). After Lsasrv decrypts 
an FEK, Lsasrv returns the FEK to the NTFS driver via an ALPC reply message. After EFS 
receives the decrypted FEK, EFS can use AES to decrypt the file data for NTFS. Let’s look at the 
details of how EFS integrates with NTFS and how Lsasrv uses CryptoAPI to manage keys. 

11.9.1 Encrypting a File for the First Time 

The NTFS driver calls its internal EFS functions when it encounters an encrypted file. A 
file’s attributes record that the file is encrypted in the same way that a file records that it is 
compressed (discussed earlier in this chapter). NTFS has specific interfaces for converting a file 
from nonencrypted to encrypted form, but user-mode components primarily drive the process. As 
described earlier, Windows lets you encrypt a file in two ways: by using the 
cipher  command-line utility or by checking the Encrypt Contents To Secure Data check box in 
the Advanced Attributes dialog box for a file in Windows Explorer. Both Windows Explorer and 
the cipher command rely on the EncryptFile Windows API that Advapi32.dll (Advanced 
Windows APIs DLL) exports. Advapi32 loads another DLL, Feclient.dll (File Encryption Client 
DLL), to obtain APIs that Advapi32 can use to invoke EFS interfaces in Lsasrv via ALPC.  

When Lsasrv receives an RPC message from Feclient to encrypt a file, Lsasrv uses the 
Windows impersonation facility to impersonate the user that ran the application (either cipher or 
Windows Explorer) that is encrypting the file. (Impersonation is described in Chapter 6.) This 
procedure lets Windows treat the file operations that Lsasrv performs as if the user who wants to 
encrypt the file is performing them. Lsasrv usually runs in the System account. (The System 
account is described in Chapter 6.) In fact, if it doesn’t impersonate the user, Lsasrv usually won’t 
have permission to access the file in question. 

Lsasrv next creates a log file in the volume’s System Volume Information directory into 
which Lsasrv records the progress of the encryption process. The log file usually has the name 
Efs0. log, but if other files are undergoing encryption, increasing numbers replace the 0 until a 
unique log file name for the current encryption is created.  

CryptoAPI relies on information that a user’s registry profile stores, so if the profile is not 
already loaded, Lsasrv next uses the LoadUserProfile API function of Userenv.dll (User Environ 
ment DLL) to load the profile into the registry of the user it is impersonating. Typically, the user 
profile is already loaded because Winlogon loads a user’s profile when a user logs on. However, if 
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a user uses the Windows RunAs command to log on to a different account, when the user tries to 
access encrypted files from that account, the account’s profile might not be loaded. 

Lsasrv then generates an FEK for the file by using the RSA encryption facilities of the 
Microsoft Base Cryptographic Provider 1.0 CSP. 

Constructing Key Rings 

At this point, Lsasrv has an FEK and can construct EFS information to store with the file, 
including an encrypted version of the FEK. Lsasrv reads the HKEY_ 
CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\EFS\CurrentKeys 
\CertificateHash value of the user performing the encryption to obtain the user’s public key 
signature. (Note that this key doesn’t appear in the registry until a file or folder is encrypted.) 
Lsasrv uses the signature to access the user’s public key and encrypt FEKs. 

Lsasrv can now construct the information that EFS stores with the file. EFS stores only one 
block of information in an encrypted file, and that block contains an entry for each user sharing 
the file. These entries are called key entries, and EFS stores them in the Data Decryption Field 
(DDF) portion of the file’s EFS data. A collection of multiple key entries is called a key ring 
because, as mentioned earlier, EFS lets multiple users share encrypted files. Figure 11-61 shows a 
file’s EFS information format and key entry format. EFS stores enough information in the first 
part of a key entry to precisely describe a user’s public key. This data includes the user’s security 
ID (SID) (note that the SID is not guaranteed to be present), the container name in which the key 
is stored, the cryptographic provider name, and the private/public key pair certificate hash. Only 
the private/public key pair certificate hash is used by the decryption process. The second part of 
the key entry contains an encrypted version of the FEK. Lsasrv uses the CryptoAPI to encrypt the 
FEK with the RSA algorithm and the user’s public key. 

  

Next, Lsasrv creates another key ring that contains recovery key entries. EFS stores 
information about recovery key entries in a file’s Data Recovery Field (DRF). The format of DRF 
entries is identical to the format of DDF entries. The DRF’s purpose is to let designated accounts, 
or Recovery Agents, decrypt a user’s file when administrative authority must have access to the 
user’s data. For example, suppose a company employee forgot his or her logon password. An 
administrator can reset the user’s password, but without Recovery Agents, no one can recover the 
user’s encrypted data. 
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Recovery Agents are defined with the Encrypted Data Recovery Agents security policy of the 
local computer or domain. This policy is available from the Local Security Policy MMC snap-in, 
as shown in Figure 11-62. When you use the Add Recovery Agent Wizard (by rightclicking 
Encrypting File System and then clicking Add Data Recovery Agent), you can add Recovery 
Agents and specify which private/public key pairs (designated by their certificates) the Recovery 
Agents use for EFS recovery. Lsasrv interprets the recovery policy when it initializes and when it 
receives notification that the recovery policy has changed. EFS creates a DRF key entry for each 
Recovery Agent by using the cryptographic provider registered for EFS recovery. 

  

In the final step in creating EFS information for a file, Lsasrv calculates a checksum for the 
DDF and DRF by using the MD5 hash facility of Base Cryptographic Provider 1.0. Lsasrv stores 
the checksum’s result in the EFS information header. EFS references this checksum during 
decryption to ensure that the contents of a file’s EFS information haven’t become corrupted or 
been tampered with. 

Encrypting File Data 

Figure 11-63 illustrates the flow of the encryption process. After Lsasrv constructs the 
necessary information for a file a user wants to encrypt, it can begin encrypting the file. Lsasrv 
creates a backup file, Efs0.tmp, for the file undergoing encryption. (Lsasrv uses higher numbers in 
the backup file name if other backup files exist.) Lsasrv creates the backup file in the directory 
that contains the file undergoing encryption. Lsasrv applies a restrictive security descriptor to the 
backup file so that only the System account can access the file’s contents. Lsasrv next initializes 
the log file that it created in the first phase of the encryption process. Finally, Lsasrv records in the 
log file that the backup file has been created. Lsasrv encrypts the original file only after the file is 
completely backed up. 

Lsasrv next sends the EFS kernel-mode code inside NTFS a command to add to the original 
file the EFS information that it just created. The EFS kernel-mode code takes the EFS information 
that Lsasrv sent and applies the information to the file, which lets EFS add the $EFS attribute to 
NTFS files. Execution returns to Lsasrv, which copies the contents of the file undergoing 
encryption to the backup file. When the backup copy is complete, including backups of all 
alternate data streams, Lsasrv records in the log file that the backup file is up to date. Lsasrv then 
sends another command to NTFS to tell NTFS to encrypt the contents of the original file. 
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When NTFS receives the EFS command to encrypt the file, NTFS deletes the contents of the 
original file and copies the backup data to the file. After NTFS copies each section of the file, 
NTFS flushes the section’s data from the file system cache, which prompts the cache manager to 
tell NTFS to write the file’s data to disk. Because the file is marked as encrypted, at this point in 
the file-writing process, NTFS calls its EFS routines to encrypt the data before it writes the data to 
disk. EFS uses the unencrypted FEK that NTFS passes it to perform AES or 3DES encryption of 
the file as appropriate, one sector (512 bytes) at a time.  

After EFS encrypts the file, Lsasrv records in the log file that the encryption was successful 
and deletes the file’s backup copy. Finally, Lsasrv deletes the log file and returns control to the 
application that requested the file’s encryption.  

Encryption Process Summary 

The following list summarizes the steps EFS performs to encrypt a file: 

1. The user profile is loaded if necessary. 

2. A log file is created in the System Volume Information directory with the name Efsx.log, 
where x is a unique number (for example, Efs0.log). As subsequent steps are performed, records 
are written to the log so that the file can be recovered in case the system fails during the 
encryption process. 

3. Base Cryptographic Provider 1.0 generates a random 128-bit FEK for the file. 

4. A user EFS private/public key pair is generated or obtained. HKEY_CURRENT_USER 
\Software\Microsoft\Windows NT\CurrentVersion\EFS\CurrentKeys \CertificateHash identifies 
the user’s key pair. 

5. A DDF key ring is created for the file that has an entry for the user. The entry contains a 
copy of the FEK that has been encrypted with the user’s EFS public key.  

6. A DRF key ring is created for the file. It has an entry for each Recovery Agent on the 
system, with each entry containing a copy of the FEK encrypted with the agent’s EFS public key. 
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7. A backup file with a name in the form Efs0.tmp is created in the same directory as the file 
to be encrypted. 

8. The DDF and DRF key rings are added to a header and augment the file as its EFS 
attribute. 

9. The backup file is marked as encrypted, and the original file is copied to the backup. 

10. The original file’s contents are destroyed, and the backup is copied to the original. This 
copy operation results in the data in the original file being encrypted because the file is now 
marked as encrypted. 

11. The backup file is deleted. 

12. The log file is deleted. 

13. The user profile is unloaded (if it was loaded in step 1). 

If the system crashes during the encryption process, either the original file remains intact or 
the backup file contains a consistent copy. When Lsasrv initializes after a system crash, it looks 
for log files under the System Volume Information subdirectory on each NTFS volume on the 
system. If Lsasrv finds one or more log files, it examines their contents and determines how 
recovery should take place. Lsasrv deletes the log file and the corresponding backup file if the 
original file wasn’t modified at the time of the crash; otherwise, Lsasrv copies the backup file over 
the original, partially encrypted file and then deletes the log and backup. After Lsasrv processes 
log files, the file system will be in a consistent state with respect to encryption, with no loss of 
user data. 

11.9.2 The Decryption Process 

The decryption process begins when a user opens an encrypted file. NTFS examines the file’s 
attributes when opening the file and reads the $EFS attribute associated with the encrypted file. 
NTFS completes the necessary steps to open the file and ensures that the user opening the file has 
access privileges to the file’s encrypted data (that is, that an encrypted FEK in either the DDF or 
DRF key ring corresponds to a private/public key pair associated with the user). As EFS performs 
this validation, EFS obtains the file’s decrypted FEK to use in subsequent data operations the user 
might perform on the file. 

EFS can’t decrypt an FEK and relies on Lsasrv (which can use CryptoAPI) to perform FEK 
decryption. EFS sends an ALPC message by way of the Ksecdd.sys driver to Lsasrv that asks 
Lsasrv to obtain the decrypted form of the encrypted FEK in the $EFS attribute data (the EFS data) 
that corresponds to the user who is opening the file. 

When Lsasrv receives the ALPC message, Lsasrv executes the Userenv.dll (User 
Environment DLL) LoadUserProfile API function to bring the user’s profile into the registry, if 
the profile isn’t already loaded. Lsasrv proceeds through each key field in the EFS data, using the 
user’s private key to try to decrypt each FEK. For each key, Lsasrv attempts to decrypt a DDF or 
DRF key entry’s FEK. If the certificate hash in a key field doesn’t refer to a key the user owns, 
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Lsasrv moves on to the next key field. If Lsasrv can’t decrypt any DDF or DRF key field’s FEK, 
the user can’t obtain the file’s FEK. Consequently, EFS denies access to the application opening 
the file. However, if Lsasrv identifies a hash as corresponding to a key the user owns, it decrypts 
the FEK with the user’s private key using CryptoAPI. 

Because Lsasrv processes both DDF and DRF key rings when decrypting an FEK, it 
automatically performs file recovery operations. If a Recovery Agent that isn’t registered to access 
an encrypted file (that is, it doesn’t have a corresponding field in the DDF key ring) tries to access 
a file, EFS will let the Recovery Agent gain access because the agent has access to a key pair for a 
key field in the DRF key ring. 

Decrypted FEK Caching 

Traveling the path from the NTFS driver to Lsasrv and back can take a relatively long 
time—in the process of decrypting an FEK, CryptoAPI results in more than 2,000 registry API 
calls and 400 file system accesses on a typical system. The NTFS driver uses a cache to try to 
avoid this expense. 

Decrypting File Data 

After an application opens an encrypted file, the application can read from and write to the 
file. NTFS uses EFS to decrypt file data as NTFS reads the data from the disk and before NTFS 
places the data in the file system cache. Similarly, when an application writes data to a file, the 
data remains in unencrypted form in the file system cache until the application or the cache 
manager uses NTFS to flush the data back to disk. When an encrypted file’s data writes back from 
the cache to the disk, NTFS uses EFS to encrypt the data.  

As stated earlier, EFS performs encryption and decryption in 512-byte units. The 512-byte 
size is the most convenient for the driver because disk reads and writes occur in multiples of the 
512-byte sector. 

11.9.3 Backing Up Encrypted Files 

An important aspect of any file encryption facility’s design is that file data is never available 
in unencrypted form except to applications that access the file via the encryption facility. This 
restriction particularly affects backup utilities, in which archival media store files. EFS addresses 
this problem by providing a facility for backup utilities so that the utilities can back up and restore 
files in their encrypted states. Thus, backup utilities don’t have to be able to decrypt file data, nor 
do they need to encrypt file data in their backup procedures.  

Backup utilities use the EFS API functions OpenEncryptedFileRaw, ReadEncryptedFileRaw, 
WriteEncryptedFileRaw, and CloseEncryptedFileRaw in Windows to access a file’s encrypted 
contents. The Advapi32.dll library provides these API functions, which all use ALPC to invoke 
corresponding functions in Lsasrv. For example, after a backup utility opens a file for raw access 
during a backup operation, the utility calls ReadEncryptedFileRaw to obtain the file data. The 
Lsasrv function EfsReadFileRaw issues control commands (which the EFS session key encrypts 
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with AES or 3DES) to the NTFS driver to read the file’s EFS attribute first and then the encrypted 
contents. 

EfsReadFileRaw might have to perform multiple read operations to read a large file. As 
EfsReadFileRaw reads each portion of such a file, Lsasrv sends an RPC message to Advapi32.dll 
that executes a callback function that the backup program specified when it issued the 
ReadEncryptedFileRaw API function. EfsReadFileRaw hands the encrypted data it just read to the 
callback function, which can write the data to the backup media. Backup utilities restore encrypted 
files in a similar manner. The utilities call the WriteEncryptedFileRaw API function, which 
invokes a callback function in the backup program to obtain the unencrypted data from the backup 
media while Lsasrv’s EfsWriteFileRaw function is restoring the file’s contents. 

eXPeriMeNT: Viewing eFS information 

EFS has a handful of other API functions that applications can use to manipulate encrypted 
files. For example, applications use the AddUsersToEncryptedFile API function to give additional 
users access to an encrypted file and RemoveUsersFromEncryptedFile to revoke users’ access to 
an encrypted file. Applications use the QueryUsersOn-EncryptedFile function to obtain 
information about a file’s associated DDF and DRF key fields. QueryUsersOnEncryptedFile 
returns the SID, certificate hash value, and display information that each DDF and DRF key field 
contains. The following output is from the EFSDump utility, from Sysinternals, when an 
encrypted file is specified as a commandline argument: 

1. C:\>efsdump test.txt   
2. EFS Information Dumper v1.02  
3. Copyright (C) 1999 Mark Russinovich   
4. Systems Internals – http://www.sysinternals.com   
5. test.txt:   
6. DDF Entry:   
7. DARYL\Mark:   
8. CN=Mark,L=EFS,OU=EFS File Encryption Certificate   
9. DRF Entry:   
10. Unknown user:   
11. EFS Data Recovery   
You can see that the file test.txt has one DDF entry for user Mark and one DRF entry for the EFS 
Data Recovery agent, which is the only Recovery Agent currently registered on the system.  

11.10 Conclusion 

Windows supports a wide variety of file system formats accessible to both the local system 
and remote clients. The file system filter driver architecture provides a clean way to extend and 
augment file system access, and NTFS provides a reliable, secure, scalable file system format for 
local file system storage. In the next chapter, we’ll look at networking on Windows. 
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12. Networking 

Windows was designed with networking in mind, and it includes broad networking support 
that is integrated with the I/O system and the Windows API. The four basic types of networking 
software are services, APIs, protocols, and network adapter device drivers, and each is layered on 
the next to form a network stack. Windows has well-defined interfaces for each layer, so in 
addition to using the wide variety of APIs, protocols, and adapter device drivers that ship with 
Windows, third parties can extend the operating system’s networking capabilities by developing 
their own. 

In this chapter, we take you from the top of the Windows networking stack to the bottom. 
First, we present the mapping between the Windows networking software components and the 
Open Systems Interconnection (OSI) reference model. Then we briefly describe the networking 
APIs available on Windows and explain how they are implemented. You’ll learn how  multiple 
redirector support and name resolution work and how protocol drivers are implemented. After 
looking at the implementation of network adapter device drivers, we examine binding, which is 
the glue that connects services, protocol stacks, and network adapters. 

12.1 Windows Networking Architecture 

The goal of network software is to take a request (usually an I/O request) from an application 
on one machine, pass it to another machine, execute the request on the remote machine, and return 
the results to the first machine. In the course of this process, the request must be transformed 
several times. A high-level request, such as “read x number of bytes from file y on machine z,” 
requires software that can determine how to get to machine z and what communication software 
that machine understands. Then the request must be altered for transmission across a network—for 
example, divided into short packets of information. When the request reaches the other side, it 
must be checked for completeness, decoded, and sent to the correct operating system component 
for execution. Finally, the reply must be encoded for sending back across the network. 

12.1.1 The OSI Reference Model 

To help different computer manufacturers standardize and integrate their networking 
software, in 1984 the International Organization for Standardization (ISO) defined a software 
model for sending messages between machines. The result was the Open Systems Interconnection 
(OSI) reference model. The model defines six layers of software and one physical layer of 
hardware, as shown in Figure 12-1. 
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The OSI reference model is an idealized scheme that few systems implement precisely, but 
it’s often used to frame discussions of networking principles. Each layer on one machine assumes 
that it is “talking to” the same layer on the other machine. Both machines “speak” the same 
language, or protocol, at the same level. In reality, however, a network transmission must pass 
down each layer on the client machine, be transmitted across the network, and then pass up the 
layers on the destination machine until it reaches a layer that can understand and implement the 
request. 

The purpose of each layer in the OSI model is to provide services to higher layers and to 
abstract how the services are implemented at lower layers. Detailing the purpose of each layer is 
beyond the scope of this book, but here are some brief descriptions of the various layers: 

■ Application layer Handles information transfer between two network applications, 
including functions such as security checks, identification of the participating machines, and 
initiation of the data exchange. 

■ Presentation layer Handles data formatting, including issues such as whether lines end in a 
carriage return/line feed (CR/LF) or just a carriage return (CR), whether data is to be compressed 
or encrypted, and so forth. 

■ Session layer Manages the connection between cooperating applications, including 
high-level synchronization and monitoring of which application is “talking” and which is 
“listening.” 

■ Transport layer On the client, this layer divides messages into packets and assigns them 
sequence numbers to ensure that they are all received in the proper order. On the destination, it 
assembles packets that have been received. It also shields the session layer from the effects of 
changes in hardware. 

■ Network layer Creates packet headers and handles routing, congestion control, and 
internetworking. It is the highest layer that understands the network’s topology—that is, the 
physical configuration of the machines in the network, any limitations in bandwidth, and so on. 

■ Data-link layer Transmits low-level data frames, waits for acknowledgment that they were 
received, and retransmits frames that were lost over unreliable lines as a result of collisions. 

■ Physical layer Passes bits to the network cable or other physical transmission medium. 

The gray lines in Figure 12-1 represent protocols used in transmitting a request to a remote 
machine. As stated earlier, each layer of the hierarchy assumes that it is speaking to the same layer 
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on another machine and uses a common protocol. The collection of protocols through which a 
request passes on its way down and back up the layers of the network is called a protocol stack. 

12.1.2 Windows Networking Components 

Figure 12-2 provides an overview of the components of Windows networking, showing how 
each component fits into the OSI reference model and which protocols are used between layers. 
The mapping between OSI layers and networking components isn’t precise, which is the reason 
that some components cross layers. The various components include the following: 

■ Networking APIs provide a protocol-independent way for applications to communicate 
across a network. Networking APIs can be implemented in user mode or in both user mode and 
kernel mode, and in some cases they are wrappers around another networking API that 
implements a specific programming model or provides additional services. (Note that the term 
networking API also describes any programming interfaces provided by networking-related 
software.) 

■ Transport Driver Interface (TDI) clients are legacy kernel-mode device drivers that usually 
implement the kernel-mode portion of a networking API’s implementation. TDI clients get their 
name from the fact that the I/O request packets (IRPs) they send to protocol drivers are formatted 
according to the Windows Transport Driver Interface standard (documented in the Windows 
Driver Kit). This standard specifies a common programming interface for kernel-mode device 
drivers. (See Chapter 7 for more information about IRPs.) 

■ TDI transports, also known as transports, Network Driver Interface Specification (NDIS) 
protocol drivers, and protocol drivers, are kernel-mode protocol drivers. They accept IRPs from 
TDI clients and process the requests these IRPs represent. This processing might require network 
communications with a peer, prompting the TDI transport to add protocol-specific headers (for 
example, TCP, UDP, and/or IP) to data passed in the IRP and to communicate with adapter drivers 
using NDIS functions (also documented in the Windows Driver Kit). TDI transports generally 
facilitate application network communications by transparently performing message operations 
such as segmentation and reassembly, sequencing, acknowledgment, and retransmission. 

■ Winsock Kernel (WSK) is a transport-independent, kernel-mode networking API that 
replaces the legacy TDI mechanism. WSK provides network communication by using socketlike 
programming semantics similar to user-mode Winsock, while also providing unique features such 
as asynchronous I/O operations built on IRPs and event callbacks. WSK also natively supports IP 
version 6 (IPv6) functionality in the Next Generation TCP/IP network stack in Windows. 

■ The Windows Filtering Platform (WFP) is a set of APIs and system services that provide 
the ability to create network filtering applications. The WFP allows applications to interact with 
packet processing at different levels of the Windows networking stack, much like file system 
filters. Similarly, network data can be traced, filtered, and also modified before it reaches its 
destination. 
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■ WFP callout drivers are kernel-mode drivers that implement one or more callouts, which 
extend the capabilities of the WFP by processing TCP/IP-based network data in ways that extend 
the basic functionality provided by the WFP. 

■ The NDIS library (Ndis.sys) provides encapsulation for adapter drivers, hiding from them 
specifics of the Windows kernel-mode environment. The NDIS library exports functions for use 
by TDI transports as well as support functions for adapter drivers. 

■ NDIS miniport drivers are kernel-mode drivers that are responsible for interfacing TDI 
transports to particular network adapters. NDIS miniport drivers are written so that they are 
wrapped by the Windows NDIS library. NDIS miniport drivers don’t process IRPs; rather, they 
register a call-table interface to the NDIS library that contains pointers to functions corresponding 
to ones that the NDIS library exports to TDI transports.  

NDIS miniport drivers communicate with network adapters by using NDIS library functions 
that resolve to hardware abstraction layer (HAL) functions. 

As Figure 12-2 shows, the OSI layers don’t correspond to actual software. WSK transport 
providers, for example, frequently cross several boundaries. In fact, the bottom three layers of 
software and the hardware layer are often referred to collectively as “the transport.” Software 
components residing in the upper three layers are referred to as “users of the transport.” 
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In the remainder of this chapter, we’ll examine the networking components shown in Figure 
12-2 (as well as others not shown in the figure), looking at how they fit together and how they 
relate to Windows as a whole. 

12.2 Networking APIs 

Windows implements multiple networking APIs to provide support for legacy applications 
and compatibility with industry standards. In this section, we’ll briefly look at the networking 
APIs and describe how applications use them. It’s important to keep in mind that the decision 
about which API an application uses depends on characteristics of the API, such as which 
protocols the API can layer over, whether the API supports reliable or bidirectional 
communication, and the API’s portability to other Windows platforms the application might run 
on. We’ll discuss the following networking APIs: 

■ Windows Sockets (Winsock) 

■ Winsock Kernel 

■ Remote procedure call (RPC) 
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■ Web access APIs 

■ Named pipes and mailslots 

■ NetBIOS 

■ Other networking APIs 

12.2.1 Windows Sockets 

The original Windows Sockets (Winsock) (version 1.0) was Microsoft’s implementation of 
BSD (Berkeley Software Distribution) Sockets, a programming API that became the standard by 
which UNIX systems have communicated over the Internet since the 1980s. Support for sockets 
on Windows makes the task of porting UNIX networking applications to Windows relatively 
straightforward. The modern versions of Winsock include most of the functionality of BSD 
Sockets but also include Microsoft-specific enhancements, which continue to evolve. Winsock 
supports reliable-connection-oriented communication as well as unreliableconnectionless 
communication. Windows provides Winsock 2.2, which adds numerous features beyond the BSD 
Sockets specification, such as functions that take advantage of Windows asynchronous I/O to offer 
far better performance and scalability than straight BSD Socket programming. 

Winsock includes the following features:  

■ Support for scatter-gather and asynchronous application I/O. 

■ Quality of service (QoS) conventions so that applications can negotiate latency and 
bandwidth requirements when the underlying network supports QoS. 

■ Extensibility so that Winsock can be used with protocols other than those Windows 
requires it to support. 

■ Support for integrated namespaces other than those defined by a protocol that an 
application is using with Winsock. A server can publish its name in Active Directory, for example, 
and by using namespace extensions, a client can look up the server’s address in Active Directory. 

■ Support for multipoint messages where messages transmit from a single source to multiple 
receivers simultaneously. 

We’ll examine typical Winsock operation and then describe ways that Winsock can be 
extended. 

Winsock Client Operation 

The first step a Winsock application takes is to initialize the Winsock API with a call to an 
initialization function. A Winsock application’s next step is to create a socket that will represent a 
communications endpoint. The application obtains the address of the server to which it wants to 
connect by calling getaddrinfo (and later calling freeaddrinfo to release the information).  

The getaddrinfo function returns the list of addresses assigned to the server, and the client 
attempts to connect to each one in turn until it is able to establish a connection with one of them. 



 911

This ensures that a client that supports both IP version 4 (IPv4) and IPv6 will connect to the 
appropriate and/or most efficient address on a server that might have both IPv4 and IPv6 
addresses assigned to it. Winsock is a protocol-independent API, so an address can be specified 
for any protocol installed on the system over which Winsock operates (TCP/IP or TCP/IP with 
IPv6). After obtaining the server address, a connection-oriented client attempts to connect to the 
server by using connect and specifying the server address.  

When a connection is established, the client can send and receive data over its socket using 
recv and send, for example. A connectionless client specifies the remote address with 
connectionless APIs, such as the connectionless equivalents of send and recv, and sendto and 
recvfrom. Clients can also use the select and WSAPoll APIs to wait on or poll multiple sockets for 
synchronous I/O operations or to check their state. 

Winsock Server Operation 

The sequence of steps for a server application differs from that of a client. After initializing 
the Winsock API, the server creates a socket and then binds it to a local address by using bind. 
Again, the address type specified—whether TCP/IP, TCP/IP with IPv6, or some other address 
type—is up to the server application. 

If the server is connection oriented, it performs a listen operation on the socket, indicating the 
backlog, or the number of connections the server asks Winsock to hold until the server is able to 
accept them. Then it performs an accept operation to allow a client to connect to the socket. If 
there is a pending connection request, the accept call completes immediately; otherwise, it 
completes when a connection request arrives. When a connection is made, the accept function 
returns a new socket that represents the server’s end of the connection. The server can perform 
receive and send operations by using functions such as recv and send. Like Winsock clients, 
servers can use the select and WSAPoll functions to query the state of one or more sockets; 
however, the Winsock WSAEventSelect function and overlapped I/O extensions are preferable for 
higher scalability. Figure 12-3 shows connection-oriented communication between a Winsock 
client and server. 

  

After binding an address, a connectionless server is no different from a connectionless client: 
it can send and receive data over the socket simply by specifying the remote address with each 
operation. Most connectionless protocols are unreliable and in general will not know whether the 
destination actually received the sent data packets, known as datagrams. Datagram protocols are 
ideal for quick message passing, where the overhead of establishing a connection is too much and 
reliability is not required (although an application can build reliability on top of the protocol). 

Winsock Extensions 
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In addition to supporting functions that correspond directly to those implemented in BSD 
Sockets, Microsoft has added a handful of functions that aren’t part of the Winsock standard. Two 
of these functions, AcceptEx and TransmitFile, are worth describing because many Web servers 
on Windows use them to achieve high performance. AcceptEx is a version of the accept function 
that, in the process of establishing a connection with a client, returns the client’s address and the 
client’s first message. AcceptEx allows the server application to prepost multiple accept 
operations so that high volumes of incoming connection requests can be handled. With this 
function, a Web server avoids executing multiple Winsock functions that would otherwise be 
required. 

After establishing a connection with a client, a Web server sometimes sends a file, such as a 
Web page, to the client. The TransmitFile function’s implementation is integrated with the 
Windows cache manager so that a client can send a file directly from the file system cache. 
Sending data in this way is called zero-copy because the server doesn’t have to touch the file data 
to send it; it simply specifies a handle to a file and the ranges of the file to send. In addition, 
TransmitFile allows a server to prepend or append data to the file’s data so that the server can send 
header information, which might include the name of the Web server and a field that indicates to 
the client the size of the message the server is sending. Internet Information Services (IIS), which 
is included with Windows, uses both AcceptEx and TransmitFile. 

Windows also supports a handful of other, multifunction APIs, including ConnectEx, Discon 
nectEx, and TransmitPackets. ConnectEx establishes a connection and sends the first message on 
the connection. DisconnectEx closes a connection and allows the socket handle representing the 
connection to be reused in a call to AcceptEx or ConnectEx. Finally, TransmitPackets is similar to 
TransmitFile, except that it allows for the sending of in-memory data in addition to or in lieu of 
file data. Finally, by using the WSAImpersonateSocketPeer and WSARevertImpersonation 
functions, Winsock servers can perform impersonation (described in Chapter 6) to perform 
authorization or to gain access to resources based on the client’s security credentials. 

Extending Winsock 

Winsock is an extensible API on Windows because third parties can add a transport service 
provider that interfaces Winsock with other protocols or layers on top of existing protocols to 
provide functionality such as proxying. Third parties can also add a namespace service provider to 
augment Winsock’s name-resolution facilities. Service providers plug in to Winsock by using the 
Winsock service provider interface (SPI). When a transport  service provider is registered with 
Winsock, Winsock uses the transport service provider to implement socket functions, such as 
connect and accept, for the address types that the provider indicates it implements. There are no 
restrictions on how the transport service provider implements the functions, but the 
implementation usually involves communicating with a transport driver in kernel mode. 

A requirement of any Winsock client/server application is for the server to make its address 
available to clients so that the clients can connect to the server. Standard services that execute on 
the TCP/IP protocol use “well-known addresses” to make their addresses available. As long as a 
browser knows the name of the computer a Web server is running on, it can connect to the Web 
server by specifying the well-known Web server address (the IP address of 
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the server concatenated with :80, the port number used for HTTP). Namespace service 
providers make it possible for servers to register their presence in other ways. For example, one 
namespace service provider might on the server side register the server’s address in Active 
Directory, and on the client side look up the server’s address in Active Directory. Namespace 
service providers supply this functionality to Winsock by implementing standard Winsock 
name-resolution functions such as getaddrinfo and getnameinfo. 

eXPeriMeNT: Looking at Winsock Service Providers 

The Net Shell (Netsh.exe) utility included with Windows is able to show the registered 
Winsock transport and namespace providers by using the netsh winsock show catalog command. 
For example, if there are two TCP/IP transport service providers, the first one listed is the default 
provider for Winsock applications using the TCP/IP protocol. Here’s sample output from Netsh 
showing the registered transport service providers: 

1. C:\Users\Administrator>netsh winsock show catalog   
2. Winsock Catalog Provider Entry   
3. ------------------------------------------------------   
4. Entry Type: Base Service Provider   
5. Description: MSAFD Tcpip [TCP/IP]   
6. Provider ID: {E70F1AA0-AB8B-11CF-8CA3-00805F48A192}   
7. Provider Path: %SystemRoot%\system32\mswsock.dll   
8. Catalog Entry ID: 1001  
9. Version: 2  
10. Address Family: 2  
11. Max Address Length: 16  
12. Min Address Length: 16  
13. Socket Type: 1  
14. Protocol: 6  
15. Protocol Chain Length: 1  
16. Winsock Catalog Provider Entry   
17. ------------------------------------------------------   
18. Entry Type: Base Service Provider   
19. Description: MSAFD Tcpip [UDP/IP]   
20. Provider ID: {E70F1AA0-AB8B-11CF-8CA3-00805F48A192}   
21. Provider Path: %SystemRoot%\system32\mswsock.dll   
22. Catalog Entry ID: 1002  
23. Version: 2  
24. Address Family: 2  
25. Max Address Length: 16  
26. Min Address Length: 16  
27. Socket Type: 2  
28. Protocol: 17  
29. Protocol Chain Length: 1  
30. Winsock Catalog Provider Entry   
31. ------------------------------------------------------   
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32. Entry Type: Base Service Provider   
33. Description: MSAFD Tcpip [RAW/IP]   
34. Provider ID: {E70F1AA0-AB8B-11CF-8CA3-00805F48A192}   
35. Provider Path: %SystemRoot%\system32\mswsock.dll   
36. Catalog Entry ID: 1003  
37. Version: 2  
38. Address Family: 2  
39. Max Address Length: 16  
40. Min Address Length: 16  
41. Socket Type: 3  
42. Protocol: 0  
43. Protocol Chain Length: 1  

You can also use the Autoruns utility from Windows Sysinternals 
(www.microsoft.com/technet/sysinternals) to view namespace and transport providers, as well as 
to disable those that might be causing problems or unwanted behavior on the system.  

Winsock Implementation 

Winsock’s implementation is shown in Figure 12-4. Its application interface consists of an 
API DLL, Ws2_32.dll (\%SystemRoot%\System32\Ws2_32.dll), which provides applications 
access to Winsock functions. Ws2_32.dll calls on the services of namespace and transport service 
providers to carry out name and message operations. The Mswsock.dll library acts as a transport 
service provider for the protocols Microsoft provides support for in Winsock and uses Winsock 
Helper libraries that are protocol specific to communicate with kernel-mode protocol drivers. For 
example, Wshtcpip.dll is the TCP/IP helper. Mswsock.dll (\%SystemRoot%\System32 
\Mswsock.dll) implements the Microsoft Winsock extension functions, such as TransmitFile, 
AcceptEx, and WSARecvEx. 

Windows ships with helper DLLs for TCP/IP, TCP/IP with IPv6, Bluetooth, NetBIOS, IrDA 
(Infrared Data Association), and PGM (Pragmatic General Multicast). It also includes namespace 
service providers for DNS (TCP/IP), Active Directory (LDAP), and NLA (Network Location 
Awareness). 
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Like the named pipe and mailslot APIs (described later in this chapter), Winsock integrates 
with the Windows I/O model and uses file handles to represent sockets. This support requires the 
aid of a kernel-mode file system driver, so Msafd.dll uses the services of the Ancillary Function 
Driver (AFD—\%SystemRoot%\System32\Drivers\Afd.sys) to implement socket-based functions. 
AFD is a Transport Layer Network Provider Interface (TLNPI) client and executes network socket 
operations, such as sending and receiving messages, by sending TDI IRPs to protocol drivers. 
AFD isn’t coded to use particular protocol drivers; instead, Msafd.dll informs AFD of the name of 
the protocol used for each socket so that AFD can open the device object representing the 
protocol. 

12.2.2 Winsock Kernel (WSK) 

To enable kernel-mode drivers and modules to have access to networking API interfaces 
similar to those available to user-mode applications, Windows implements a socket-based 
networking programming interface called Winsock Kernel (WSK). WSK replaces the legacy TDI 
API interface present on older versions of Windows but maintains the TDI SPI interface for 
transport providers. Compared to TDI, WSK provides better performance and  scalability and 
much easier programming, because it relies less on internal kernel behavior and more on 
socket-based semantics. Additionally, WSK was written to take full advantage of the latest 
technologies in the Windows TCP/IP stack, which TDI was not originally anticipated to support. 
As shown in Figure 12-5, WSK makes use of the Network Module Registrar (NMR) component 
of Windows to attach to and detach from transport devices, and it can be used, just like Winsock, 
to support many different kinds of network clients—for example, the Http.sys driver for the HTTP 
Server API (mentioned later in the chapter) is a WSK client. 
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WSK Implementation 

WSK’s implementation is shown in Figure 12-6. At its core is the WSK subsystem itself, 
which uses the Next Generation TCP/IP Stack (%SystemRoot%\System32\Drivers\Netio.sys) but 
is actually implemented in AFD. The subsystem is responsible for the provider side of the WSK 
API. The subsystem interfaces with transport providers (shown at the bottom of Figure 12-5) to 
provide support for various transport protocols. Attached to the WSK subsystem are WSK 
applications, which are kernel-mode drivers that implement the client-side WSK API in order to 
perform network operations. The WSK subsystem calls WSK applications to notify them of 
asynchronous events. 

  

WSK applications are bound to the WSK subsystem through the NMR or through the WSK’s 
registration functions, which allow WSK applications to dynamically detect when the WSK 
subsystem becomes available and then load their own dispatch table to describe the provider and 
client-side implementations of the WSK API. These implementations provide the standard WSK 
socket-based functions, such as WskSocket, WskAccept, WskBind, WskConnect, WskReceive, 
and WskSend, which have similar semantics (but not necessarily similar parameters) as their 
user-mode Winsock counterparts. However, unlike user-mode Winsock, the WSK subsystem 
defines four different kinds of socket categories, which identify which functions and events are 
available: 

■ Basic sockets, which are used only to get and set information on the transport. They cannot 
be used to send or receive data or be bound to an address. 

■ Listening sockets, which are used for sockets that accept only incoming connections. 

■ Datagram sockets, which are used solely for sending and receiving datagrams. 

■ Connection-oriented sockets, which support all the functionality required to send and 
receive network traffic over an established connection. 
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Apart from the socket functions described, WSK also provides events through which 
applications are notified of network status. Unlike the model for socket functions, in which a 
client controls the connection, events allow the subsystem to control the connection and merely 
notify the client. These include the WskAcceptEvent, WskInspectEvent, WskAbortEvent, 
WskReceiveFromEvent, WskReceiveEvent, WskDisconnectEvent, and WskSendBacklogEvent 
routines. Finally, like user-mode Winsock, WSK can be extended through extension interfaces 
that applications can associate with sockets. These extensions can enhance the default 
functionality provided by the WSK subsystem. 

12.2.3 Remote Procedure Call 

Remote procedure call (RPC) is a network programming standard originally developed in the 
early 1980s. The Open Software Foundation (now The Open Group) made RPC part of the 
distributed computing environment (DCE) distributed computing standard. Although there is a 
second RPC standard, SunRPC, the Microsoft RPC implementation is compatible with the 
OSF/DCE standard. RPC builds on other networking APIs, such as named pipes or Winsock, to 
provide an alternate programming model that in some sense hides the details of networking 
programming from an application developer. 

RPC Operation 

An RPC facility is one that allows a programmer to create an application consisting of any 
number of procedures, some that execute locally and others that execute on remote computers via 
a network. It provides a procedural view of networked operations rather than a transport-centered 
view, thus simplifying the development of distributed applications.  

Networking software is traditionally structured around an I/O model of processing. In 
Windows, for example, a network operation is initiated when an application issues a remote I/O 
request. The operating system processes the request accordingly by forwarding it to a redirector, 
which acts as a remote file system by making the client interaction with the remote file system 
invisible to the client. The redirector passes the operation to the remote file system, and after the 
remote system fills the request and returns the results, the local network card interrupts. The 
kernel handles the interrupt, and the original I/O operation completes, returning results to the 
caller. 

RPC takes a different approach altogether. RPC applications are like other structured 
applications, with a main program that calls procedures or procedure libraries to perform specific 
tasks. The difference between RPC applications and regular applications is that some of the 
procedure libraries in an RPC application execute on remote computers, as shown in Figure 12-7, 
whereas others execute locally. 

To the RPC application, all the procedures appear to execute locally. In other words, instead 
of making a programmer actively write code to transmit computational or I/O-related requests 
across a network, handle network protocols, deal with network errors, wait for results, and so forth, 
RPC software handles these tasks automatically. And the Windows RPC facility can operate over 
any available transports loaded into the system. 
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To write an RPC application, the programmer decides which procedures will execute locally 
and which will execute remotely. For example, suppose an ordinary workstation has a network 
connection to a Cray supercomputer or to a machine designed specifically for highspeed vector 
operations. If the programmer were writing an application that manipulated large matrices, it 
would make sense from a performance point of view to off-load the mathematical calculations to 
the remote computer by writing the program as an RPC application.  

RPC applications work like this: As an application runs, it calls local procedures as well as 
procedures that aren’t present on the local machine. To handle the latter case, the application is 
linked to a local static-link library or DLL that contains stub procedures, one for each remote 
procedure. For simple applications, the stub procedures are statically linked with the application, 
but for bigger components the stubs are included in separate DLLs. In DCOM, covered later in the 
chapter, the latter method is typically used. The stub procedures have the same name and use the 
same interface as the remote procedures, but instead of performing the required operations, the 
stub takes the parameters passed to it and marshals them for transmission across the network. 
Marshaling parameters means ordering and packaging them in a particular way to suit a network 
link, such as resolving references and picking up a copy of any data structures that a pointer refers 
to. 

The stub then calls RPC run-time procedures that locate the computer where the remote 
procedure resides, determine which transport mechanisms that computer uses, and send the 
request to it using local transport software. When the remote server receives the RPC request, it 
unmarshals the parameters (the reverse of marshaling them), reconstructs the original procedure 
call, and calls the procedure. When the server finishes, it performs the reverse sequence to return 
results to the caller. 

In addition to the synchronous function-call-based interface described here, Windows RPC 
also supports asynchronous RPC. Asynchronous RPC lets an RPC application execute a function 
but not wait until the function completes to continue processing. Instead, the application can 
execute other code and later, when a response has arrived from the server, the RPC runtime 
notifies the client that the operation has completed. The RPC runtime uses the notification 
mechanism requested by the client. If the client uses an event synchronization object for 
notification, it waits for the signaling of the event object by calling the WaitForSingleObject or 
WaitForMultipleObject function. If the client provides an asynchronous procedure call (APC), the 
runtime queues the execution of the APC to the thread that executed the RPC function. If the 
client program uses an I/O completion port as its notification mechanism, it must call 
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GetQueuedCompletionStatus to learn of the function’s completion. Alternatively, a client can poll 
for completion by calling RpcAsyncGetCallStatus. 

In addition to the RPC runtime, Microsoft’s RPC facility includes a compiler, called the 
Microsoft Interface Definition Language (MIDL) compiler. The MIDL compiler simplifies the 
creation of an RPC application. The programmer writes a series of ordinary function prototypes 
(assuming a C or C++ application) that describe the remote routines and then places the routines 
in a file. The programmer then adds some additional information to these prototypes, such as a 
network-unique identifier for the package of routines and a version number, plus attributes that 
specify whether the parameters are input, output, or both. The embellished prototypes form the 
developer’s Interface Definition Language (IDL) file. 

Once the IDL file is created, the programmer compiles it with the MIDL compiler, which 
produces both client-side and server-side stub routines, mentioned previously, as well as header 
files to be included in the application. When the client-side application is linked to the stub 
routines file, all remote procedure references are resolved. The remote procedures are then 
installed, using a similar process, on the server machine. A programmer who wants to call an 
existing RPC application need only write the client side of the software and link the application to 
the local RPC run-time facility. 

The RPC runtime uses a generic RPC transport provider interface to talk to a transport 
protocol. The provider interface acts as a thin layer between the RPC facility and the transport, 
mapping RPC operations onto the functions provided by the transport. The Windows RPC facility 
implements transport provider DLLs for named pipes, HTTP, TCP/IP, and UDP. In a similar 
fashion, the RPC facility is designed to work with different network security facilities. Most of the 
Windows networking services are RPC applications, which means that both local processes and 
processes on remote computers can call them. Thus, a remote client computer can call the server 
service to list shares, open files, write to print queues, or activate users on your server, all subject 
to security constraints, of course. 

Server name publishing, which is the ability of a server to register its name in a location 
accessible for client lookup, is in RPC and is integrated with Active Directory. If Active Directory 
isn’t installed, the RPC name locator services fall back on NetBIOS broadcast. This behavior 
allows RPC to function on stand-alone servers and workstations.  

RPC Security 

Windows RPC includes integration with security support providers (SSPs) so that RPC 
clients and servers can use authenticated or encrypted communications. When an RPC server 
wants secure communication, it tells the RPC runtime what authentication service to add to the list 
of available authentication services. When a client wants to use secure communication, it binds to 
the server. At that time, it must tell the RPC runtime the authentication service and authentication 
level it wants. Various authentication levels exist to ensure that only authorized clients connect to 
a server, verify that each message a server receives originates at an authorized client, check the 
integrity of RPC messages to detect manipulation, and even encrypt RPC message data. Obviously, 
higher authentication levels require more processing. The client can also optionally specify the 
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server principal name. A principal is an entity that the RPC security system recognizes. The server 
must register its SSP-specific principal name with an SSP. 

An SSP handles the details of performing network communication authentication and 
encryption, not only for RPC but also for Winsock. Windows includes a number of built-in SSPs, 
including a Kerberos SSP to implement Kerberos version 5 authentication (including AES support) 
and Secure Channel (SChannel), which implements Secure Sockets Layer (SSL) and the Transport 
Layer Security (TLS) protocols. SChannel also supports TLS and SSL extensions, which allow 
you to use the AES cipher as well as elliptic curve cryptographic (ECC) ciphers on top of the 
protocols. Also, because it supports an open cryptographic interface (OCI) and crypto-agile 
capabilities, SChannel allows government organizations to substitute the existing ciphers with 
more complex combinations. In the absence of a specified SSP, RPC software uses the built-in 
security of the underlying transport. Some transports, such as named pipes or local RPC, have 
built-in security. Others, like TCP, do not, and in this case RPC makes unsecure calls in the 
absence of a specified SSP. 

Another feature of RPC security is the ability of a server to impersonate the security identity 
of a client with the RpcImpersonateClient function. After a server has finished performing 
impersonated operations on behalf of a client, it returns to its own security identity by calling 
RpcRevertToSelf or RpcRevertToSelfEx. (See Chapter 6 for more information on impersonation.)  

RPC Implementation 

RPC implementation is depicted in Figure 12-8, which shows that an RPC-based application 
links with the RPC run-time DLL (\%SystemRoot%\System32\Rpcrt4.dll). The RPC run-time 
DLL provides marshaling and unmarshaling functions for use by an application’s RPC function 
stubs as well as functions for sending and receiving marshaled data. The RPC run-time DLL 
includes support routines to handle RPC over a network as well as a form of RPC called local 
RPC. Local RPC can be used for communication between two processes located on the same 
system, and the RPC run-time DLL uses the advanced local procedure call (ALPC) facilities in 
kernel mode as the local networking API. (See Chapter 3 for more information on ALPCs.) When 
RPC is based on nonlocal communication mechanisms, the RPC run-time DLL uses the Winsock 
or named pipe APIs. 
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The RPC subsystem (RPCSS—\%SystemRoot%\System32\Rpcss.dll) is implemented as a 
Windows service. RPCSS is itself an RPC application that communicates with instances of itself 
on other systems to perform name lookup, registration, and dynamic endpoint mapping. (For 
clarity, Figure 12-8 doesn’t show RPCSS linked with the RPC run-time DLL.) 

Windows also includes support for RPC in kernel mode through the kernel-mode RPC driver 
(%SystemRoot%\System32\Drivers\Msrpc.sys). Kernel-mode RPC is for internal use by the 
system and is implemented on top of ALPC. Winlogon includes an RPC server with a documented 
set of interfaces that user-mode RPC clients can access, while Win32k.sys includes an RPC client 
that communicates with Winlogon for internal notifications, such as the secure attention sequence 
(SAS; see Chapter 6 for more information). The TCP/IP stack in Windows (as well as the WFP) 
also uses kernel-mode RPC to communicate with the Network Store Interface (NSI) service, 
which handles network routing information. 

12.2.4 Web Access APIs 

To ease the development of Internet applications, Windows provides both client and server 
Internet APIs. By using the APIs, applications can provide and use FTP and HTTP services 
without knowledge of the intricacies of the corresponding protocols. The client APIs include 
Windows Internet, also known as WinInet, which enables applications to interact with the FTP 
and HTTP protocols, and WinHTTP, which enables applications to interact with the HTTP 
protocol and is more suitable than WinInet in certain situations. HTTP Server is a server-side API 
that enables the development of Web server applications. 

WinInet 

WinInet supports the FTP and HTTP 1.0 and 1.1 protocols. The APIs break down into 
sub-API sets specific to each protocol. Using the FTP-related APIs—such as InternetConnect to 
connect to an FTP server, FtpFindFirstFile and FtpFindNextFile to enumerate the contents of an 
FTP directory, and FtpGetFile and FtpPutFile to receive and send files—an application developer 
avoids the details of establishing a connection and formatting TCP/IP messages to the FTP 
protocol. The HTTP-related APIs provide similar levels of abstraction, providing cookie 
persistence, automatic dial-up services, client-side file caching, and automatic credential dialog 
handling. WinInet is used by core Windows components such as Windows Explorer and Internet 
Explorer. 

WinHTTP 

The current version of the WinHTTP API, 6.0, is available on Windows Vista and Windows 
Server 2008. It provides an abstraction of the HTTP/1.1 protocol for HTTP client applications 
similar to what the WinInet HTTP-related APIs provide. However, whereas the WinInet HTTP 
API is intended for user-interactive client-side applications, the WinHTTP API is designed for 
server applications that communicate with HTTP servers. Server applications are often 
implemented as Windows services that do not provide a user interface and so do not desire the 
dialog boxes that WinInet APIs display. In addition, the WinHTTP APIs are more scalable (such 
as supporting uploads of greater than 4 GB) and offer security functionality, such as thread 
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impersonation, not available from the WinInet API. WinHTTP also provides support for chunked 
transfer encoding, issuer list retrieval for SSL authentication, client certificate requests, and port 
range reservations. 

HTTP 

Using the HTTP Server API, which Windows Vista and Windows Server 2008 implement, 
server applications can register to receive HTTP requests for particular URLs, receive HTTP 
requests, and send HTTP responses. The HTTP Server API includes SSL support so that 
applications can exchange data over secure HTTP connections. The API includes server-side 
caching capabilities, synchronous and asynchronous I/O models, and both IPv4 and IPv6 
addressing. IIS version 7, the version that ships with Windows Server 2008, uses the HTTP Server 
API. 

The HTTP Server API, which applications access through the Httpapi.dll library, relies on the 
kernel-mode Http.sys driver. Http.sys starts on demand the first time any application on the 
system calls HttpInitialize. Applications then call HttpCreateServerSession to initialize a server 
session for the HTTP Server API. Next they use HttpCreateRequestQueue to create a private 
request queue and HttpCreateUrlGroup to create a URL group, specifying the URLs that they 
want to handle requests for with HttpAddUrlToUrlGroup. Using the request queues and their 
registered URLs (which they associate by using HttpSetUrlGroupProperty), Http.sys allows more 
than one application to service HTTP requests on a given port (port 80 for example), with each 
servicing HTTP requests to different parts of the URL namespace, as shown in Figure 12-9. 

  

HttpReceiveHttpRequest receives incoming requests directed at registered URLs, and 
HttpSendHttpResponse sends HTTP responses. Both functions offer asynchronous operation so 
that an application can use GetOverlappedResult or I/O completion ports to determine when an 
operation is completed. 

Applications can use Http.sys to cache data in nonpaged physical memory by calling 
HttpAddFragmentToCache and associating a fragment name (specified as a URL prefix) with the 
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cached data. Http.sys invokes the memory manager function MmAllocatePagesForMdlEx to 
allocate unmapped physical pages (for large requests, Http.sys also attempts to use large pages to 
optimize access to the buffered data). When Http.sys requires a virtual address mapping for the 
physical memory described by an entry in the cache—for instance, when it copies data to the 
cache or sends data from the cache—it uses MmMap Locked Pages-SpecifyCache and then 
MmUnmapLockedPages after it completes its access. Http.sys maintains cached data until an 
application invalidates it or an optional application-specified timeout associated with the data 
expires. Http.sys also trims cached data in a worker thread that wakes up when the low memory 
notification event is signaled. (See Chapter 9 for information on the low memory notification 
event.) When an application specifies one or more fragment names in a call to 
HttpSendHttpResponse, Http.sys passes a pointer to the cached data in physical memory to the 
TCP/IP driver and avoids a copy operation. Http.sys also contains code for performing server-side 
authentication, including full SSL support, which removes the need to call back to the user-mode 
API to perform encryption and decryption of traffic. 

Finally, the HTTP Server API contains many configuration options that clients can use to set 
functionality, such as authentication policies, bandwidth throttling, logging, connection limits, 
server state, response caching, and SSL certificate binding. 

12.2.5 Named Pipes and Mailslots 

Named pipes and mailslots are programming APIs for interprocess communication. Named 
pipes provide for reliable bidirectional communications, whereas mailslots provide unreliable 
unidirectional data transmission. An advantage of mailslots is that they support broadcast 
capability. In Windows, both APIs take advantage of Windows security, which allows a server to 
control precisely which clients can connect to it. 

The names that servers assign to named pipes and clients conform to the Windows Universal 
Naming Convention (UNC), which is a protocol-independent way to identify resources on a 
Windows network. The implementation of UNC names is described later in the chapter. 

Named Pipe Operation 

Named pipe communication consists of a named pipe server and a named pipe client. A 
named pipe server is an application that creates a named pipe to which clients can connect.  

A named pipe’s name has the format \\Server\Pipe\PipeName. The Server component of the 
name specifies the computer on which the named pipe server is executing. (A named pipe server 
can’t create a named pipe on a remote system.) The name can be a DNS name (for example, 
mspress.microsoft.com), a NetBIOS name (mspress), or an IP address (131.107.0.1). The Pipe 
component of the name must be the string “Pipe”, and PipeName is the unique name assigned to a 
named pipe. The unique portion of the named pipe’s name can include subdirectories; an example 
of a named pipe name with a subdirectory is \\MyComputer\Pipe\MyServerApp\ConnectionPipe. 

A named pipe server uses the CreateNamedPipe Windows function to create a named pipe. 
One of the function’s input parameters is a pointer to the named pipe name, in the form 
\\.\Pipe\PipeName. The “\\.\” is a Windows-defined alias for “this computer.” Other parameters 
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the function accepts include an optional security descriptor that protects access to the named pipe, 
a flag that specifies whether the pipe should be bidirectional or unidirectional, a value indicating 
the maximum number of simultaneous connections the pipe supports, and a flag specifying 
whether the pipe should operate in byte mode or message mode. 

Most networking APIs operate only in byte mode, which means that a message sent with one 
send function might require the receiver to perform multiple receive operations, building up the 
complete message from fragments. A named pipe operating in message mode simplifies the 
implementation of a receiver because there is a one-to-one correspondence between send and 
receive requests. A receiver therefore obtains an entire message each time it completes a receive 
operation and doesn’t have to concern itself with keeping track of message fragments. 

The first call to CreateNamedPipe for a particular name creates the first instance of that name 
and establishes the behavior of all named pipe instances having that name. A server creates 
additional instances, up to the maximum specified in the first call, with additional calls to 
CreateNamedPipe. After creating at least one named pipe instance, a server executes the 
ConnectNamedPipe Windows function, which enables the named pipe the server created to 
establish connections with clients. ConnectNamedPipe can be executed synchronously or 
asynchronously, and it doesn’t complete until a client establishes a connection with the instance 
(or an error occurs). 

A named pipe client uses the Windows CreateFile or CallNamedPipe function, specifying the 
name of the pipe a server has created, to connect to a server. If the server has performed a 
ConnectNamedPipe call, the client’s security profile and the access it requests to the pipe (read, 
write) are validated against the named pipe’s security descriptor. (See Chapter 6 for more 
information on the security-check algorithms Windows uses.) If the client is granted access to a 
named pipe, it receives a handle representing the client side of a named pipe connection and the 
server’s call to ConnectNamedPipe completes. 

After a named pipe connection is established, the client and server can use the ReadFile and 
WriteFile Windows functions to read from and write to the pipe. Named pipes support both 
synchronous and asynchronous operations for message transmittal. Figure 12-10 shows a server 
and client communicating through a named pipe instance. 

  

Another characteristic of the named pipe networking API is that it allows a server to 
impersonate a client by using the ImpersonateNamedPipeClient function. See the “Impersonation” 
section in Chapter 6 for a discussion of how impersonation is used in client/server applications. A 
second advanced area of functionality of the named pipe API is that it allows for atomic send and 
receive operations through the TransactNamedPipe API, which behaves according to a simple 
transactional model in which a message is both sent and received in the same operation. 

Mailslot Operation 
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Mailslots provide an unreliable unidirectional broadcast mechanism. One example of an 
application that can use this type of communication is a time-synchronization service, which 
might broadcast a source time across the domain every few seconds. Receiving the sourcetime 
message isn’t crucial for every computer on the network and is therefore a good candidate for the 
use of mailslots. 

Like named pipes, mailslots are integrated with the Windows API. A mailslot server creates a 
mailslot by using the CreateMailslot function. CreateMailslot accepts a name of the form 
“\\.\Mailslot\MailslotName” as an input parameter. Again like named pipes, a mailslot server can 
create mailslots only on the machine it’s executing on, and the name it assigns to a mailslot can 
include subdirectories. CreateMailslot also takes a security descriptor that controls client access to 
the mailslot. The handles returned by CreateMailslot are overlapped, which means that operations 
performed on the handles, such as sending and receiving messages, are asynchronous. 

Because mailslots are unidirectional and unreliable, CreateMailslot doesn’t take many of the 
parameters that CreateNamedPipe does. After it creates a mailslot, a server simply listens for 
incoming client messages by executing the ReadFile function on the handle representing the 
mailslot. 

Mailslot clients use a naming format similar to that used by named pipe clients but with 
variations that make it possible to broadcast messages to all the mailslots of a given name within 
the client’s domain or a specified domain. To send a message to a particular instance of a mailslot, 
the client calls CreateFile, specifying the computer-specific name. An example of such a name is 
“\\Server\Mailslot\MailslotName”. (The client can specify “\\.\” to represent the local computer.) 
If the client wants to obtain a handle representing all the mailslots of a given name on the domain 
it’s a member of, it specifies the name in the format “\\*\Mailslot\MailslotName”, and if the client 
wants to broadcast to all the mailslots of a given name within a different domain, the format it 
uses is “\\DomainName\Mailslot\MailslotName”.  

After obtaining a handle representing the client side of a mailslot, the client sends messages 
by calling WriteFile. Because of the way mailslots are implemented, only messages smaller than 
424 bytes can be broadcast. If a message is larger than 424 bytes, the mailslot implementation uses 
a reliable communications mechanism that requires a one-to-one client/server connection, which 
precludes broadcast capability. This limitation makes mailslots generally unsuitable for messages 
larger than 424 bytes. Figure 12-11 shows an example of a client broadcasting to multiple mailslot 
servers within a domain. 

  

Named Pipe and Mailslot Implementation 
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As evidence of their tight integration with Windows, named pipe and mailslot functions are 
all implemented in the Kernel32.dll Windows client-side DLL. ReadFile and WriteFile, which are 
the functions applications use to send and receive messages using named pipes or mailslots, are 
the primary Windows I/O routines. The CreateFile function, which a client uses to open either a 
named pipe or a mailslot, is also a standard Windows I/O routine. However, the names specified 
by named pipe and mailslot applications specify file system namespaces managed by the named 
pipe file system driver (\%SystemRoot%\System32\Drivers\Npfs.sys) and the mailslot file system 
driver (\%SystemRoot%\System32\Drivers\Msfs.sys), as shown in Figure 12-12. 

The named pipe file system driver creates a device object named \Device\NamedPipe and a 
symbolic link to that object named \Global??\Pipe. The mailslot file system driver creates a device 
object named \Device\Mailslot and a symbolic link named \Global??\Mailslot that points to that 
object. (See Chapter 3 for an explanation of the \Global?? object manager directory.) Names 
passed to CreateFile of the form \\.\Pipe\… and \\.\Mailslot\… have their prefix of \\.\ translated to 
\Global??\ so that the names resolve through a symbolic link to a device object. The special 
functions CreateNamedPipe and CreateMailslot use the corresponding native functions 
NtCreateNamedPipeFile and NtCreateMailslotFile. 

  

Later in the chapter, we’ll discuss how the redirector file system driver is involved when a 
name that specifies a remote named pipe or mailslot resolves to a remote system. However, when 
a named pipe or mailslot is created by a server or opened by a client, the appropriate file system 
driver (FSD) on the machine where the named pipe or mailslot is located is eventually invoked. 
There are several reasons why FSDs in kernel mode implement named pipes and mailslots, the 
main one being that they integrate with the object manager namespace and can use file objects to 
represent opened named pipes and mailslots. This integration results in several benefits: 

■ The FSDs use kernel-mode security functions to implement standard Windows security for 
named pipes and mailslots. 

■ Applications can use CreateFile to open a named pipe or mailslot because FSDs integrate 
with the object manager namespace. 

■ Applications can use Windows functions such as ReadFile and WriteFile to interact with 
named pipes and mailslots. 

■ The FSDs rely on the object manager to track handle and reference counts for file objects 
representing named pipes and mailslots. 
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■ The FSDs can implement their own named pipe and mailslot namespaces, complete with 
subdirectories. 

Because named pipes and mailslots use name resolution that relies on the redirector FSD to 
communicate across the network, they indirectly rely on the Server Message Block (SMB) 
protocol. SMB works by using the TCP/IP and TCP/IP with IPv6 protocols, so applications 
running on systems that have at least one of these in common can use named pipes and mailslots. 
For more information about SMB, see Chapter 11. 

eXPeriMeNT: Listing the Named Pipe Namespace and Watching Named Pipe Activity  

It’s not possible to use the Windows API to open the root of the named pipe FSD and 
perform a directory listing, but you can do this by using native API services. The PipeList tool 
from Sysinternals shows you the names of the named pipes defined on a computer as well as the 
number of instances that have been created for a name and the maximum number of instances as 
defined by a server’s call to CreateNamedPipe. 

Here’s an example of PipeList output: 

1. C:\>pipelist   
2. PipeList v1.01  
3. by Mark Russinovich   
4. http://www.sysinternals.com   
5. Pipe Name Instances Max Instances   
6. --------- --------- -------------   
7. InitShutdown 3 -1  
8. lsass 6 -1  
9. protected_storage 3 -1  
10. ntsvcs 3 -1  
11. scerpc 3 -1  
12. net\NtControlPipe1 1 1  
13. plugplay 3 -1  
14. net\NtControlPipe2 1 1  
15. Winsock2\CatalogChangeListener-394-0 1 1  
16. epmapper 3 -1  
17. Winsock2\CatalogChangeListener-25c-0 1 1  
18. LSM_API_service 3 -1  
19. net\NtControlPipe3 1 1  
20. eventlog 3 -1  
21. net\NtControlPipe4 1 1  
22. Winsock2\CatalogChangeListener-3f8-0 1 1  
23. net\NtControlPipe5 1 1  
24. net\NtControlPipe6 1 1  
25. net\NtControlPipe0 1 1  
26. atsvc 3 -1  
27. Winsock2\CatalogChangeListener-438-0 1 1  
28. Winsock2\CatalogChangeListener-2c8-0 1 1  
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29. net\NtControlPipe7 1 1  
30. net\NtControlPipe8 1 1  
31. net\NtControlPipe9 1 1  
32. net\NtControlPipe10 1 1  
33. net\NtControlPipe11 1 1  
34. net\NtControlPipe12 1 1  
35. 142CDF96-10CC-483c-A516-3E9057526912 1 1  
36. net\NtControlPipe13 1 1  
37. net\NtControlPipe14 1 1  
38. TSVNCache-000000000001b017 20 -1  
39. TSVNCacheCommand-000000000001b017 2 -1  
40. Winsock2\CatalogChangeListener-2b0-0 1 1  
41. Winsock2\CatalogChangeListener-468-0 1 1  
42. TermSrv_API_service 3 -1  
43. Ctx_WinStation_API_service 3 -1  
44. PIPE_EVENTROOT\CIMV2SCM EVENT PROVIDER 2 -1  
45. net\NtControlPipe15 1 1  
46. keysvc 3 -1  
It’s clear from this output that several system components use named pipes as their 
communications mechanism. For example, the InitShutdown pipe is created by Winlogon to 
accept remote shutdown commands, and the Atsvc pipe is created by the Task Scheduler service 
to enable applications to communicate with it to schedule tasks.  

You can determine what process has each of these pipes open by using the object search 
facility in Process Explorer. 

Note A Max Instances value of –1 means that there is no upper limit on the number of 
instances. 

12.2.6 NetBIOS 

Until the 1990s, the Network Basic Input/Output System (NetBIOS) programming API had 
been the most widely used network programming API on PCs. NetBIOS allows for both 
reliable-connection-oriented and unreliable-connectionless communication. Windows supports 
NetBIOS for its legacy applications. Microsoft discourages application developers from using 
NetBIOS because other APIs, such as named pipes and Winsock, are much more flexible and 
portable. NetBIOS is supported by the TCP/IP protocol on Windows. 

NetBIOS Names 

NetBIOS relies on a naming convention whereby computers and network services are 
assigned a 16-byte name called a NetBIOS name. The sixteenth byte of a NetBIOS name is treated 
as a modifier that can specify a name as unique or as part of a group. Only one instance of a 
unique NetBIOS name can be assigned to a network, but multiple applications can assign the same 
group name. A client can broadcast messages by sending them to a group name. 
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To support interoperability with Windows NT 4 systems as well as Windows 9x/Me, 
Windows automatically defines a NetBIOS name for a domain that includes up to the first 15 
bytes of the left-most Domain Name System (DNS) name that an administrator assigns to the 
domain. For example, if a domain were named mspress.microsoft.com, the NetBIOS name of the 
domain would be mspress. Similarly, Windows requires an administrator to assign each computer 
a NetBIOS name at the time of installation. 

Another concept used by NetBIOS is that of LAN adapter (LANA) numbers. A LANA 
number is assigned to every NetBIOS-compatible protocol that layers above a network adapter. 
For example, if a computer has two network adapters and TCP/IP and NWLink can use either 
adapter, there would be four LANA numbers. LANA numbers are important because a NetBIOS 
application must explicitly assign its service name to each LANA through which it’s willing to 
accept client connections. If the application listens for client connections on a particular name, 
clients can access the name only via protocols on the network adapters for which the name is 
registered. 

The “Windows Internet Name Service” section later in this chapter describes the resolution 
of NetBIOS names to TCP/IP addresses. 

NetBIOS Operation 

A NetBIOS server application uses the NetBIOS API to enumerate the LANAs present on a 
system and assign a NetBIOS name representing the application’s service to each LANA. If the 
server is connection oriented, it performs a NetBIOS listen command to wait for client connection 
attempts. After a client is connected, the server executes NetBIOS functions to send and receive 
data. Connectionless communication is similar, but the server simply reads messages without 
establishing connections. 

A connection-oriented client uses NetBIOS functions to establish a connection with a 
NetBIOS server and then executes further NetBIOS functions to send and receive data. An 
established NetBIOS connection is also known as a session. If the client wants to send 
connectionless messages, it simply specifies the NetBIOS name of the server with the send 
function. 

NetBIOS consists of a number of functions, but they all route through the same interface: 
Netbios. This routing scheme is the result of a legacy left over from the time when NetBIOS was 
implemented on MS-DOS as an MS-DOS interrupt service. A NetBIOS application would execute 
an MS-DOS interrupt and pass a data structure to the NetBIOS implementation that specified 
every aspect of the command being executed. As a result, the Netbios function in Windows takes a 
single parameter, which is a data structure that contains the parameters specific to the service the 
application requests. 

eXPeriMeNT: using Nbtstat to See NetBiOS Names 

You can use the Nbtstat command, which is included with Windows, to list the active 
sessions on a system, the NetBIOS-to-TCP/IP name mappings cached on a computer, and the 
NetBIOS names defined on a computer. Here’s an example of the Nbtstat command with the –n 
option, which lists the NetBIOS names defined on the computer: 
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1. C:\Users\Administrator>nbtstat -n   
2. Local Area Connection:   
3. Node IpAddress: [192.168.0.193] Scope Id: []   
4. NetBIOS Local Name Table   
5. Name Type Status   
6. ---------------------------------------------   
7. WIN-NLRTEOW2ILZ<00> UNIQUE Registered   
8. WORKGROUP <00> GROUP Registered   
9. WIN-NLRTEOW2ILZ<20> UNIQUE Registered   

NetBIOS API Implementation 

The components that implement the NetBIOS API are shown in Figure 12-13. The Netbios 
function is exported to applications by \%SystemRoot%\System32\Netapi32.dll. Netapi32.dll 
opens a handle to the kernel-mode driver named the NetBIOS emulator 
(\%SystemRoot%\System32\Drivers\Netbios.sys) and issues Windows DeviceIoControl file 
commands on behalf of an application. The NetBIOS emulator translates NetBIOS commands 
issued by an application into TDI commands that it sends to protocol drivers. 

  

If an application wants to use NetBIOS over the TCP/IP protocol, the NetBIOS emulator 
requires the presence of the NetBT driver (\%SystemRoot%\System32\Drivers\Netbt.sys). NetBT 
is known as the NetBIOS over TCP/IP driver and is responsible for supporting NetBIOS 
semantics that are inherent to the NetBIOS Extended User Interface (NetBEUI) protocol (included 
in previous versions of Windows) but not the TCP/IP protocol. For example, NetBIOS relies on 
NetBEUI’s message-mode transmission and NetBIOS name resolution facilities, so the NetBT 
driver implements them on top of the TCP/IP protocol. 

12.2.7 Other Networking APIs 
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Windows includes other networking APIs that are used less frequently or are layered on the 
APIs already described (and outside the scope of this book). Five of these, however—Background 
Intelligent Transfer Service (BITS), Distributed Component Object Model (DCOM), Message 
Queuing, Peer-to-Peer Infrastructure (P2P), and Universal Plug and Play (UPnP) with Plug and 
Play Extensions (PnP-X)—are important enough to the operation of a Windows system and many 
applications to merit brief descriptions.  

BITS 

The BITS API, currently at version 3.0 on Windows Vista and Windows Server 2008, allows 
application developers to transfer files between a client and a server asynchronously with transfer 
jobs, which can be either download, upload, or upload-reply. A download job downloads a file 
from a client, an upload job uploads a file to a server, and an upload-reply job receives a reply 
from the server after the data transfer is complete. BITS continues to transfer files even after the 
requesting application has exited, as long as there is an active network connection (BITS will not 
force a connection, such as initiating a dial-up connection) and the user who initiated the transfer 
is still logged on. If the network connection is dropped, the user logs off, or the system 
is  restarted, BITS suspends the transfer, retaining enough information to resume the job when the 
user logs on again and the connection is restored. 

BITS also allows for prioritization of different jobs, based on two priority classes: foreground 
transfers and background transfers. Background transfers are further divided into three priority 
levels. BITS uses a scheduling algorithm in which higher-level priorities preempt lower-priority 
transfers, while equal priorities execute concurrently. Therefore, under the BITS scheduling 
algorithm, lower-priority jobs remain suspended until no higher-priority jobs are eligible for 
execution. 

Furthermore, BITS only makes use of idle networking bandwidth to perform its transfers, and 
it fine-tunes the upload and download speeds based on the amount of idle networking bandwidth 
available. If client network applications start using more bandwidth, BITS decreases its own usage 
to give priority to the user’s network activities.  

Finally, BITS supports peer caching, and if a job allows it, BITS will attempt to obtain the 
content from one or more peers instead of the direct Internet source, especially in LAN 
environments. 

Note Peer caching is disabled by default, and jobs must explicitly permit downloading from 
peers. BITS implements its own peer-caching protocols and does not make use of the Peer-to-Peer 
Infrastructure described in the next section. 

Peer-to-Peer Infrastructure 

Peer-to-Peer Infrastructure is a set of APIs that cover different technologies to enhance the 
Windows networking stack by providing flexible peer-to-peer (P2P) support for applications and 
services. The P2P infrastructure covers four major technologies, shown in Figure 12-14. 
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■ Peer-to-Peer Graphing allows applications to pass data between peers efficiently and 
reliably by using nodes and events. 

■ Peer-to-Peer Namespace Provider enables serverless name resolution of peers and their 
services (described later in the “Name Resolution” section). 

■ Peer-to-Peer Grouping combines graphing and namespace technologies to group and 
isolate services and/or peers into a defined group and uniquely identify it. 

■ Peer-to-Peer Identity Manager enhances the services offered by the namespace provider to 
securely create, publish, and identify peer names, as well as to identify group members that are 
part of the grouping API. 

The Peer-to-Peer Infrastructure in Windows is also paired with the Peer-to-Peer 
Collaboration Interface, which adds support for creating collaborative P2P applications, such as 
online games and group instant messaging, and supersedes the Real-Time Communications (RTC) 
architecture in earlier versions of Windows. It also provides presence capabilities through the 
People Near Me (PNM) architecture. 

DCOM 

Microsoft’s COM API lets applications consist of different components, each component 
being a replaceable self-contained module. A COM object exports an object-oriented interface to 
methods for manipulating the data within the object. Because COM objects present well-defined 
interfaces, developers can implement new objects to extend existing interfaces and dynamically 
update applications with the new support. 

DCOM extends COM by letting an application’s components reside on different computers, 
which means that applications don’t need to be concerned that one COM object might be on the 
local computer and another might be across the LAN. DCOM thus provides location transparency, 
which simplifies developing distributed applications. DCOM isn’t a selfcontained API but relies 
on RPC to carry out its work. 

Message Queuing 

Message Queuing is a general-purpose platform for developing distributed applications that 
take advantage of loosely coupled messaging. Message Queuing is therefore an API and a 
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messaging infrastructure. Its flexibility comes from the fact that its queues serve as message 
repositories in which senders can queue messages for receivers, and receivers can de-queue the 
messages at their discretion. Senders and receivers do not need to establish connections to use 
Message Queuing, nor do they even need to be executing at the same time, which allows for 
disconnected asynchronous message exchange. 

A notable feature of Message Queuing is that it is integrated with Microsoft Transaction 
Server (MTS) and SQL Server, so it can participate in Microsoft Distributed Transaction 
Coordinator (MS DTC) coordinated transactions. Using MS DTC with Message Queuing allows 
you to develop reliable transaction functionality for three-tier applications. 

UPnP with PnP-X 

Universal Plug and Play is an architecture for peer-to-peer network connectivity of intelligent 
appliances, devices, and control points. It is designed to bring easy-to-use, flexible, 
standardsbased connectivity to ad-hoc, managed, or unmanaged networks, whether these networks 
are in the home, in small businesses, or attached directly to the Internet. Universal Plug and Play is 
a distributed, open networking architecture that uses existing TCP/IP and Web technologies to 
enable seamless proximity networking in addition to control and data transfer among networked 
devices. 

Universal Plug and Play supports zero-configuration, invisible networking, and automatic 
discovery  for a range of device categories from a wide range of vendors. This enables a device to 
dynamically join a network, obtain an IP address, and convey its capabilities upon request.  

Then other control points can use the Control Point API with UPnP technology to learn about 
the presence and capabilities of other devices. A device can leave a network smoothly and 
automatically when it is no longer in use. 

Plug and Play Extensions (PnP-X), shown in Figure 12-15, is an additional component of 
Windows that allows network-attached devices to integrate with the Plug and Play manager in the 
kernel. With PnP-X, network-connected devices are shown in the Device Manager like locally 
attached devices and provide the same installation, management, and behavioral experience as a 
local device. (For example, installation is performed through the standard Add New Hardware 
wizard.) 

  

PnP-X uses a virtual network bus driver that uses an IP bus enumerator 
(%SystemRoot%\System32\Ipbusenum.dll) to discover PnP-X compatible devices, which include 
UPnP devices (through the Simple Service Discovery Protocol) and newer Device Profile for Web 
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Services (DPWS) devices (through the WS-Discovery protocol). The IP bus enumerator reports 
devices it discovers to the Plug and Play manager, which uses user-mode Plug and Play manager 
services if needed (such as for driver installation). Similar to wireless discovery (like Bluetooth) 
and unlike wired device discovery (USB), however, PnP-X enumeration and driver installation 
must be explicitly requested by a user from the Network Explorer.  

Note DPWS is a specification created by Microsoft that has goals similar to those of UPnP 
but is tightly integrated with Web services standards and frameworks and allows greater 
extensibility than UPnP. 

12.3 Multiple redirector Support 

Applications can examine or access resources on remote systems in two ways. One way is by 
using the UNC standard with Windows functions to directly address a remote resource; a second 
way is by using the Windows Networking (WNet) API to enumerate computers and resources that 
those computers export for sharing. Both these approaches use the capabilities of a redirector to 
find their way to the network. As we stated earlier, to access SMB servers from a client, Microsoft 
supplies an SMB redirector, which has a kernel-mode component called the redirector FSD and a 
user-mode component called the Workstation service. (SMB is described in Chapter 11.) 
Microsoft also makes available redirectors that can access WebDAV resources, Terminal 
Services–shared drives, and resources shared by Novell NetWare servers. Third parties can add 
their own redirectors to Windows. In this section, we’ll examine the software that decides which 
redirector to invoke when remote I/O requests are issued. Here are the responsible components: 

■ Multiple Provider Router (MPR) is a DLL (\%SystemRoot%\System32\Mpr.dll) that 
determines which network to access when an application uses the Windows WNet API for 
browsing remote file systems. 

■ Multiple UNC Provider (MUP) is a driver (\%SystemRoot%\System32\Drivers\Mup.sys) 
that determines which network to access when an application uses the Windows I/O API to open 
remote files. 

12.3.1 Multiple Provider Router 

The Windows WNet functions allow applications (including the Network and Sharing Center) 
to connect to network resources, such as file servers and printers, and to browse the different share 
points. Because the WNet API can be called to work across different networks using different 
transport protocols, software must be present to send the request correctly over the network and to 
understand the results that the remote server returns. Figure 12-16 shows the redirector software 
responsible for these tasks. 
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A provider is software that establishes Windows as a client of a remote network server. Some 
of the operations a WNet provider performs include making and breaking network connections as 
well as supporting network printing. The built-in SMB WNet provider includes a DLL, the 
Workstation service, and the redirector. Other network vendors need to supply only a DLL and a 
redirector. 

When an application calls a WNet routine, the call passes directly to the MPR DLL. MPR 
takes the call and determines which network provider recognizes the resource being accessed. 
Each provider DLL beneath MPR supplies a set of standard functions collectively called the 
network provider interface. This interface allows MPR to determine which network the 
application is trying to access and to direct the request to the appropriate WNet provider software. 
The SMB Workstation service’s provider is \%SystemRoot%\System32\Ntlanman.dll, as directed 
by the ProviderPath value under the HKLM\SYSTEM\CurrentControlSet\Services\lanman- 
workstation\NetworkProvider registry key. 

When called by the WNetAddConnection2 or WNetAddConnection3 API function to 
connect to a remote network resource, MPR checks the HKLM\SYSTEM\CurrentControlSet 
\Control\NetworkProvider\HwOrder\ProviderOrder registry value to determine which network 
providers are loaded. It polls them one at a time in the order in which they’re listed in the registry 
until a redirector recognizes the resource or until all available providers have been polled.  

You can change the ProviderOrder by using the Advanced Settings dialog box shown in 
Figure 12-17. You can access the dialog box by first opening the Network Connections folder (by 
right-clicking the Network icon on the desktop or Start menu, selecting Properties from the pop-up 
menu to display the Network and Sharing Center, and then clicking Manage Network 
Connections). Open the Advanced menu, choose Advanced Settings, and then click the Provider 
Order tab. 
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The WNetAddConnection function can also assign a drive letter or device name to a remote 
resource. When called to do so, WNetAddConnection routes the call to the appropriate network 
provider. The provider, in turn, creates a symbolic-link object in the object manager namespace 
that maps the drive letter being defined to the redirector (that is, the remote FSD) for that network. 

Figure 12-18 shows the Session 0 DosDevices directory corresponding to the LUID (Logon 
ID) of the user that performed the drive letter mapping, which is where connections to remote file 
shares are stored. The symbolic link created by network providers relies on MUP to serve as the 
connection between a network path and the corresponding redirector. The figure shows that MUP 
creates a device object named \Device\LanmanRedirector, which is itself a symbolic link to 
\Device\MUP (which is not shown in the figure because the symbolic link is in the \Device 
directory) with additional text included in the symbolic link’s value indicating to the MUP 
redirector which mini-redirector the drive letter corresponds to. The \Global?? directory shows 
you the drive letters available to the system session—others will be mapped in the session-specific 
DosDevices directory. 
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Then, when the WNet or other API calls the object manager to open a resource on a different 
network, the object manager uses the device object as a jumping-off point into the remote file 
system. It calls an I/O manager parse method associated with the device object to locate the 
redirector FSD that can handle the request. (See Chapter 11 for more information on file system 
drivers.) 

12.3.2 Multiple UNC Provider 

The Multiple UNC Provider is a networking component similar to MPR but which registers 
itself as a file system with the I/O manager, allowing it to field all remote file system I/O requests. 
MUP takes such requests and, like MPR, determines which local redirector recognizes the remote 
resource. Unlike MPR, MUP is a device driver (loaded at system boot time) that issues I/O 
requests to lower-layer drivers, in this case to redirectors, as shown in Figure 12-19. 

When MUP loads during the boot it creates a device object named \Device\Mup. When a 
network redirector, like SMB, loads the redirector, it creates an unnamed device object and 
supplies a device name (for example \Device\LanmanRedirector) to register itself with MUP as a 
UNC provider by calling the function FsRtlRegisterUncProviderEx. FsRtlRegisterUncProviderEx 
creates a symbolic link name for the specified device name to point to its own device object, 
\Device\Mup. Because all network redirectors’ namespaces are represented as symbolic links to 
the MUP device object, filter drivers can attach to \Device\Mup to intercept all remote file I/O 
operations. 

  

The MUP driver is activated when an application first attempts to open a remote file or 
device by specifying a UNC name (instead of a redirected drive letter, as described earlier). When 
the Windows client-side DLL Kernel32.dll (which is the DLL that exports file-I/O-related APIs) 
receives a file I/O request with UNC paths, the subsystem appends the UNC path to the string 
\Global??\UNC and then calls the NtCreateFile system service to open the file. \global??\UNC 
resolves to \Device\Mup, and MUP must determine which provider should process the request. 
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When the MUP driver receives an I/O, MUP uses the HKLM\SYSTEM\CurrentControlSet 
\Control\NetworkProvider\Order\ProviderOrder registry value to determine priority order of the 
network providers that registered with it using FsRtlRegisterUncProviderEx. It polls them one at a 
time in the order in which they’re listed in the value until one of them indicates that it recognizes 
the path or until all available providers have been polled. MUP ignores those redirectors that are 
listed in the registry key but not registered. When a redirector recognizes a path the redirector 
indicates how much of the path is unique to it. For example, if the path is 
\\WIN2K3SERVER\PUBLIC\Windowsinternals\Chap12.doc, the redirector might recognize it 
and claim the prefix \\WIN2K3SERVER\PUBLIC as its own. The MUP driver caches this 
information and thereafter sends requests beginning with that prefix directly to the redirector, 
skipping the polling operation. The MUP driver’s cache has a timeout feature, so after a period, a 
prefix’s association with a particular redirector expires.  

To simplify development of redirectors, Windows implements a mini-redirector model 
similar to the miniport driver model used by other device classes (see Chapter 7). The equivalent 
of the port driver in this case is the Redirected Drive Buffering Subsystem (RDBSS) 
(%SystemRoot%\System32\Drivers\Rdbss.sys). WebDAV and SMB redirectors are 
mini-redirectors that register with RDBSS by using RxRegisterMinirdr (instead of 
FsRtlRegisterUncProviderEx). As shown in Figure 12-20, RDBSS is ultimately responsible for 
communicating with MUP and the I/O manager and for providing mapped-file buffering through 
the cache manager. 

  

12.4 Name resolution 

Name resolution is the process by which a character-based name, such as 
www.microsoft.com or Mycomputer, is translated into a numeric address, such as 192.168.1.1, 
that the protocol stack can recognize. This section describes the three TCP/IP-related name 
resolution protocols provided by Windows: Domain Name System (DNS), Windows Internet 
Name Service (WINS), and Peer Name Resolution Protocol (PNRP). 
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Domain Name System 

Domain Name System (DNS) is a standard by which Internet names (such as www.microsoft. 
com) are translated to their corresponding IP addresses. A network application that wants to 
resolve a DNS name to an IP address sends a DNS lookup request using the TCP/IP protocol to a 
DNS server. DNS servers implement a distributed database of name/IP address pairs that are used 
to perform translations, and each server maintains the translations for a particular zone. Describing 
the details of DNS is outside the scope of this book, but DNS is the foundation of naming in 
Windows and so it is the primary Windows name resolution protocol. 

The Windows DNS server is implemented as a Windows service (\%SystemRoot%\System32 
\Dns.exe) that is included in server versions of Windows. Standard DNS server implementation 
relies on a text file as the translation database, but the Windows DNS server can be configured to 
store zone information in Active Directory. 

Windows Internet Name Service 

A networking service called Windows Internet Name Service (WINS) maintains the mapping 
between NetBIOS names and IP addresses used for NetBIOS-based TCP/IP applications. If WINS 
isn’t installed, NetBIOS uses local broadcast messages for name operations on a subnet. Note that 
NetBIOS names are secondary to DNS names for Windows Sockets applications; computer names 
are registered and resolved first through DNS, with Windows falling back on NetBIOS names 
only if DNS name resolution fails. Link-Local Multicast Name Resolution (LLMNR) is a 
secondary fallback mechanism, used in cases in which IPv4 is not installed on the host machine. 
LLMNR extends the DNS packet format to allow both IPv4 and IPv6 name resolution to function 
on the same local link. 

Peer Name Resolution Protocol 

The Peer Name Resolution Protocol (PNRP) is a distributed peer-to-peer protocol that allows 
for dynamic name resolution and publication exclusively across IPv6 networks. It allows 
Internet-connected devices to publish peer names and their associated IPv6 address, as well as 
optional information. Other devices will then resolve the peer name, retrieve the IPv6 address, and 
establish a connection. 

PNRP offers significant advantages over DNS, mainly by being distributed, which means that 
it is essentially serverless (other than for early bootstrapping), can scale to potentially millions of 
names, and is fault tolerant and bottleneck free. Because it includes secure name publication 
services, changes to name records can be performed from any system. DNS generally requires 
contacting a DNS server administrator to perform updates. PNRP name updates also occur in real 
time, making it appropriate for highly mobile devices, whereas DNS caches results. Finally, PNRP 
allows for naming more than just computers and services by allowing extended information to be 
published with name records. 

Windows exposes PNRP via a PNRP API for applications and services, as well as by 
extending the getaddrinfo Winsock API described earlier in the chapter to perform resolution of 
PNRP IDs (described next) when an address includes the reserved .pnrp.net domain suffix. 

PNRP peer names (also called P2P IDs) are made up of two components: 
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■ Authority For secure clients (which have their name records signed by a certifying 
authority), the authority is identified by an SHA-1 hash of an associated public key, while for 
unsecured clients, it is zero. If a client is secure, PNRP validates the name record before 
publishing it. 

■ Classifier The classifier uses a simple string to identify a service provided by a peer, which 
allows multiple services to be provided by the same device. 

To create a PNRP ID, PNRP hashes the P2P ID and combines it with a unique 128-bit ID 
called the service location, as shown in Figure 12-21. The service location identifies different 
instances of the same P2P ID in the same cloud. (PNRP uses two clouds: a global cloud, which 
corresponds to all IPv6 addresses on the Internet, and the link-local cloud, which corresponds to 
IPv6 addresses within a single subnet.) 

  

PNRP Resolution and Publication 

PNRP name resolution occurs in two phases: 

■ Endpoint determination In this phase, the requesting peer determines the IPv6 address 
associated with the peer responsible for publishing the PNRP ID of the desired service. 

■ PNRP ID resolution In this phase, once the requesting peer has located and confirmed the 
availability of the peer associated with the IPv6 address, it sends a PNRP request message for the 
PNRP ID of the service being requested. The peer providing the service replies to confirm the 
PNRP ID and can supply a comment and up to 4 KB of additional data, such as context 
information related to the service. 

During the first phase, PNRP iterates over nodes while locating the publishing node, such 
that the node performing name resolution will be responsible for contacting nodes that are 
successively closer to the desired PNRP ID. Each iteration works as follows: Once a peer receives 
a request message, it performs a lookup in its cache for the requested PNRP ID. If a match is 
found, the request message is sent directly; otherwise, it is sent to the next closest PNRP ID (by 
seeing how much of the ID matches). 

When a node receives a request message for which it cannot find a PNRP ID, it checks the 
distance of any other IDs in the cache to the target ID. If it finds a node that is closer, the 
requested node sends a reply to the requesting node, where the reply contains the IPv6 address of 
the peer that most closely matches the target PNRP ID. The requesting node can then use the IPv6 
address to send another query to that address’s node. If no node is closer, the requesting node is 
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notified, and that node sends the request to the next closest node. Assuming PNRP IDs of 200, 350, 
450, 500, and 800, Figure 12-22 depicts a possible endpoint determination phase for an example in 
which peer A is trying to find the endpoint for PNRP 800 (peer E). 

To publish its PNRP ID(s), a peer first sends PNRP publication messages to its closest 
neighbors (entries in its cache that have IDs that are in the lowest levels) to seed their caches. It 
then randomly chooses nodes in the cloud that are not neighbors and sends them PNRP name 
resolution requests for its own PNRP ID. Through the mechanism described earlier, the endpoint 
determination phase will result in the seeding of the PNRP ID across the caches of the random 
nodes that were chosen in the cloud. 

 . 

12.5 Location and Topology 

Today’s networked computers often move between networks that require different 
configuration settings, for example, a corporate LAN and a home-based wireless network. 
Additionally, today’s networks are complex, often spanning multiple devices across different 
topologies. Windows includes the Network Location Awareness (NLA) service to enable the 
dynamic configuration of network applications and settings based on location, and Link-Layer 
Topology Discovery (LLTD) to enable the intelligent discovery and mapping of networked 
devices. 

Network Location Awareness (NLA) 

The NLA service provider is implemented as a Winsock Namespace Provider (NSP) and 
provides the necessary framework for allowing computers and devices that move across different 
networks to select the most appropriate configuration settings. For example, an application taking 



 942

advantage of NLA can detect when the user moves from a high-speed LAN to a high-latency 
wireless network and fine-tune its bandwidth use appropriately. NLA can also detect when a home 
computer on a LAN may also have a secondary VPN connection to the office and select the proper 
configuration options. 

Instead of having developers rely on manual network interface information to figure out the 
type of network, and the IP addresses or DNS names associated with them, NLA provides a 
standardized query API for enumerating all the local network attachment information and 
correlating it with network interface information. The NLA API also includes notifications that 
enable applications to respond to changes when they occur. NLA provides applications two pieces 
of location information: 

■ Logical network identity This identity is based on the logical network’s DNS domain name. 
If one does not exist, NLA uses custom static information stored in the registry together with the 
network’s subnet address as the identity. 

■ Logical network interfaces For each network that a device is attached to, NLA creates an 
adapter name that identifies interfaces such as NICs or RAS connections in a unique fashion. 
Applications use adapter names with the IP Helper API (%SystemRoot%\System32\Iphlpapi.dll) 
to query interface information and characteristics.  

Each logical network is implemented as a service class with an associated GUID and 
properties. NLA creates instances of that service class when it returns information about a logical 
network. Service classes are schemas that describe a namespace; they define the name, identifier, 
and namespace-specific information that is common to all instances. These classes are then used 
in combination with the WSALookupService* API when performing name resolution. 

Link-Layer Topology Discovery (LLTD) 

The LLTD protocol operates over both wired and wireless networks and enables applications 
to discover the topology of a network. For example, the Network Map functionality in Windows 
uses LLTD to draw the local network topology for the connected devices that support the LLTD 
protocol.  Additionally, LLTD supports Quality of Service (QoS) extensions, which allow 
applications to diagnose network problems such as low signal strength on a wireless network and 
bandwidth constraints on home networks. Because it operates on the OSI Data-link layer (2), 
LLTD works only on a single subnet, and therefore can’t cross routers, but its capabilities make it 
suitable for most home and small-office networks.  

The LLTD Mapper I/O and the LLTD Responder components implement LLTD. The former 
is responsible for the discovery process and for generating network maps. Because it uses a 
protocol different from IP, the LLTD Mapper uses NDIS APIs to directly send commands to the 
network via the network adapter. The LLTD Responder listens for and responds to discovery 
commands with information about the computer. As mentioned earlier, only devices that have a 
responder are shown in the network map.  
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12.6 Protocol Drivers 

Networking API drivers must take API requests and translate them into low-level network 
protocol requests for transmission across the network. The API drivers rely on transport protocol 
drivers in kernel mode to do the actual translation. Separating APIs from underlying protocols 
gives the networking architecture the flexibility of letting each API use a number of different 
protocols. The Internet’s explosive growth and reliance on the TCP/IP protocol has made TCP/IP 
the preeminent protocol in Windows. The Defense Advanced Research Projects Agency (DARPA) 
developed TCP/IP in 1969 specifically as the foundation for the Internet; therefore, TCP/IP has 
WAN-friendly characteristics such as routability and good WAN performance. TCP/IP is the 
preferred Windows protocol and is installed by default, although it can be removed. 

However, the 4-byte network addresses used by the IPv4 protocol on the legacy TCP/IP stack 
limits the number of public IP addresses to roughly 4 billion, which is a limit that will be pressed 
as more and more devices, such as cell phones and PDAs, acquire an Internet presence. For that 
reason, the IPv6 protocol, which has 16-byte addresses, is gaining adoption. Windows includes a 
combined TCP/IP stack, called the Next Generation TCP/IP Stack, which supports both IP and 
IPv6. When operating on IPv6 networks, the stack also supports coexistence with IPv4 networks 
through the use of tunneling. The Next Generation TCP/IP Stack offers several advanced features 
to improve network performance, some of which are outlined in the following list: 

■ Receive Window Auto Tuning. The TCP protocol defines a receive window size, which 
determines how much data a receiver can accept before the server requests an acknowledgment. A 
higher size favors low-latency networks with high throughput, while lower values work better on 
networks such as Wi-Fi. The Windows TCP/IP stack is capable of analyzing the conditions of a 
network and choosing the optimal receive window size, adjusting it as needed if the network 
conditions change. 

■ Compound TCP (CTCP). While automatically changing the receive window size allows 
more data to be received, CTCP aggressively increases the amount of data that can be sent by a 
machine, while monitoring bandwidth, latency, and packet loss. Using CTCP on a high-bandwidth, 
low-latency network can significantly improve transfer speeds. CTCP is disabled by default. 

■ Explicit Congestion Notification (ECN). Whenever a TCP packet is lost, the TCP protocol 
assumes that the data was dropped because of router congestion and enforces congestion control, 
dramatically lowering the sender’s transmission rate. ECN allows routers to explicitly mark 
packets as being forwarded during congestion, which is read by the Windows TCP/IP stack as a 
sign that transmission rates should be lowered. Lowering rates in this manner results in better 
performance than relying on congestion control. ECN is disabled by default. 

■ High-loss throughput improvements, including the NewReno Fast Recovery Algorithm, 
Enhanced Selective Acknowledgment (SACK), Forward RTO-Recovery (F-RTO), and Limited 
Transit. These algorithms reduce the overall retransmission of acknowledgments or TCP segments 
during high-loss scenarios while still maintaining the integrity of the TCP stream. This allows for 
greater bandwidth in these environments and preserves TCP’s reliable transport semantics. 
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The Next Generation TCP/IP Stack (\%SystemRoot%\Drivers\Tcpip.sys), shown in Figure 
12-23, implements TCP, UDP, IP, ARP, ICMP, and IGMP. To support legacy protocols such as 
NetBIOS, which make use of the deprecated TDI interface, the network stack also includes a 
component called TDX, which creates device objects that represent particular protocols so that 
clients can obtain a file object representing a protocol and issue network I/O to the protocol using 
TDI IRPs. The TDX component creates several device objects that represent various TDI 
client–accessible protocols: \Device\Tcp6, \Device\Tcp, \Device\Udp6, \Device\Udp, 
\Device\Rawip, and \Device\Tdx. 

  

eXPeriMeNT: Looking at TCP/iP’s Device Objects 

Using the kernel debugger to look at a live system, you can examine TCP/IP’s device objects. 
After performing the !drvobj command to see the addresses of each of the driver’s device objects, 
execute !devobj to view the name and other details about the device object. 

1. kd> !drvobj tdx   
2. Driver object (861d9478) is for:   
3. \Driver\tdx   
4. Driver Extension List: (id , addr)   
5. Device Object list:   
6. 861db310 861db440 861d8440 861d03e8  
7. 861cd440 861d2318 861d9350  
8. lkd> !devobj 861cd440  
9. Device object (861cd440) is for:   
10. Tcp6 \Driver\tdx DriverObject 861d9478  
11. Current Irp 00000000 RefCount 7 Type 00000012 Flags 00000050  
12. Dacl 8b1bc54c DevExt 861cd4f8 DevObjExt 861cd500  
13. ExtensionFlags (0x00000800)   
14. Unknown flags 0x00000800  
15. Device queue is not busy.   
16. lkd> !devobj 861db440  
17. Device object (861db440) is for:   
18. RawIp \Driver\tdx DriverObject 861d9478  
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19. Current Irp 00000000 RefCount 0 Type 00000012 Flags 00000050  
20. Dacl 8b1bc54c DevExt 861db4f8 DevObjExt 861db500  
21. ExtensionFlags (0x00000800)   
22. Unknown flags 0x00000800  
23. Device queue is not busy.   
24. lkd> !devobj 861d8440  
25. Device object (861d8440) is for:   
26. Udp6 \Driver\tdx DriverObject 861d9478  
27. Current Irp 00000000 RefCount 0 Type 00000012 Flags 00000050  
28. Dacl 8b1bc54c DevExt 861d84f8 DevObjExt 861d8500  
29. ExtensionFlags (0x00000800)   
30. Unknown flags 0x00000800  
31. Device queue is not busy.   
32. lkd> !devobj 861d03e8  
33. Device object (861d03e8) is for:   
34. Udp \Driver\tdx DriverObject 861d9478  
35. Current Irp 00000000 RefCount 6 Type 00000012 Flags 00000050  
36. Dacl 8b1bc54c DevExt 861d04a0 DevObjExt 861d04a8  
37. ExtensionFlags (0x00000800)   
38. Unknown flags 0x00000800  
39. Device queue is not busy.   
40. lkd> !devobj 861cd440  
41. Device object (861cd440) is for:   
42. Tcp6 \Driver\tdx DriverObject 861d9478  
43. Current Irp 00000000 RefCount 7 Type 00000012 Flags 00000050  
44. Dacl 8b1bc54c DevExt 861cd4f8 DevObjExt 861cd500  
45. ExtensionFlags (0x00000800)   
46. Unknown flags 0x00000800  
47. Device queue is not busy.   
48. lkd> !devobj 861d2318  
49. Device object (861d2318) is for:   
50. Tcp \Driver\tdx DriverObject 861d9478  
51. Current Irp 00000000 RefCount 167 Type 00000012 Flags 00000050  
52. Dacl 8b1bc54c DevExt 861d23d0 DevObjExt 861d23d8  
53. ExtensionFlags (0x00000800)   
54. Unknown flags 0x00000800  
55. Device queue is not busy.   
56. lkd> !devobj 861d9350  
57. Device object (861d9350) is for:   
58. Tdx \Driver\tdx DriverObject 861d9478  
59. Current Irp 00000000 RefCount 0 Type 00000021 Flags 00000050  
60. Dacl 8b0649a8 DevExt 00000000 DevObjExt 861d9408  
61. ExtensionFlags (0x00000800)   
62. Unknown flags 0x00000800  
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63. Device queue is not busy.  

Windows Filtering Platform (WFP) 

Windows includes a rich and extensible platform for monitoring, intercepting, and processing 
network traffic at all levels in the network stack. Other Windows networking services extend basic 
networking features of the TCP/IP protocol driver by relying on the WFP. These include network 
address translation (NAT), IP filtering, IP inspection, and Internet Protocol Security (IPSec). 
Figure 12-24 shows how the different components of the WFP are integrated with the TCP/IP 
stack. These include: 

■ Filter engine The filter engine is implemented in both user mode and kernel mode and 
performs all the filtering operations on the network. Each filter engine component consists of 
filtering layers, one for each component of the network stack. The user-mode engine, responsible 
for RPC and IPSec keying policy, among other things, contains approximately 10 filters, while the 
kernel-mode engine, which performs the network and transport layer filtering of the TCP/IP stack, 
contains around 50. 

■ Shims Shims are the kernel-mode components that reside between the network stack and 
the filter engine. They are responsible for making the decision to allow or block network traffic 
based on their filtering behavior, which is defined by the filter engine. A shim operates in three 
steps: it parses the incoming data to match incoming values with entries in the filter engine, calls 
the filter engine to return an action based on the incoming values, and then interprets the action 
(drop the packet, for example). 

■ Base filtering engine (BFE) The BFE is a user-mode service (%SystemRoot%\System32 
\Bfe.dll) that manages all WFP operations. It is responsible for adding and removing filters from 
the WFP stack, managing the filter configuration, and enforcing security on the filter database. 

■ Callout drivers Callout drivers are kernel-mode components that add custom filtering 
functionality outside the basic support provided by the WFP. Callout drivers associate callout 
functions with one or more kernel-mode filtering layers, and the WFP enables callout functions to 
perform deep packet inspection and modification. Network address translation (described next) 
and IPSec, are implemented as callout drivers, for example. 
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Network Address Translation 

Network address translation (NAT) is a routing service that allows multiple private IP 
addresses to map to a single public IP address. Without NAT, each computer of a LAN must be 
assigned a public IP address to communicate across the Internet. NAT allows one computer of the 
LAN to be assigned an IP address and the other computers to use private IP addresses and be 
connected to the Internet through that computer. NAT translates between private IP addresses and 
the public IP address as necessary, routing packets between LAN computers and the Internet. 

NAT components on Windows consist of a NAT device driver, \%SystemRoot%\System32 
\Drivers\Ipnat.sys, that interfaces with the WFP stack as a callout driver, as well as editors that can 
perform additional packet processing beyond address and port translation. NAT can be installed as 
a routing protocol component with the Routing And Remote Access MMC snapin or by 
configuring Internet Connection Sharing (ICS), although NAT is much more configurable when 
installed using the Routing And Remote Access MMC snap-in. 

IP Filtering 
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Windows includes a very basic IP filtering capability with which a user can choose to allow 
only certain ports or IP protocols into or out of the network. While this capability can serve to 
protect a computer from unauthorized network accesses, its drawback is that it is static and does 
not automatically create new filters for traffic initiated by applications running on the computer. 

Windows also includes host firewall capability, called Windows Firewall, that goes beyond 
the basic filtering just described. Windows Firewall uses WFP to provide a stateful firewall, which 
is one that keeps track of traffic flow so that it distinguishes between TCP/IP traffic that originates 
on the local LAN and unsolicited traffic that originates on the Internet. When Windows Firewall is 
enabled on an interface, one of three profiles can be applied—public, private, and domain. By 
default, when the public profile is chosen (or until a profile is selected), all unsolicited incoming 
and outgoing traffic received and sent by the computer is discarded, other than traffic from 
network services and other system applications. A user or application can define exceptions so 
that services running on the computer, such as file and printer sharing or a Web site, can be 
accessed from other computers. 

The Windows Firewall service, which executes in a Svchost process, uses the BFE to pass 
exception rules defined in the configuration user interface to the IPNat driver. The WFP filter 
engine executes the callback functions of each registered callout driver as it processes both 
inbound and outbound IP packets. A callback function can provide NAT functionality by 
modifying source and destination addresses in a packet, or as a firewall by returning a status code 
to TCP/IP that requests that TCP/IP drop the packet and cease processing for it. In kernel mode, 
Windows Firewall uses a driver (%SystemRoot%\System32\Drivers\Mpsdrv.sys) that provides 
support for PPTP and FTP filtering, since those protocols provide their own 

Network Address Translation 

Network address translation (NAT) is a routing service that allows multiple private IP 
addresses to map to a single public IP address. Without NAT, each computer of a LAN must be 
assigned a public IP address to communicate across the Internet. NAT allows one computer of the 
LAN to be assigned an IP address and the other computers to use private IP addresses and be 
connected to the Internet through that computer. NAT translates between private IP addresses and 
the public IP address as necessary, routing packets between LAN computers and the Internet. 

NAT components on Windows consist of a NAT device driver, \%SystemRoot%\System32 
\Drivers\Ipnat.sys, that interfaces with the WFP stack as a callout driver, as well as editors that can 
perform additional packet processing beyond address and port translation. NAT can be installed as 
a routing protocol component with the Routing And Remote Access MMC snapin or by 
configuring Internet Connection Sharing (ICS), although NAT is much more configurable when 
installed using the Routing And Remote Access MMC snap-in. 

IP Filtering 

Windows includes a very basic IP filtering capability with which a user can choose to allow 
only certain ports or IP protocols into or out of the network. While this capability can serve to 
protect a computer from unauthorized network accesses, its drawback is that it is static and does 
not automatically create new filters for traffic initiated by applications running on the computer. 
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Windows also includes host firewall capability, called Windows Firewall, that goes beyond 
the basic filtering just described. Windows Firewall uses WFP to provide a stateful firewall, which 
is one that keeps track of traffic flow so that it distinguishes between TCP/IP traffic that originates 
on the local LAN and unsolicited traffic that originates on the Internet. When Windows Firewall is 
enabled on an interface, one of three profiles can be applied—public, private, and domain. By 
default, when the public profile is chosen (or until a profile is selected), all unsolicited incoming 
and outgoing traffic received and sent by the computer is discarded, other than traffic from 
network services and other system applications. A user or application can define exceptions so 
that services running on the computer, such as file and printer sharing or a Web site, can be 
accessed from other computers. 

The Windows Firewall service, which executes in a Svchost process, uses the BFE to pass 
exception rules defined in the configuration user interface to the IPNat driver. The WFP filter 
engine executes the callback functions of each registered callout driver as it processes both 
inbound and outbound IP packets. A callback function can provide NAT functionality by 
modifying source and destination addresses in a packet, or as a firewall by returning a status code 
to TCP/IP that requests that TCP/IP drop the packet and cease processing for it. In kernel mode, 
Windows Firewall uses a driver (%SystemRoot%\System32\Drivers\Mpsdrv.sys) that provides 
support for PPTP and FTP filtering, since those protocols provide their own 

Internet Protocol Security 

Internet Protocol Security (IPSec), which is integrated with the Windows TCP/IP stack, helps 
protect unicast (IPSec itself supports multicast, but the Windows implementation does not) IP data 
against attacks such as eavesdropping, sniffer attacks, data modification, IP address spoofing, and 
man-in-the-middle attacks (as long as the identity of the remote machine can be verified, such as a 
VPN). You can use IPSec to provide defense-in-depth against network-based attacks from 
untrusted computers; certain attacks that can result in the denial-of- service of applications, 
services, or the network; data corruption, data theft, and user-credential theft; and the 
administrative control over servers, other computers, and the network. IPSec helps defend against 
network-based attacks through cryptography-based security services, security protocols, and 
dynamic key management. 

IPSec provides the following properties for unicast IP packets sent between trusted hosts: 

■ Data origin authentication, which verifies the origin of an IP packet and ensures that 
unauthenticated parties cannot access data. 

■ Data integrity, which protects an IP packet from being modified in transit without being 
detected. 

■ Data confidentiality, which encrypts the payload of IP packets before transmission. Data 
confidentiality ensures that only the IPSec peer with which a computer is communicating can read 
and interpret the contents of the packets. This property is optional. 

■ Anti-replay (or replay protection), which ensures that each IP packet is unique and can’t be 
reused. This property prevents an attacker from intercepting IP packets and inserting modified 
packets into a data stream between a source computer and a destination computer. When 
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anti-replay is used, attackers cannot reply to captured messages to establish a session or gain 
unauthorized access to data. 

You can use IPSec to help defend against network-based attacks by configuring host-based 
IPSec packet filtering and enforcing trusted communications. When you use IPSec for hostbased 
IPSec packet filtering, IPSec can permit or block specific types of unicast IP traffic based on 
source and destination address combinations and specific protocols and specific ports. 

In an Active Directory environment, Group Policy can be used to configure domains, sites, 
and organizational units (OUs), and IPSec policies (called connection security rules) can then be 
assigned as required to Group Policy objects (GPOs) through Windows Firewall with Advanced 
Security configuration settings. Alternatively, you can configure and assign local IPSec policies. 
Active Directory–based connection security rules are stored in Active Directory, and a copy of the 
current policy is maintained in a cache in the local registry. Local connection security rules are 
stored in the local system registry. 

To establish trusted communications, IPSec uses mutual authentication, and it supports the 
following authentication methods through AuthIP, Microsoft’s extension to Internet Key 
Exchange (IKE): 

■ Interactive user Kerberos 5 credentials or interactive user NTLMv2 credentials  

■ User x.509 certificates 

■ Computer SSL certificates 

■ NAP health certificates 

■ Anonymous authentication (optional authentication) 

■ Preshared key 

If AuthIP is not available, plain IKE is also supported by IPSec. The Windows 
implementation of IPSec is based on IPSec Requests for Comments (RFCs). The Windows IPSec 
architecture includes Windows Firewall with Advanced Security, the legacy IPSec Policy Agent, 
the IKE and Authenticated Internet Protocol (AuthIP) protocols, and an IPSec WFP callout driver. 

■ Windows Firewall with Advanced Security In addition to the filtering functionality 
described earlier, the Windows Firewall service is also responsible for providing the security and 
policy configuration settings for IPSec, which can be configured through Group Policy either 
locally or on an Active Directory domain. 

■ Legacy IPSec Policy Agent The legacy IPSec Policy Agent runs as a service. In the 
Services snap-in in the Microsoft Management Console (MMC), the IPSec Policy Agent appears 
in the list of computer services under the name IPSEC Policy Agent. The IPSec Policy Agent 
obtains legacy IPSec policy from an Active Directory domain or the local registry and then passes 
IP address filters to the IPSec driver and authentication and security settings to IKE. These 
policies are honored for compatibility with older versions of Windows, which implement IPSec 
management through Active Directory. 
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■ IKE and AuthIP IKE is a protocol that supports the authentication and key negotiation 
services required by IPSec. For outgoing traffic, IKE waits for requests to negotiate security 
associations (SAs) from the IPSec driver, negotiates the SAs, and then sends the SA settings back 
to the IPSec driver. For incoming traffic, IKE receives a negotiation request directly from the 
remote peer, and all other traffic from the peer is dropped until the SAs have been successfully 
negotiated. SAs are a combination of mutually agreeable IPSec policy settings and keys that 
defines the security services, mechanisms, and keys that are used to help secure communications 
between IPSec peers. Each SA is a one-way or simplex connection that secures the traffic it 
carries. IKE negotiates main mode SAs and quick mode SAs when requested by the IPSec driver. 
The IKE main mode (or ISAKMP) SA protects the IKE negotiation. The quick mode (or IPSec) 
SAs protect application traffic. AuthIP is an extension to IKE supported by Windows Vista and 
later versions. It adds a secondary authentication mechanism to increase security and simplify 
maintenance and configuration of IPSec. 

■ IPSec WFP callout driver The IPSec WFP callout driver is a device driver 
(\%SystemRoot%\System32\Drivers\Ipsec.sys) that is bound to the WFP and that processes 
packets that pass through the TCP/IP driver. The IPSec driver monitors and secures outbound 
unicast IP traffic, and it monitors, decrypts, and validates inbound unicast IP packets. The WFP 
receives filters from the IPSec Policy Agent and invokes the callout, which then permits, blocks, 
or secures packets as required. To secure traffic, the IPSec driver uses active SA settings, or it 
requests that new SAs be created.  

You can use the Windows Firewall with Advanced Security (Wf.msc) snap-in that is 
available in MMC to create and manage connection security rules by using the New Connection 
Security Rule Wizard, shown in Figure 12-25. This snap-in can be used to create, modify, and 
store local connection security rules or Active Directory–based connection security rules, and to 
modify connection security rules on remote computers. Alternatively, you can use the Netsh utility 
with the netsh advfirewall consec command to manage connection security rules. After 
IPSec-secured communication is established, you can monitor IPSec information for local 
computers and for remote computers by using the Windows Firewall with Advanced Security 
snap-in or the Netsh utility with the netsh advfirewall monitor command. 
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12.7 NDiS Drivers 

When a protocol driver wants to read or write messages formatted in its protocol’s format 
from or to the network, the driver must do so using a network adapter. Because expecting protocol 
drivers to understand the nuances of every network adapter on the market (proprietary network 
adapters number in the thousands) isn’t feasible, network adapter vendors provide device drivers 
that can take network messages and transmit them via the vendors’ proprietary hardware. In 1989, 
Microsoft and 3Com jointly developed the Network Driver Interface Specification (NDIS), which 
lets protocol drivers communicate with network adapter  drivers in a device-independent manner. 
Network adapter drivers that conform to NDIS are called NDIS drivers or NDIS miniport drivers. 
The version of NDIS that ships with Windows Vista SP1 and Windows Server 2008 is NDIS 6.1. 

The NDIS library (\%SystemRoot%\System32\Drivers\Ndis.sys) implements the NDIS 
boundary that exists between network transports, such as the TCP/IP driver, and NDIS drivers. 
The NDIS library is a helper library that NDIS driver clients use to format commands they send to 
NDIS drivers. NDIS drivers interface with the library to receive requests and send back responses.   
Figure 12-26 shows the relationship between various NDIS-related components. 

  

Instead of merely providing the NDIS boundary helper routines, the NDIS library provides 
NDIS drivers with an entire execution environment. NDIS drivers aren’t genuine Windows drivers 
because they can’t function without the encapsulation the NDIS library gives them. This insulation 
layer wraps NDIS drivers so thoroughly that NDIS drivers don’t accept and process IRPs. Rather, 
protocol drivers such as TCP/IP call a function in the NDIS library, NdisAllocateNetBuffer, and 
pass the packets to an NDIS miniport by calling an NDIS library function 
(NdisSendNetBufferLists, for example). Additionally, to make development simpler, all 
components of the Windows Next Generation TCP/IP Stack make use of net buffers, including 
TCP/IP and WSK, which streamlines communications with NDIS.  

NDIS includes the following features: 
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■ NDIS drivers can report whether or not their network medium is active, which allows 
Windows to display a network connected/disconnected icon on the taskbar. This feature also 
allows protocols and other applications to be aware of this state and react accordingly. The TCP/IP 
transport, for example, will use this information to determine when it should reevaluate addressing 
information it receives from DHCP. 

■ NDIS drivers can be paused and resumed, which enables run-time reconfiguration, such as 
during a response to a Plug and Play event. This allows dynamic operations such as binding and 
unbinding a protocol driver without requiring a reboot. 

■ TCP/IP offloading, including task and chimney offloading. Task offloading allows a 
miniport to use advanced features of a network adapter to perform operations such as packet 
checksums and IPSec. NDIS includes support for IPSec Task Offload Version 2, which includes 
support for additional cryptography suites used in IPSec, such as AES, as well as IPv6 support. 
Chimney offloading provides a direct connection (the so-called chimney) between network 
applications and the network card hardware, enabling greater offloading and connection state 
management to be implemented by the network card. These offloading operations can improve 
system performance by relieving the CPU from the tasks. 

■ Receive scaling enables multiple processors to perform packet receive operations and 
appropriate scaling to be selected based on the most efficient use of available target processors. 
NDIS supports the receive-side scaling (RSS) interface at the hardware level and queues DPCs to 
the appropriate  processors. 

■ Wake-on-LAN allows a wake-on-LAN-capable network adapter to bring Windows out of a 
suspend power state. Events that can trigger the network adapter to signal the system include 
media connections (such as plugging a network cable into the adapter), the receipt of 
protocol-specific patterns registered by a protocol (the TCP/IP transport asks to be woken for 
Address Resolution Protocol [ARP] requests), and, for Ethernet adapters, the receipt of a magic 
packet (a network packet that contains 16 contiguous copies of the adapter’s Ethernet address). 

■ Header-data split allows compatible network cards to improve network performance by 
splitting the data and header part of an Ethernet frame into different buffers and subsequently 
combining the buffers into smaller regions of memory than if the buffers were combined. This 
allows more efficient memory usage as well as better caching because multiple headers can fit in a 
single page. 

■ Connection-oriented NDIS (CoNDIS) allows NDIS drivers to manage connectionoriented 
media such as PPP devices. (CoNDIS is described in more detail shortly.)  

The interfaces that the NDIS library provides for NDIS drivers to interface with network 
adapter hardware are available via functions that translate directly to corresponding functions in 
the HAL. 

eXPeriMeNT: Listing the Loaded NDiS Miniports  

The Ndiskd kernel debugger extension library includes the !miniports and !miniport 
commands, which let you list the loaded miniports using a kernel debugger and, given the address 
of a miniport block (a data structure Windows uses to track miniports), see detailed information 
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about the miniport driver. The following example shows the !miniports and !miniport commands 
being used to list all the miniports and then specifics about the miniport responsible for interfacing 
the system to a PCI Ethernet adapter. (Note that WAN miniport drivers work with dial-up 
connections.) 

1. lkd> .load ndiskd   
2. Loaded ndiskd extension DLL   
3. lkd> !miniports   
4. NDIS Driver verifier level: 0  
5. NDIS Failed allocations : 0  
6. Miniport Driver Block: 86880d78, Version 0.0  
7. Miniport: 868cf0e8, NetLuidIndex: 1, IfIndex: 9, RAS Async Adapter   
8. Miniport Driver Block: 84c3be60, Version 4.0  
9. Miniport: 84c3c0e8, NetLuidIndex: 3, IfIndex: 15, VMware Virtual Ethernet Adapter   
10. Miniport Driver Block: 84c29240, Version 0.0  
11. Miniport: 84c2b438, NetLuidIndex: 0, IfIndex: 2, WAN Miniport (SSTP)   
12. ...   
13. lkd> !miniport 84bcc0e8  
14. Miniport 84bcc0e8 : Broadcom NetXtreme 57xx Gigabit Controller, v6.0  
15. AdapterContext : 85f6b000  
16. Flags : 0c452218  
17. BUS_MASTER, 64BIT_DMA, IGNORE_TOKEN_RING_ERRORS   
18. DESERIALIZED, RESOURCES_AVAILABLE, SUPPORTS_MEDIA_SENSE   
19. DOES_NOT_DO_LOOPBACK, SG_DMA,   
20. NOT_MEDIA_CONNECTED,   
21. PnPFlags : 00610021  
22. PM_SUPPORTED, DEVICE_POWER_ENABLED, RECEIVED_START   
23. HARDWARE_DEVICE, NDIS_WDM_DRIVER,   
24. MiniportState : STATE_RUNNING   
25. IfIndex : 10  
26. Ndis5MiniportInNdis6Mode : 0  
27. InternalResetCount : 0000  
28. MiniportResetCount : 0000  
29. References : 5  
30. UserModeOpenReferences: 0  
31. PnPDeviceState : PNP_DEVICE_STARTED   
32. CurrentDevicePowerState : PowerDeviceD0  
33. Bus PM capabilities   
34. DeviceD1: 0  
35. DeviceD2: 0  
36. WakeFromD0: 0  
37. WakeFromD1: 0  
38. WakeFromD2: 0  
39. WakeFromD3: 1  
40. SystemState DeviceState   
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41. PowerSystemUnspecified PowerDeviceUnspecified   
42. S0 D0  
43. S1 PowerDeviceUnspecified   
44. S2 PowerDeviceUnspecified   
45. S3 D3  
46. S4 D3  
47. S5 D3  
48. SystemWake: S5  
49. DeviceWake: D3  
50. WakeupMethods Enabled 2:  
51. WAKE_UP_PATTERN_MATCH   
52. WakeUpCapabilities:   
53. MinMagicPacketWakeUp: 4  
54. MinPatternWakeUp: 4  
55. MinLinkChangeWakeUp: 0  
56. Current PnP and PM Settings: : 00000030  
57. DISABLE_WAKE_UP, DISABLE_WAKE_ON_RECONNECT,   
58. Translated Allocated Resources:   
59. Memory: ecef0000, Length: 10000  
60. Interrupt Level: 9, Vector: a8  
61. MediaType : 802.3  
62. DeviceObject : 84bcc030, PhysDO : 848fd6b0 Next DO: 848fc7b0  
63. MapRegisters : 00000000  
64. FirstPendingPkt: 00000000  
65. DriverVerifyFlags : 00000000  
66. Miniport Interrupt : 85f72000  
67. Miniport version 6.0  
68. Miniport Filter List:   
69. Miniport Open Block Queue:   
70. 8669bad0: Protocol 86699530 = NDISUIO, ProtocolBindingContext 8669be88, v6.0  
71. 86690008: Protocol 86691008 = VMNETBRIDGE, ProtocolBindingContext 866919b8, v5.0  

72. 84f81c50: Protocol 849fb918 = TCPIP6, ProtocolBindingContext 84f7b930, v6.1  
73. 84f7b230: Protocol 849f43c8 = TCPIP, ProtocolBindingContext 84f7b5e8, v6.1  
The Flags field for the miniport that was examined indicates that the miniport supports 64-bit 
direct memory access operation (64BIT_DMA), that the media is currently not active 
(NOT_MEDIA_CONNECTED), and that it can dynamically detect whether the media is 
connected or disconnected (SUPPORTS_MEDIA_SENSE). Also listed are the adapter’s 
system-to-device power-state mappings and the bus resources that the Plug and Play manager 
assigned to the adapter. (See the section “The Power Manager” in Chapter 7 for more information 
on power-state mappings.) 

12.7.1 Variations on the NDIS Miniport 
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The NDIS model also supports hybrid network transport NDIS drivers, called NDIS 
intermediate drivers. These drivers lie between transport drivers and NDIS drivers. To an NDIS 
driver, an NDIS intermediate driver looks like a transport driver; to a transport driver, an NDIS 
intermediate driver looks like an NDIS driver. NDIS intermediate drivers can see all network 
traffic taking place on a system because the drivers lie between protocol drivers and network 
drivers. Software that provides fault tolerant and load balancing options for network adapters, 
such as Microsoft’s Network Load Balancing Provider, are based on NDIS intermediate drivers. 

Finally, the NDIS model also implements lightweight filter drivers (LWDs), which are 
similar to intermediate drivers but specifically designed for filtering network traffic. LWDs 
support dynamic insertion and removal while the protocol stack is running. Filter drivers have the 
ability to filter almost all communications to and from the underlying miniport adapter because 
they’re not associated with a particular protocol driver. They also have the ability to select only 
certain services for filtering and to be bypassed for those that they are not interested in. Just like 
insertion and removal, these service bindings are also dynamic and can change at run time.  

12.7.2 Connection-Oriented NDIS 

Support for connection-oriented network hardware (for example, PPP) is native in Windows, 
which makes connection management and establishment standard in the Windows network 
architecture. Connection-oriented NDIS drivers use many of the same APIs that standard NDIS 
drivers use; however, connection-oriented NDIS drivers send packets through established network 
connections rather than place them on the network medium.  

In addition to miniport support for connection-oriented media, NDIS includes definitions for 
drivers that work to support a connection-oriented miniport driver: 

■ Call managers are NDIS drivers that provide call setup and teardown services for 
connection-oriented clients (described shortly). A call manager uses a connectionoriented miniport 
to exchange signaling messages with other network entities such as network switches or other call 
managers. A call manager supports one or more signaling protocols. 

■ An integrated miniport call manager (MCM) is a connection-oriented miniport driver that 
also provides call manager services to connection-oriented clients. An MCM is essentially an 
NDIS miniport driver with a built-in call manager. 

■ A connection-oriented client uses the call setup and teardown services of a call manager or 
MCM and the send and receive services of a connection-oriented NDIS miniport driver. A 
connection-oriented client can provide its own protocol services to higher levels in the network 
stack, or it can implement an emulation layer that interfaces connectionless legacy protocols and 
connection-oriented media. An example of an emulation layer fulfilled by a connection-oriented 
client is a LAN emulation (LANE), which hides the connected-oriented characteristics of ATM 
and presents a connectionless media (such as Ethernet) to protocols above it.  

Figure 12-27 shows the relationships between these components. 
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eXPeriMeNT: using Network Monitor to Capture Network Packets 

Microsoft provides a tool named Network Monitor that lets you capture packets that flow 
through one or more NDIS miniport drivers on your system by installing an NDIS lightweight 
filter driver (Netmon). You can obtain the latest version of Network Monitor by going to the 
Microsoft Support Knowledge Base Article http://support.microsoft.com/kb/955998. When you 
first start Network Monitor, you’ll see a window similar to the one shown here: 

  

In the Select Networks pane, Network Monitor lets you select which network connection you 
want to monitor. After selecting one or more, start the capture environment by clicking the New 
Capture button on the toolbar. You can now initiate monitoring by clicking the Start button on the 
toolbar. Perform operations that generate network activity on the connection you’re monitoring 
(such as browsing to a Web site), and after you see that Network Monitor has captured packets, 
stop monitoring by clicking the Stop button. In the Frame Summary pane, you will see all the raw 
network traffic during the capture period. The Network Conversations pane will display network 
traffic isolated by process, whenever possible. By clicking on the Iexplore.exe process in this 
example, Network Monitor shows only the relevant frames in the Frame Summary view, as shown 
next. 
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The window shows the HTTP packets that Network Monitor captured as the Microsoft Web 
site was accessed through Internet Explorer. If you click on a frame, Network Monitor displays a 
view of the packet that breaks it apart to show various layered application and protocol headers in 
the Frame Details pane, as shown in the previous screen shot. 

Network Monitor also includes a number of other features, such as capture triggers and filters, 
that make it a powerful tool for troubleshooting network problems. You can also add parsers for 
other protocols, as well as view and modify their source code. Network Monitor parsers are hosted 
on CodePlex, the Microsoft open source project site. 

12.7.3 Remote NDIS 

Prior to the development of Remote NDIS, a vendor that developed a USB network device, 
for example, had to provide a driver that interfaced with NDIS as a miniport driver as well as 
interfacing with a USB WDM bus driver, as shown in Figure 12-28. If the vendor’s hardware 
supported other buses, such as IEEE 1394, the vendor was required to implement drivers that 
interfaced with each specific bus type. 

  

Remote NDIS is a specification for network devices on dynamic Plug and Play I/O buses 
such as USB, IEEE 1394, Bluetooth, and Infiniband. The specification eliminates the need for a 
hardware vendor to write an NDIS miniport driver at all by defining bus-independent messages 
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and the mechanism by which the messages are transmitted over various buses. Remote NDIS 
messages mirror the NDIS interface and include messages for initializing and resetting a device, 
transmitting and receiving packets, setting and querying device parameters, and indicating media 
link status. 

The Remote NDIS architecture, in Figure 12-29, relies on a Microsoft-supplied NDIS 
miniport driver, \%SystemRoot%\System32\Drivers\Rndismp.sys, that translates NDIS commands 
and forwards them to a bus transport driver for the bus on which a device is located. The 
architecture allows for a single NDIS miniport driver to be used for all Remote NDIS drivers and 
a single bus transport driver for each supported bus. 

  

Currently, Remote NDIS for USB devices is included on Windows. While Remote NDIS on 
IEEE 1394 is fully specified, Windows does not yet support it, nor does it support it over 
Infiniband. 

12.7.4 QoS 

If no special measures are taken, IP traffic is delivered over a network on a first-come, 
firstserve basis. Applications have no control over the priority of their messages, and they can 
experience bursty network behavior, where they occasionally obtain high throughput and low 
latencies, but otherwise receive poor network performance. While this level of service is 
acceptable in most situations, an increasing number of network applications demand more 
consistent service levels, or quality of service (QoS) guarantees. Video conferencing, media 
streaming, and enterprise resource planning (ERP) are examples of applications that require good 
network performance. QoS allows an application to specify minimum bandwidth and maximum 
latencies, which can be satisfied only if every networking software and hardware component 
between a sender and a receiver supports QoS standards such as IEEE 802.1P, an industry 
standard that specifies the format of QoS packets and how OSI layer 2 devices (switches and 
network adapters) respond to them. 

Windows supports QoS through a policy-based QoS implementation that takes full advantage 
of the Next Generation TCP/IP network stack, the WFP, and NDIS lightweight filter drivers. The 
implementation allows for managing or prioritizing bandwidth use based on different conditions, 
such as the application, the source or destination IP address, the protocol being used, and the 
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source or destination ports. Network administrators typically apply QoS settings to a logon session 
or a computer with Active Directory–based Group Policy, but they can be applied locally as well. 

Policy-based QoS provides two methods through which bandwidth can be managed. The first 
uses a special field in the IP header called the Differentiated Services Code Point (DSCP). Routers 
that support DSCP read the value and separate packets into specific queues. The QoS architecture 
in Windows can mark outgoing packets with the appropriate DSCP field so that network devices 
can provide differentiated levels of service. The other bandwidth management method is the 
ability to simply throttle outgoing traffic based on the conditions outlined earlier, where the QoS 
components limit bandwidth to a specified rate. 

The Windows QoS implementation consists of several components, as shown in Figure 12-30. 
First, the QoS Client Side Extension (%SystemRoot%\System32\Gptext.dll) notifies the Group 
Policy client and the QoS Inspection Module that QoS settings have changed. Next, the QoS 
Inspection Module (eQoS), which is a WFP packet-inspection component implemented in the 
TCP/IP driver that reacts to policy changes, retrieves the updated policy and works with the 
transport layer and QoS Packet Scheduler to mark traffic that matches the policy. Finally, the QoS 
Packet Scheduler, or Pacer (%SystemRoot%\System32\Drivers\Pacer.sys), provides the NDIS 
lightweight filter functionality, such as throttling and setting the DSCP value, to control packet 
scheduling based on the QoS policies. Pacer also provides the GQoS (Generic QoS) and TC 
(Traffic Control) API support for legacy Windows applications that used these mechanisms. 

In addition to the systemwide, policy-based QoS support provided by the QoS architecture, 
Windows enables specific classes of socket-based applications to have individual and specific 
control of QoS behavior through an API called the Quality Windows Audio/Video Experience, or 
qWAVE. Network-based multimedia applications, like Voice over IP (VoIP), can use the qWAVE 
API to query information on real-time network bandwidth and adapt to changing network 
conditions, as well as to prioritize packets to efficiently use the available bandwidth. qWAVE also 
takes advantage of the topology protocols described earlier to dynamically determine if the current 
network devices will support the required bandwidth for a video stream, for example. It can notify 
applications of diminishing bandwidth, at which point the multimedia application is expected to 
reduce the stream quality, for example. 
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qWAVE is implemented in the QoS2 (%SystemRoot%\System32\Qwave.dll) API library and 
provides four main components: 

■ Admission control, which determines, when a new network multimedia stream is started, if 
the current network can support the sustained bandwidth requested. Windows Internals, Fifth 
Edition 

■ Caching, which allows the detailed admission control checks to be bypassed if similar 
usage patterns occurred in the past and the calculation result was already cached.  

■ Monitoring and probing, which keep track of available bandwidth and notify applications 
during low-bandwidth or high-latency situations. 

■ Traffic tagging and shaping, which uses the 802.11p and DSCP technologies mentioned 
earlier to tag packets with the appropriate priority to ensure timely delivery.  

Figure 12-31 shows the general overview of the qWAVE architecture: 

  

12.8 Binding 

The final piece in the Windows networking architecture puzzle is the way in which the 
components at the various layers—networking API layer, transport driver layer, NDIS driver 
layer—locate one another. The name of the process that connects the layers is binding. You’ve 
witnessed binding taking place if you’ve changed your network configuration by adding or 
removing a component using the Network Connections folder. 

When you install a networking component, you must supply an INF file for the component. 
(INF files are described in Chapter 7.) This file includes directions that setup API routines must 
follow to install and configure the component, including binding dependencies or binding 
relationships. A developer can specify binding dependencies for a proprietary component so that 
the Service Control Manager (the Service Control Manager is described in Chapter 4) will not 
only load the component in the correct order but will load the component only if other components 
the proprietary component depends on are present on the system. Binding relationships, which the 
bind engine determines with the aid of additional information in a component’s INF file, establish 
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connections between components at the various layers. The connections specify which 
components a network component on one layer can use on the layer beneath it. 

For example, the Workstation service (redirector) will automatically bind to the TCP/IP 
protocol. The order of the binding, which you can examine on the Adapters And Bindings tab in 
the Advanced Settings dialog box, shown in Figure 12-32, determines the priority of the binding. 
(See the section “Multiple Redirector Support” earlier in this chapter for instructions on how to 
launch the Advanced Settings dialog box.) When the redirector receives a request to access a 
remote file, it submits the request to both protocol drivers simultaneously. When the response 
comes, the redirector waits until it has also received responses from any higherpriority protocol 
drivers. Only then will the redirector return the result to the caller. Thus, it can be advantageous to 
reorder bindings so that bindings of high priority are also the most performance efficient or 
applicable to most of the computers in your network. You can also manually remove bindings 
with the Advanced Settings dialog box.  

  

The Bind value, in the Linkage subkey of a network component’s registry configuration key, 
stores binding information for that component. For example, if you examine 
HKLM\SYSTEM\CurrentControlSet\Services\LanmanWorkstation\Linkage\Bind, you’ll see the 
binding information for the Workstation service. 

12.9 Layered Network Services 

Windows includes network services that build on the APIs and components we’ve presented 
in this chapter. Describing the capabilities and detailed internal implementation of these services is 
outside the scope of this book, but this section provides a brief overview of remote access, Active 
Directory, Network Load Balancing, and Distributed File System (DFS), including DFS 
Replication (DFSR). 

Remote Access 

Remote access, which is available with Windows Server with the Routing and Remote 
Access service, allows remote access clients to connect to remote access servers and access 



 963

network resources such as files, printers, and network services as if the client were physically 
connected to the remote access server’s network. Windows provides two types of remote access: 

■ Dial-up remote access is used by clients that connect to a remote access server via a 
telephone or other telecommunications infrastructure. The telecommunications medium is used to 
create a temporary physical or virtual connection between the client and the server. 

■ Virtual private network (VPN) remote access lets a VPN client establish a virtual 
pointto-point connection to the server over an IP network such as the Internet. Windows also 
supports the Secure Socket Transmission Protocol (SSTP), which is a newer tunneling protocol for 
VPN connections that has the ability to pass through most firewalls and routers that block PPTP or 
L2TP/IPSec traffic. It does so by packaging PPP data over the SSL channel of the HTTPS 
protocol. Because the latter operates on port 443 and is usually part of typical Web browsing 
behavior, it is much more likely to be available than traditional VPN tunneling protocols.  

Remote access differs from remote control solutions because remote access acts as a proxy 
connection to a Windows network, whereas remote control software executes applications on a 
server, presenting a user interface to the client.  

Active Directory 

Active Directory is the Windows implementation of Lightweight Directory Access Protocol 
(LDAP) directory services. Active Directory is based on a database that stores objects representing 
resources defined by applications in a Windows network. For example, the structure and 
membership of a Windows domain, including the user account and password information, are 
stored in Active Directory. Object classes and the attributes that define properties of objects are 
specified by a schema. The objects in the Active Directory are hierarchically arranged, much like 
the registry’s logical organization, where container objects can store other objects, including other 
container objects. (See Chapter 6 for more information on container objects.) 

Active Directory supports a number of APIs that clients can use to access objects within an 
Active Directory database: 

■ The LDAP C API is a C language API that uses the LDAP networking protocol. 
Applications written in C or C++ can use this API directly, and applications written in other 
languages can access the APIs through translation layers. 

■ Active Directory Service Interfaces (ADSI) is a COM interface to Active Directory 
implemented on top of LDAP that abstracts the details of LDAP programming. ADSI supports 
multiple languages, including Microsoft Visual Basic, C, and Microsoft Visual C++. ADSI can 
also be used by Microsoft Windows Script Host (WSH) applications. 

■ Messaging API (MAPI) is supported for compatibility with Microsoft Exchange client and 
Outlook Address Book client applications. 

■ Security Account Manager (SAM) APIs are built on top of Active Directory to provide an 
interface to logon authentication packages such as MSV1_0 (\%SystemRoot%\System32 
\Msv1_0.dll, which is used for legacy NT LAN Manager authentication) and Kerberos 
(\%SystemRoot%\System32\Kdcsvc.dll). 



 964

■ Windows NT 4 networking APIs (Net APIs) are used by Windows NT 4 clients to gain 
access to Active Directory through SAM. 

■ NTDS API is used to look up SIDs and GUIDs in an Active Directory implementation (via 
DsCrackNames mostly) as well as for its main purposes, Active Directory management and 
replication. Several third parties have written applications that monitor Active Directory from 
these APIs. 

Active Directory is implemented as a database file that by default is named 
\%SystemRoot%\Ntds\Ntds.dit, and that is replicated across the domain controllers in a domain. 
The Active Directory directory service, which is a Windows service that executes in the Local 
Security Authority Subsystem (Lsass) process, manages the database, using DLLs that implement 
the on-disk structure of the database as well as provide transaction-based updates to protect the 
integrity of the database. The Active Directory database store is based on a version of the 
Extensible Storage Engine (ESE), also known as JET Blue, database used by Microsoft Exchange 
Server 2007, Desktop Search, and Windows Mail. The ESE library (%SystemRoot%\System32 
\Esent.dll) provides routines for accessing the database, which are open for other applications to 
use as well. Figure 12-33 shows the Active Directory architecture. 

  

Network Load Balancing 

As we stated earlier in the chapter, Network Load Balancing, which is included with 
Windows Server 2008, is based on NDIS lightweight filter technology. Network Load Balancing 
allows for the creation of a cluster containing up to 32 computers, which are called cluster hosts in 
Network Load Balancing. The cluster can maintain multiple dedicated IP addresses and a single 
virtual IP address that is published for access by clients. Client requests go to all the computers in 
the cluster, but only one cluster host responds to the request. The Network Load Balancing NDIS 
drivers effectively partition the client space among available cluster hosts in a distributed manner. 
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This way, each host handles its portion of incoming client requests and every client request always 
gets handled by one and only one host. The cluster host that determines it should handle a client 
request allows the request to propagate up to the TCP/IP protocol driver and eventually a server 
application; the other cluster hosts don’t. If a cluster host fails, the rest of the cluster realizes that 
the cluster host is no longer a candidate for processing requests and redistributes the incoming 
client requests to the remaining cluster hosts. No new client requests are sent to the downed 
cluster host. Another cluster host can be added to the cluster as a replacement, and it will then 
seamlessly start handling client requests. 

Network Load Balancing isn’t a general-purpose clustering solution because the server 
application that clients communicate with must have certain characteristics: the first is that it must 
be based on protocols supported by the Windows TCP/IP stack, and the second is that it must be 
able to handle client requests on any system in a Network Load Balancing cluster. This second 
requirement typically means that an application that must have access to shared state in order to 
service client requests must manage the shared state itself—Network Load Balancing doesn’t 
include services for automatically distributing shared state across cluster hosts. Applications that 
are ideally suited for Network Load Balancing include a Web server that serves static content, 
Windows Media Server, and Terminal Services. Figure 12-34 shows an example of a Network 
Load Balancing operation. 

  

Distributed File System and DFS Replication 

Distributed File System (DFS) is a service that layers on top of the Workstation service to 
connect together file shares into a single namespace. The file shares can reside on the same 
computer or on different computers, and DFS provides client access to the resources in a 
location-transparent manner. The root of a DFS namespace must be a file share defined on a 
Windows server. 

In addition to delivering a unified network-resource namespace, DFS provides other benefits 
through DFS replica sets. An administrator can create a DFS replica set from two or more shares 
and use a replication mechanism such as File Replication Service (FRS) to copy data between the 
shares of a replica set to keep their contents synchronized. DFS provides several forms of load 
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balancing by ordering and/or selecting members of a replica set to fulfill a client request for data 
on the replica set. In addition, DFS achieves high availability by routing requests to the working 
member or members of a replica set when a member becomes unavailable. 

The components that make up the DFS architecture are shown in Figure 12-35. The 
serverside implementation of DFS consists of a Windows service (\%SystemRoot%\System32 
\Dfssvc.exe) and a device driver (\%SystemRoot%\System32\Drivers\Dfs.sys). The DFS service is 
responsible for exporting DFS topology-management interfaces and maintaining the DFS 
topology in either the registry (on non–Active Directory systems) or Active Directory. The DFS 
driver performs topology lookups when it receives a client request so that it can direct the client to 
the system where the file it is requesting resides. 

  

On the client side, DFS support is implemented in another device driver 
(%SystemRoot%\System32\Drivers\Dfsc.sys) and uses the SMB redirector for its internal 
communication with DFS servers. The DFS client provider is implemented in 
\%SystemRoot%\System32\Ntlanman.dll. When a client issues a file I/O request that specifies a 
file in the DFS namespace, the DFS client driver communicates with the target file server by using 
the appropriate redirector. 

DFS also includes DFS Replication (DFSR). Its primary purpose is to replicate the contents 
of any DFS share, as well as the domain controller’s \SYSVOL directory, which is where 
Windows domain controllers store logon scripts and Group Policy files. (Group Policy permits 
administrators to define usage and security policies for the computers that belong to a domain.) 
DFSR allows for distributed multimaster replication, which enables any server to perform 
replication activity. When a replicated directory or file is changed, the changes are propagated to 
the other domain controllers. 

The fundamental concept in DFSR is a replica set, which consists of two or more systems 
that replicate between themselves the contents of a directory tree according to an administratively 
defined schedule and replication topology, which is the set of connections that defines the 
relationship between domain controllers in a forest and the directory partition replicas they share. 
Only directories on NTFS volumes can be replicated because DFSR relies on the NTFS change 
journal to detect changes to files in directories in a replica set. Because DFSR is based on 
multimaster replication, it can theoretically support hundreds or even thousands of systems as part 
of a replica set, and the computers of a replica set (called a replica group) can be connected with 
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arbitrary network topologies (such as ring, star, or mesh). Computers can also be members of 
multiple replica sets. DFSR uses Remote Differential Compression (RDC) to compress replica 
sets, which means that only differences between two servers are replicated, reducing bandwidth. 
DFSR is implemented as a Windows service (\%SystemRoot%\System32\Dfsr.exe) that uses 
authenticated RPC with encryption to communicate between instances of itself running on 
different computers. In addition, because Active Directory contains its own replication capabilities, 
DFSR uses Active Directory APIs to retrieve FRS configuration information from a domain’s 
Active Directory. DFSR also exposes a WMI interface for tracing, configuration, and management 
of the service.  

12.10  Conclusion 

The Windows network architecture provides a flexible infrastructure for networking APIs, 
network protocol drivers, and network adapter drivers. The Windows networking architecture 
takes advantage of I/O layering to give networking support the extensibility to evolve as computer 
networking evolves. When new protocols appear, developers can write a TDI transport to 
implement the protocol on Windows. Similarly, new APIs can interface to existing Windows 
protocol drivers. Finally, the range of networking APIs implemented on Windows affords network 
application developers a range of possible implementations, each with different programming 
models and protocol support. 
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13. Startup and Shutdown 

In this chapter, we’ll describe the steps required to boot Windows and the options that can 
affect system startup. Understanding the details of the boot process will help you diagnose 
problems that can arise during a boot. Then we’ll explain the kinds of things that can go wrong 
during the boot process and how to resolve them. Finally, we’ll explain what occurs on an orderly 
system shutdown. 

13.1 Boot Process 

In describing the Windows boot process, we’ll start with the installation of Windows and 
proceed through the execution of boot support files. Device drivers are a crucial part of the boot 
process, so we’ll explain the way that they control the point in the boot process at which they load 
and initialize. Then we’ll describe how the executive subsystems initialize and how the kernel 
launches the user-mode portion of Windows by starting the Session Manager process (Smss.exe), 
which starts the initial two sessions (session 0 and session 1). Along the way, we’ll highlight the 
points at which various text appears on the screen to help you correlate the internal process with 
what you see when you watch Windows boot. The early phases of the boot process differ 
significantly on x86 and x64 systems with a BIOS (basic input output system) versus systems with 
an EFI (Extensible Firmware Interface). EFI is a newer standard that does away with much of the 
legacy 16-bit code that BIOS systems use and allows the loading of preboot programs and drivers 
to support the operating system loading phase. The next sections describe the portions of the boot 
process specific to BIOSbased systems and are followed with a section describing the EFI-specific 
portions of the boot process. To support these different firmware implementations (as well as EFI 
2.0, also called Unified EFI, or UEFI), Windows provides a boot architecture that abstracts many 
of the differences away from users and developers in order to provide a consistent environment 
and experience regardless of the type of firmware used on the installed system. 

13.1.1 BIOS Preboot 

The Windows boot process doesn’t begin when you power on your computer or press the 
reset button. It begins when you install Windows on your computer. At some point during the 
execution of the Windows Setup program, the system’s primary hard disk is prepared with code 
that takes part in the boot process. Before we get into what this code does, let’s look at how and 
where Windows places the code on a disk. Since the early days of MS-DOS, a standard has 
existed on x86 systems for the way physical hard disks are divided into volumes.  

Microsoft operating systems split hard disks into discrete areas known as partitions and use 
file systems (such as FAT and NTFS) to format each partition into a volume. A hard disk can 
contain up to four primary partitions. Because this apportioning scheme would limit a disk to four 
volumes, a special partition type, called an extended partition, further allocates up to four 
additional partitions within each extended partition. Extended partitions can contain extended 



 969

partitions, which can contain extended partitions, and so on, making the number of volumes an 
operating system can place on a disk effectively infinite. Figure 13-1 shows an example of a hard 
disk layout, and Table 13-1 summarizes the files involved in the BIOS boot process. (You can 
learn more about Windows partitioning in Chapter 8, which covers storage management.) 

  

  

FIgure 13-1 Sample hard disk layout 

Physical disks are addressed in units known as sectors. A hard disk sector on a BIOS PC is 
typically 512 bytes. Utilities that prepare hard disks for the definition of volumes, such as the 
Windows Setup program, write a sector of data called a Master Boot Record (MBR) to the first 
sector on a hard disk. (MBR partitioning is described in Chapter 8.) The MBR includes a fixed 
amount of space that contains executable instructions (called boot code) and a table (called a 



 970

partition table) with four entries that define the locations of the primary partitions on the disk. 
When a BIOS-based computer boots, the first code it executes is called the BIOS, which is 
encoded into the computer’s ROM. The BIOS selects a boot device, reads that device’s MBR into 
memory, and transfers control to the code in the MBR. 

The MBRs written by Microsoft partitioning tools, such as the one integrated into Windows 
Setup and the Disk Management MMC snap-in, go through a similar process of reading and 
transferring control. First, an MBR’s code scans the primary partition table until it locates a 
partition containing a flag that signals the partition is bootable. When the MBR finds at least one 
such flag, it reads the first sector from the flagged partition into memory and transfers control to 
code within the partition. This type of partition is called a system partition, and the first sector of 
such a partition is called a boot sector. The volume defined for this partition is called the system 
volume. 

Operating systems generally write boot sectors to disk without a user’s involvement. For 
example, when Windows Setup writes the MBR to a hard disk, it also writes the file system boot 
code (part of the boot sector) to the first bootable partition of the disk. 

Before writing to a partition’s boot sector, Windows Setup ensures that the boot partition is 
formatted with NTFS, the only supported file system that Windows can boot from, or formats the 
boot partition (and any other partition) with NTFS. Note that the format of the system partition 
can be any format that Windows supports (such as FAT32). If partitions are already formatted 
appropriately, you can instruct Setup to skip this step. After Setup formats the system partition, 
Setup copies the Boot Manager program (Bootmgr) that Windows uses to the system partition (the 
system volume). 

Another of Setup’s roles is to prepare the Boot Configuration Database (BCD), which on 
BIOS systems is stored in the \Boot\BCD file on the root directory of the system volume. This file 
contains options for starting the version of Windows that Setup installs and any preexisting 
Windows installations. If the BCD already exists, the Setup program simply adds new entries 
relevant to the new installation. 

13.1.2 The BIOS Boot Sector and Bootmgr 

Setup must know the partition format before it writes a boot sector because the contents of 
the boot sector vary depending on the format. For a partition that is in NTFS format, Windows 
writes NTFS-capable code. The role of the boot-sector code is to give Windows information about 
the structure and format of a volume and to read in the Bootmgr file from the root directory of the 
volume. Thus, the boot-sector code contains just enough read-only file system code to accomplish 
this task. After the boot-sector code loads Bootmgr into memory, it transfers control to Bootmgr’s 
entry point. If the boot-sector code can’t find Bootmgr in the volume’s root directory, it displays 
the error message “BOOTMGR is missing”.  

Bootmgr begins its existence while a system is executing in an x86 operating mode called 
real mode. In real mode, no virtual-to-physical translation of memory addresses occurs, which 
means that programs that use the memory addresses interpret them as physical addresses and that 
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only the first 1 MB of the computer’s physical memory is accessible. Simple MS-DOS programs 
execute in a real-mode environment. However, the first action Bootmgr takes is to switch the 
system to protected mode. Still no virtual-to-physical translation occurs at this point in the boot 
process, but a full 32 bits of memory becomes accessible. After the system is in protected mode, 
Bootmgr can access all of physical memory. After creating enough page tables to make memory 
below 16 MB accessible with paging turned on, Bootmgr enables paging. Protected mode with 
paging enabled is the mode in which Windows executes in normal operation. 

After Bootmgr enables protected mode, it is fully operational. However, it still relies on 
functions supplied by BIOS to access IDE-based system and boot disks as well as the display. 
Bootmgr’s BIOS-interfacing functions briefly switch the processor back to a mode in which 
services provided by the BIOS can be executed, called real mode. Bootmgr next reads the BCD 
file from the \Boot directory using built-in file system code. Like the boot sector’s code, 

Bootmgr contains read-only NTFS code (Bootmgr also supports other file systems, such as 
FAT, El Torito CDFS, UDFS, and WIM files); unlike the boot sector’s code, however, Bootmgr’s 
file system code can read subdirectories. 

Note Bootmgr and other boot applications can still write to preallocated files on NTFS 
volumes, because only the data needs to be written, instead of performing all the complex 
allocation work that is typically required on an NTFS volume. This is how these applications can 
write to bootsect.dat, for example. 

Bootmgr next clears the screen. If Windows enabled the BCD setting to inform Bootmgr of a 
hibernation resume, this shortcuts the boot process by launching Winresume.exe, which will read 
the contents of the file into memory and transfer control to code in the kernel that resumes a 
hibernated system. That code is responsible for restarting drivers that were active when the system 
was shut down. Hiberfil.sys will be valid only if the last time the computer was shut down it was 
hibernated. (See the section “The Power Manager” in Chapter 7 for information on hibernation.) 

If there is more than one boot-selection entry in the BCD, Bootmgr presents the user with the 
boot-selection menu (if there is only one entry, Bootmgr bypasses the menu and proceeds to 
launch Winload.exe). Selection entries in the BCD direct Bootmgr to the partition on which the 
Windows system directory (typically \Windows) of the selected installation resides. This partition 
might be the same as the system partition, or it might be another primary or extended partition. 

Entries in the BCD can include optional arguments that Bootmgr, Winload, and other 
components involved in the boot process interpret. Table 13-2 contains a list of these options and 
their effects for Bootmgr, Table 13-3 shows a list of BCD options for boot applications, and Table 
13-4 shows BCD options for the Windows boot loader. The Bcdedit.exe tool provides a 
convenient interface for setting a number of the switches. Some options that are included in the 
BCD save to the registry value HKLM\SYSTEM\CurrentControlSet\Control\SystemStartOptions 
if they correspond to command-line switches; otherwise, they are kept only in the BCD. 
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If the user doesn’t select an entry from the selection menu within the timeout period the BCD 
specifies, Bootmgr chooses the default selection specified in the BCD (if there is only one entry, it 
chooses this one). Once the boot selection has been made, Bootmgr loads the boot loader 
associated with that entry, which will be Winload.exe for Windows installations. 

Winload.exe also contains code that queries the system’s ACPI BIOS to retrieve basic device 
and configuration information. This information includes the following: 

■ The time and date information stored in the system’s CMOS (nonvolatile memory) 

■ The number, size, and type of disk drives on the system 

■ Legacy device information, such as buses (for example, ISA, PCI, EISA, Micro Channel 
Architecture [MCA]), mice, parallel ports, and video adapters are not queried and instead faked 
out. 

This information is gathered into internal data structures that will be stored under the 
HKLM\HARDWARE\DESCRIPTION registry key later in the boot. 

Next, Winload begins loading the files from the boot volume needed to start the kernel 
initialization. The boot volume is the volume that corresponds to the partition on which the system 
directory (usually \Windows) of the installation being booted is located. The steps Winload 
follows here include: 
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1. Loads the appropriate kernel and HAL images (Ntoskrnl.exe and Hal.dll by default) as 
well as any of their dependencies. If Winload fails to load either of these files, it prints the 
message “Windows could not start because the following file was missing or corrupt”, followed 
by the name of the file. 

2. Reads in the VGA font file (by default, vgaoem.fon). If this file fails, the same error 
message as described in step 1 will be shown. 

3. Reads in the NLS (National Language System) files used for internationalization. By 
default, these are l_intl.nls, c_1252.nls, and c_437.nls. 

4. Reads in the SYSTEM registry hive, \Windows\System32\Config\System, so that it can 
determine which device drivers need to be loaded to accomplish the boot. (A hive is a file that 
contains a registry subtree. You’ll find more details about the registry in Chapter 4.) 

5. Scans the in-memory SYSTEM registry hive and locates all the boot device drivers. Boot 
device drivers are drivers necessary to boot the system. These drivers are indicated in the registry 
by a start value of SERVICE_BOOT_START (0). Every device driver has a registry subkey under 
HKLM\SYSTEM\CurrentControlSet\Services. For example, Services has a subkey named fvevol 
for the BitLocker driver, which you can see in Figure 13-2. (For a detailed description of the 
Services registry entries, see the section “Services” in Chapter 4.) 

  

6. Adds the file system driver that’s responsible for implementing the code for the type of 
partition (NTFS) on which the installation directory resides to the list of boot drivers to load. 
Winload must load this driver at this time; if it didn’t, the kernel would require the drivers to load 
themselves, a requirement that would introduce a circular dependency.  

7. Loads the boot drivers, which should only be drivers that, like the file system driver for the 
boot volume, would introduce a circular dependency if the kernel was required to load them. To 
indicate the progress of the loading, Winload updates a progress bar displayed below the text 
“Starting Windows”. If the sos option is specified in the BCD, Winload doesn’t display the 
progress bar but instead displays the file names of each boot driver. Keep in mind that the drivers 
are loaded but not initialized at this time—they initialize later in the boot sequence. 

8. Prepares CPU registers for the execution of Ntoskrnl.exe. 
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This action is the end of Winload’s role in the boot process. At this point, Winload calls the 
main function in Ntoskrnl.exe (KiSystemStartup) to perform the rest of the system initialization. 

13.1.3 The EFI Boot Process 

An EFI-compliant system has firmware that runs boot loader code that’s been programmed 
into the system’s nonvolatile RAM (NVRAM) by Windows Setup. The boot code reads the 
BCD’s contents, which are also stored in NVRAM. The Bcdedit.exe tool mentioned earlier also 
has the ability to abstract the firmware’s NVRAM variables in the BCD, allowing for full 
transparency of this mechanism. 

The EFI standard defines the ability to prompt the user with an EFI Boot Manager that can be 
used to select an operating system or additional applications to load. However, to provide a 
consistent user interface between BIOS systems and EFI systems, Windows sets a 2- second 
timeout for selecting the EFI Boot Manager, after which the EFI-version of Bootmgr 
(Bootmgfw.efi) loads instead. 

Hardware detection occurs next, where the boot loader uses EFI interfaces to determine the 
number and type of the following devices: 

■ Network adapters 

■ Video adapters 

■ Keyboards 

■ Disk controllers 

■ Storage devices 

On EFI systems, all operations and programs execute in the native CPU mode with paging 
enabled and no part of the Windows boot process executes in 16-bit mode. Note that although EFI 
is supported on both 32-bit and 64-bit systems, Windows provides support for EFI only on 64-bit 
platforms. 

Just as Bootmgr does on x86 and x64 systems, the EFI Boot Manager presents a menu of 
boot selections with an optional timeout. Once a boot selection is made, the loader navigates to the 
subdirectory on the EFI System partition corresponding to the selection and loads the EFI version 
of the Windows boot loader (Winload.efi). 

The EFI specification requires that the system have a partition designated as the EFI System 
partition that is formatted with the FAT file system and is between 100 MB and 1 GB in size or up 
to one percent of the size of the disk, and each Windows installation has a subdirectory on the EFI 
System partition under EFI\Microsoft. 

Note that through the unified boot process and model in Windows Vista, the components in 
Table 13-1 apply almost identically to EFI systems, except that those ending in .exe end in .efi, 
and they use EFI APIs and services instead of BIOS interrupts. Another difference is that to avoid 
limitations of the MBR partition format (including a maximum of four partitions per disk), EFI 
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systems use the GPT (GUID Partition Table) format, which uses GUIDs to identify different 
partitions and their roles on the system. 

Note Although the EFI standard has been available since early 2001, very few computer 
manufacturers have started using this technology because of backward compatibility concerns and 
the difficulty of moving from an entrenched 20-year-old technology to a new one. Two notable 
exceptions are Itanium machines and Apple’s Intel Macintosh computers. The latter, however, 
require a specialized BIOS emulation module to load Windows, because of implementation 
incompatibilities.  

13.1.4 Initializing the Kernel and Executive Subsystems 

When Winload calls Ntoskrnl, it passes a data structure called the loader parameter block that 
contains the system and boot partition paths, a pointer to the memory tables Winload generated to 
describe the physical memory on the system, a pointer to the in-memory copy of the 
HARDWARE and SYSTEM registry hives, a pointer to the list of boot drivers Winload loaded, as 
well as various other information related to the boot processing performed until  this point. 

Ntoskrnl then begins the first of its two-phase initialization process, called phase 0 and phase 
1. Most executive subsystems have an initialization function that takes a parameter that identifies 
which phase is executing. 

During phase 0, interrupts are disabled. The purpose of this phase is to build the rudimentary 
structures required to allow the services needed in phase 1 to be invoked. Ntoskrnl’s main function 
calls KiSystemStartup, which in turn calls HalInitializeProcessor and KiInitializeKernel for each 
CPU. KiInitializeKernel, if running on the boot CPU, performs systemwide kernel initialization, 
such as initializing internal lists and other data structures that all CPUs share. It also checks 
whether virtualization was specified as a BCD option (hypervisorlaunchtype), and whether the 
CPU supports hardware virtualization technology. The first instance of KiInitializeKernel then 
calls the function responsible for orchestrating phase 0, InitBootProcessor, while subsequent 
processors only call HalInitSystem.  

InitBootProcessor starts by initializing the pool look-aside pointers for the initial CPU and by 
checking for and honoring the BCD burnmemory boot option, where it discards the amount of 
physical memory the value specifies. It then performs enough initialization of the NLS files that 
were loaded by Winload (described earlier) to allow Unicode to ANSI and OEM translation to 
work. Next, it continues by calling the HAL function HalInitSystem, which gives the HAL a 
chance to gain system control before Windows performs significant further initialization. 

One responsibility of HalInitSystem is to prepare the system interrupt controller of each CPU 
for interrupts and to configure the interval clock timer interrupt, which is used for CPU time 
accounting. (See the section “Quantum Accounting” in Chapter 5 for more on CPU time 
accounting.) 

When HalInitSystem returns control, InitBootProcessor proceeds by computing the reciprocal 
for timer expiration. Reciprocals are used for optimizing divisions on most modern processors. 
They can perform multiplications faster, and because Windows must divide the current 64-bit time 
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value in order to find out which timers need to expire, this static calculation reduces interrupt 
latency when the clock interval fires. InitBootProcessor then continues by setting up the system 
root path and searching the kernel image for the location of the crash message strings it displays 
on blue screens, caching their location to avoid looking up the strings during a crash, which could 
be dangerous and unreliable. Next, InitBootProcessor initializes the quota functionality part of the 
process manager and reads the control vector.  

This data structure contains more than 150 kernel-tuning options that are part of the 
HKLM\SYSTEM\CurrentControlSet\Control registry key, including information such as the 
licensing data and version information for the installation. InitBootProcessor is now ready to call 
the phase 0 initialization routines for the executive, Driver Verifier, and memory manager. These 
components perform the following initialization steps: 

1. The executive initializes various internal locks, resources, lists, and variables and validates 
that the product suite type in the registry is valid, discouraging casual modification of the registry 
in order to “upgrade” to a SKU of Windows that was not actually purchased. This is only one of 
the many such checks in the kernel. 

2. The Driver Verifier, if enabled, initializes various settings and behaviors based on the 
current state of the system (such as whether safe mode is enabled) and verification options. It also 
picks which drivers to target for tests that target randomly chosen drivers. 

3. The memory manager constructs page tables and internal data structures that are necessary 
to provide basic memory services. It also builds and reserves an area for the system file cache and 
creates memory areas for the paged and nonpaged pools (described in Chapter 9). The other 
executive subsystems, the kernel, and device drivers use these two memory pools for allocating 
their data structures. 

Next, InitBootProcessor calls HalInitializeBios to set up the BIOS emulation code part of the 
HAL. This code is used both on real BIOS systems, as well as on EFI systems, to allow access (or 
to emulate access) to 16-bit real mode interrupts and memory, which are used mainly by Bootvid 
to display the early VGA boot screen and bugcheck screen. After the function returns, the kernel 
initializes the Bootvid library and displays early boot status messages by calling 
InbvEnableBootDriver and InbvDriverInitailize. 

At this point, InitBootProcessor enumerates the boot-start drivers that were loaded by 
Winload and calls DbgLoadImageSymbols to inform the kernel debugger (if attached) to load 
symbols for each of these drivers. If the host debugger has configured the break on symbol load 
option, this will be the earliest point for a kernel debugger to gain control of the system. 
InitBootProcessor now calls HvlInitSystem, which attempts to connect to the hypervisor in case 
Windows might be running inside a Hyper-V host system’s child partition. When the function 
returns, it calls HeadlessInit to initialize the serial console if the machine was configured for 
Emergency Management Services (EMS). 

Next, InitBootProcessor builds the versioning information that will be used later in the boot 
process, such as the build number, service pack version, and beta version status. Then it copies the 
NLS tables that Winload previously loaded into paged pool, re-initializes them, and creates the 
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kernel stack trace database if the global flags specify creating one. (For more information on the 
global flags, see Chapter 3.) 

Finally, InitBootProcessor calls the object manager, security reference monitor, process 
manager, user-mode debugging framework, and the Plug and Play manager. These components 
perform the following initialization steps: 

1. During the object manager initialization, the objects that are necessary to construct the 
object manager namespace are defined so that other subsystems can insert objects into it. A handle 
table is created so that resource tracking can begin. 

2. The security reference monitor initializes the token type object and then uses the object to 
create and prepare the first local system account token for assignment to the initial process. (See 
Chapter 6 for a description of the local system account.) 

3. The process manager performs most of its initialization in phase 0, defining the process 
and thread object types and setting up lists to track active processes and threads. The process 
manager also creates a process object for the initial process and names it Idle.  As its last step, the 
process manager creates the System process and a system thread to execute the routine 
Phase1Initialization. This thread doesn’t start running right away because interrupts are still 
disabled. 

4. The user-mode debugging framework creates the definition of the debug object type that is 
used for attaching a debugger to a process and receiving debugger events. For more information 
on user-mode debugging, see Chapter 3. 

5. The Plug and Play manager’s phase 0 initialization then takes place, which involves simply 
initializing an executive resource used to synchronize bus resources.  

When control returns to KiInitializeKernel, the last step is to allocate the DPC stack for the 
current processor and the I/O privilege map save area (on x86 systems only), after which control 
proceeds to the Idle loop, which then causes the system thread created in step 3 of the previous 
process description to begin executing phase 1. (Secondary processors wait to begin their 
initialization until step 8 of phase 1, described in the following list.)  

Phase 1 consists of the following steps: 

1. Phase1 InitializationDiscard, which, as the name implies, discards the code that is part of 
the INIT section of the kernel image in order to preserve memory.  

2. The initialization thread sets its priority to 31, the highest possible, in order to prevent 
preemption. 

3. HalInitSystem prepares the system to accept interrupts from devices and to enable 
interrupts. 

4. The boot video driver is called, which in turn displays the Windows startup screen, which 
by default consists of a black screen and a progress bar. If the quietboot boot option was used, this 
step will not occur. 
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5. The kernel builds various strings and version information, which are displayed on the boot 
screen through Bootvid if the sos boot option was enabled. This includes the full version 
information, number of processors supported, and amount of memory supported. 

6. The power manager’s initialization is called. 

7. The system time is initialized (by calling HalQueryRealTimeClock) and then stored as the 
time the system booted. 

8. On a multiprocessor system, the remaining processors are initialized by 

KeStartAllProcessors and HalAllProcessorsStarted. The number of processors that will be 
initialized and supported depends on a combination of the actual physical count, the licensing 
information for the installed SKU of Windows, boot options such as numproc and onecpu, and 
whether dynamic partitioning is enabled (Windows Server 2008 systems only). After all the 
available processors have initialized, the affinity of the system process is updated to include all 
processors. 

9. The object manager creates the namespace root directory (\), \ObjectTypes directory, and 
the DOS device name mapping directory (\Global??). It then creates the \DosDevices symbolic 
link that points at the Windows subsystem device name mapping directory. 

10. The executive is called to create the executive object types, including semaphore, mutex, 
event, and timer. 

11. The I/O manager is called to create the I/O manager object types, including device, driver, 
controller, adapter, and file objects. 

12. The kernel debugger library finalizes initialization of debugging settings and parameters 
if the debugger has not been triggered prior to this point. 

13. The transaction manager also creates its object types, such as the enlistment, resource 
manager, and transaction manager types. 

14. The kernel initializes scheduler (dispatcher) data structures and the system service 
dispatch table. 

15. If the Driver Verifier is enabled and, depending on verification options, pool verification 
is enabled, object handle tracing is started for the system process. 

16. The security reference monitor creates the \Security directory in the object manager 
namespace and initializes auditing data structures if auditing is enabled. 

17. The memory manager is called to create the section object and the memory manager’s 
system worker threads (which are explained in Chapter 9). 

18. NLS tables are mapped into system space so that they can be easily mapped by usermode 
processes. 

19. Ntdll.dll is mapped into the system address space. 

20. The cache manager initializes the file system cache data structures and creates its worker 
threads. 
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21. The configuration manager creates the \Registry key object in the object manager 
namespace and copies the initial registry data passed by Winload into the HARDWARE and 
SYSTEM hives. 

22. The errata manager initializes and scans the registry for errata information, as well as the 
INF (driver installation file, described in Chapter 7) database containing errata for various drivers. 

23. SuperFetch and the prefetcher are initialized. 

24. The current time zone information is initialized. 

25. Global file system driver data structures are initialized. 

26. Phase 1 of debugger-transport-specific information is performed by calling the 
KdDebuggerInitialize1 routine in the registered transport, such as Kdcom.dll. 

27. The Plug and Play manager calls the Plug and Play BIOS. 

28. The advanced local procedure call (ALPC) subsystem initializes the ALPC port type and 
ALPC waitable port type objects. The older LPC objects are set as aliases. 

29. If the system was booted with boot logging (with the BCD bootlog option), the boot log 
file is initialized. If the system was booted in safe mode, a string is displayed on the boot screen 
with the current safe mode boot type. 

30. The executive is called to execute its second initialization phase, where it configures part 
of the Windows licensing functionality in the kernel, such as validating the registry settings that 
hold license data. Also, if persistent data from boot applications is present (such as memory 
diagnostic results or resume from hibernation information), the relevant log files and information 
are written to disk or to the registry. 

31. The MiniNT/WinPE registry keys are created if this is such a boot, and the NLS object 
directory is created in the namespace, which will be used later to host the section objects for the 
various memory-mapped NLS files. 

32. The I/O manager initialization now takes place. This stage is a complex phase of system 
startup that accounts for most of the boot time. The I/O manager first initializes various internal 
structures and creates the driver and device object types. It then calls the Plug and Play manager, 
power manager, and HAL to begin the various stages of dynamic device enumeration and 
initialization. (Because this process is complex and specific to the I/O system, we cover the details 
in Chapter 7.) Then the Windows Management Instrumentation (WMI) subsystem is initialized, 
which provides WMI support for device drivers. (See the section “Windows Management 
Instrumentation” in Chapter 4 for more information.) This also initializes Event Tracing for 
Windows (ETW). Next, all the boot-start drivers are called to perform their driver-specific 
initialization, and then the system-start device drivers are loaded and initialized. (Details on the 
processing of the driver load control information on the registry are also covered in Chapter 7.) 
Finally, the Windows subsystem device names are created as symbolic links in the object 
manager’s namespace. 

33. The transaction manager sets up the Windows software trace preprocessor (WPP) and 
ETW and initializes with WMI. (ETW and WMI are described in Chapter 4.) 
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34. Now that boot-start and system-start drivers are loaded, the errata manager loads the INF 
database with the driver errata and begins parsing it, which includes applying registry PCI 
configuration workarounds. 

35. If the computer is booting in safe mode, this fact is recorded in the registry.  

36. Unless explicitly disabled in the registry, paging of kernel-mode code (in Ntoskrnl and 
drivers) is enabled. 

37. The configuration manager makes sure that all processors on an SMP system are identical 
in terms of the features that they support; otherwise, it crashes the system. 

38. On 32-bit systems, VDM (Virtual Dos Machine) support is initialized, which includes 
determining whether the processor supports Virtual Machine Extensions (VME). 

39. The process manager is called to set up rate limiting for jobs, initialize the static 
environment for protected processes, and look up the various system-defined entry points in the 
user-mode system library (Ntdll.dll). 

40. The power manager is called to initialize various power management structures. 

41. The rest of the licensing information for the system is initialized, including caching the 
current policy settings stored in the registry. 

42. The security reference monitor is called to create the Command Server Thread that 
communicates with Lsass. (See the section “Security System Components” in Chapter 6 for more 
on how security is enforced in Windows.) 

43. The Session Manager (Smss) process (introduced in Chapter 2) is started. Smss is 
responsible for creating the user-mode environment that provides the visible interface to 
Windows—its initialization steps are covered in the next section. 

44. All the memory used up by the loader parameter block and all its references is now freed. 

As a final step before considering the executive and kernel initialization complete, the phase 
1 initialization thread waits for the handle to the Session Manager process with a timeout value of 
5 seconds. If the Session Manager process exits before the 5 seconds elapse, the system crashes 
with a SESSION5_INITIALIZATION_FAILED stop code.  

If the 5-second wait times out (that is, if 5 seconds elapse), the Session Manager is assumed 
to have started successfully, and the phase 1 initialization function calls the memory manager’s 
zero page thread function (explained in Chapter 9). Thus, this system thread becomes the zero 
page thread for the remainder of the life of the system.  

13.1.5 Smss, Csrss, and Wininit 

Smss is like any other user-mode process except for two differences: First, Windows 
considers Smss a trusted part of the operating system. Second, Smss is a native application. 
Because it’s a trusted operating system component, Smss can perform actions few other processes 
can perform, such as creating security tokens. Because it’s a native application, Smss doesn’t use 



 986

Windows APIs—it uses only core executive APIs known collectively as the Windows native API. 
Smss doesn’t use the Win32 APIs because the Windows subsystem isn’t executing when Smss 
launches. In fact, one of Smss’s first tasks is to start the Windows subsystem. 

Smss then calls the configuration manager executive subsystem to finish initializing the 
registry, fleshing the registry out to include all its keys. The configuration manager is programmed 
to know where the core registry hives are stored on disk (excluding hives corresponding to user 
profiles), and it records the paths to the hives it loads in the HKLM\SYSTEM 
\CurrentControlSet\Control\hivelist key. 

The main thread of Smss performs the following initialization steps:  

1. Marks itself as a critical process and its main thread as a critical thread. As discussed 
earlier, this will cause the kernel to crash the system if Smss quits unexpectedly. Smss also 
enables the automatic affinity update mode to support dynamic processor addition (see Chapter 5 
for more information). 

2. Creates protected prefixes for the mailslot and named pipe file system drivers, creating 
privileged paths for administrators and service accounts to communicate through those paths. 

3. Calls SmpInit, which tunes the maximum concurrency level for Smss, meaning the 
maximum number of parallel sessions that will be created by spawning copies of Smss into other 
sessions. This is at minimum four and at most the number of active CPUs. 

4. SmpInit then creates an ALPC port object (\SmApiPort) to receive client requests (such as 
to load a new subsystem or create a session). 

5. SmpInit calls SmpLoadDataFromRegistry, which starts by setting up the default 
environment variables for the system, and sets the SAFEBOOT variable if the system was booted 
in safe mode. 

6. SmpLoadDataFromRegistry calls SmpInitializeDosDevices to define the symbolic links 
for MS-DOS device names (such as COM1 and LPT1). 

7. SmpLoadDataFromRegistry creates the \Sessions directory in the object manager’s 
namespace (for multiple sessions). 

8. SmpLoadDataFromRegistry runs any programs defined in HKLM\SYSTEM 
\Current-Control Set\Control\Session Manager\BootExecute with SmpExecuteCommand. 
Typically, this value contains one command to run Autochk (the boot-time version of Chkdsk). 

9. SmpLoadDataFromRegistry calls SmpProcessFileRenames to perform delayed file rename 
and delete operations as directed by HKLM\SYSTEM\CurrentControlSet\Control\Session 
Manager\PendingFileRenameOperations and 
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\PendingFileRenameOperations2. 

10. SmpLoadDataFromRegistry calls SmpCreatePagingFiles to create additional paging files. 
Paging file configuration is stored under HKLM\SYSTEM\CurrentControlSet\Control\Session 
Manager\Memory Management\PagingFiles. 
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11. SmpLoadDataFromRegistry initializes the registry by calling the native function 
NtInitializeRegistry. The configuration manager builds the rest of the registry by loading the 
registry hives for the HKLM\SAM, HKLM\SECURITY, and HKLM\SOFTWARE keys. 
Although HKLM\SYSTEM\CurrentControlSet\Control\hivelist locates the hive files on disk, the 
configuration manager is coded to look for them in \Windows\System32\Config. 

12. SmpLoadDataFromRegistry calls SmpCreateDynamicEnvironmentVariables to add 
system environment variables that are defined in HKLM\SYSTEM\CurrentControlSet\Session 
Manager\Environment, as well as processor-specific environment variables such as 
NUMBER_PROCESSORS, PROCESSOR_ARCHITECTURE, and PROCESSOR_LEVEL. 

13. SmpLoadDataFromRegistry runs any programs defined in HKLM\SYSTEM\Current- 
ControlSet\Control\Session Manager\SetupExecute with SmpExecuteCommand. Typically, this 
value is set only if Windows is being booted as part of the second stage of installation and 
Setupcl.exe is the default value.  

14. SmpLoadDataFromRegistry calls SmpConfigureSharedSessionData to initialize the list 
of subsystems that will be started in each session (both immediately and deferred) as well as the 
Session 0 initialization command (which, by default, is to launch the Wininit.exe process). The 
initialization command can be overridden by creating a string value called S0InitialCommand in 
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager and setting it as the path to another 
program. 

15. SmpLoadDataFromRegistry calls SmpInitializeKnownDlls to open known DLLs, and 
creates section objects for them in the \Knowndlls directory of the object manager namespace. The 
list of DLLs considered known is located in HKLM\SYSTEM\CurrentControlSet\Control\Session 
Manager\KnownDLLs, and the path to the directory in which the DLLs are located is stored in the 
Dlldirectory value of the key. 

16. Finally, SmpLoadDataFromRegistry calls SmpTranslateSystemPartitionInformation to 
convert the SystemPartition key stored in HKLM\SYSTEM\Setup, which is stored in native NT 
object manager path format, to a volume drive letter stored in the BootDir value. Among other 
components, Windows Update uses this registry key to figure out what the system volume is. 

17. At this point, SmpLoadDataFromRegistry returns to SmpInit, which returns to the main 
thread entry point. Smss then creates the number of initial sessions that were defined (typically, 
only one, session 0, but you can change this number through the NumberOfInitialSessions registry 
value in the Smss registry key mentioned earlier) by calling SmpCreateInitialSession, which 
creates an Smss process for each user session. This function’s main job is to call SmpStartCsr to 
start Csrss in each session. 

18. As part of Csrss’s initialization, it loads the kernel-mode part of the Windows subsystem 
(Win32k.sys). The initialization code in Win32k.sys uses the video driver to switch the screen to 
the resolution defined by the default profile, so this is the point at which the screen changes from 
the VGA mode the boot video driver uses to the default resolution chosen for the system. 

19. Meanwhile, each spawned Smss in a different user session starts the other subsystem 
processes, such as Psxss if the Subsystem for Unix-based Applications feature was installed. (See 
Chapter 3 for more information on subsystem processes.) 
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20. The first Smss from session 0 executes the Session 0 initialization command (described in 
step 14), by default launching the Windows initialization process (Wininit). Other Smss instances 
start the interactive logon manager process (Winlogon), which, unlike Wininit, is hardcoded. The 
startup steps of Wininit and Winlogon are described shortly.  

Pending File rename Operations 

The fact that executable images and DLLs are memory-mapped when they are used makes it 
impossible to update core system files after Windows has finished booting (unless hotpatching 
technology is used, which is only for Microsoft patches to the operating system). The MoveFileEx 
Windows API has an option to specify that a file move be delayed until the next boot. Service 
packs and hotfixes that must update in-use memory-mapped files install replacement files onto a 
system in temporary locations and use the MoveFileEx API to have them replace otherwise inuse 
files. When used with that option, MoveFileEx simply records commands in the 
PendingFileRenameOperations and PendingFileRenameOperations2 values under 
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager. These registry values are of type 
MULTI_SZ, where each operation is specified in pairs of file names: the first file name is the 
source location, and the second is the target location. Delete operations use an empty string as 
their target path. You can use the Pendmoves utility from Windows Sysinternals 
(www.microsoft.com/technet/sysinternals) to view registered delayed rename and delete 
commands. 

After performing these initialization steps, the main thread in Smss waits forever on the 
process handle of Winlogon, while the other ALPC threads wait for messages to create new 
sessions or subsystems. If either Wininit or Csrss terminate unexpectedly, the kernel crashes the 
system because these processes are marked as critical. If Winlogon terminates unexpectedly, the 
session associated with it is logged off. 

Wininit then performs its startup steps, such as creating the initial window station and 
desktop objects. It also configures the Session 0 window hook, which is used by the Interactive 
Services Detection service (UI0Detect.exe) to provide backward compatibility with interactive 
services (see Chapter 4 for more information on services). Wininit then creates the service control 
manager (SCM) process (\Windows\System32\Services.exe), which loads all services and device 
drivers marked for auto-start, and the Local Security Authority subsystem (Lsass) process 
(\Windows\System32\Lsass.exe). Finally, it loads the local session manager 
(\Windows\System32\Lsm.exe). On session 1 and beyond, Winlogon runs instead and loads the 
registered credential providers for the system (by default, the Microsoft credential provider 
supports password-based and smartcard-based logons) into a child process called LogonUI 
(\Windows\System32\Logonui.exe, which is responsible for displaying the logon interface. (For 
more details on the startup sequence for Wininit, Winlogon, and Lsass, see the section “Winlogon 
Initialization” in Chapter 6.) 

After the SCM initializes the auto-start services and drivers and a user has successfully 
logged on at the console, the SCM deems the boot successful. The registry’s last known good 
control set (as indicated by HKLM\SYSTEM\Select\LastKnownGood) is updated to match 
\CurrentControlSet. 
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Note Because noninteractive servers might never have an interactive logon, they might not 
get LastKnownGood updated to reflect the control set used for a successful boot. You can override 
the definition of a successful boot by setting HKLM\SOFTWARE\Microsoft\Windows 
NT\CurrentVersion\Winlogon\ReportBootOk to 0, writing a custom boot verification program that 
calls the NotifyBootConfigStatus Windows API when a boot is successful, and entering the path 
to the verification program in HKLM\SYSTEM\CurrentControlSet\Control\BootVerification- 
Program.  

After launching the SCM, Winlogon waits for an interactive logon notification from the 
credential provider. When it receives a logon and validates the logon (a process for which you can 
find more information in the section “User Logon Steps” in Chapter 6), Winlogon loads the 
registry hive from the profile of the user logging in and maps it to HKCU. It then sets the user’s 
environment variables that are stored in HKCU\Environment and notifies the Winlogon 
notification packages registered in HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion 
\Winlogon\Notify that a logon has occurred.  

Winlogon next starts the shell by launching the executable or executables specified in 
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\WinLogon\Userinit (with multiple 
executables separated by commas) that by default points at \Windows\System32\Userinit.exe. 
Userinit.exe performs the following steps: 

1. Processes the user scripts specified in HKCU\Software\Policies\Microsoft\Windows 
\System\Scripts and the machine logon scripts in HKLM\SOFTWARE\Policies\Microsoft 
\Windows\System\Scripts. (Because machine scripts run after user scripts, they can override user 
settings.) 

2. If Group Policy specifies a user profile quota, starts \Windows\System32\Proquota.exe to 
enforce the quota for the current user. 

3. Launches the comma-separated shell or shells specified in HKCU\Software 
\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell. If that value doesn’t exist, Userinit.exe 
launches the shell or shells specified in HKLM\SOFTWARE\Microsoft\Windows NT 
\CurrentVersion\Winlogon\Shell, which is by default Explorer.exe. 

Winlogon then notifies registered network providers that a user has logged in. The Microsoft 
network provider, Multiple Provider Router (\Windows\System32\Mpr.dll), restores the user’s 
persistent drive letter and printer mappings stored in HKCU\Network and HKCU\Printers, 
respectively. Figure 13-3 shows the process tree as seen in Process Monitor after a logon (using its 
boot logging capability). Note the Smss processes that are dimmed (meaning that they have since 
exited). These refer to the spawned copies that initialized each session. 
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13.1.6 ReadyBoot 

Windows uses the standard logical boot-time prefetcher (described in Chapter 9) if the 
system has less than 512 MB of memory, but if the system has 700 MB or more of RAM, it uses 
an in-RAM cache to optimize the boot process. The size of the cache depends on the total RAM 
available, but it is large enough to create a reasonable cache and yet allow the system the memory 
it needs to boot smoothly. 

After every boot, the ReadyBoost service (see Chapter 9 for information on ReadyBoost) 
uses idle CPU time to calculate a boot-time caching plan for the next boot. It analyzes file trace 
information from the five previous boots and identifies which files were accessed and where they 
are located on disk. It stores the processed traces in %SystemRoot%\Prefetch\Readyboot as .fx 
files and saves the caching plan under HKLM\SYSTEM\CurrentControlSet\Services\Ecache 
\Parameters in REG_BINARY values named for internal disk volumes they refer to. 

The cache is implemented by the same device driver that implements ReadyBoost caching 
(Ecache.sys), but the cache’s population is guided by the boot plan previously stored in the 
registry. Although the boot cache is compressed like the ReadyBoost cache, another difference 
between ReadyBoost and ReadyBoot cache management is that while in ReadyBoot mode, other 
than the ReadyBoost service’s updates, the cache doesn’t change to reflect data that’s read or 
written during the boot. The ReadyBoost service deletes the cache 90 seconds after the start of the 
boot, or if other memory demands warrant it, and records the cache’s statistics in HKLM 
\SYSTEM\CurrentControlSet\Services\Ecache\Parameters\ReadyBootStats, as shown in Figure 
13-4. 
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13.1.7 Images That Start Automatically 

Images That Start Automatically 

In addition to the Userinit and Shell registry values in Winlogon’s key, there are many other 
registry locations and directories that default system components check and process for automatic 
process startup during the boot and logon processes. The Msconfig utility 
(Windows\System32\Msconfig.exe) displays the images configured by several of the locations. 
The Autoruns tool, which you can download from Sysinternals and that is shown in Figure 13-5, 
examines more locations than Msconfig and displays more information about the images 
configured to automatically run. By default, Autoruns shows only the locations that are configured 
to automatically execute at least one image, but selecting the Include Empty Locations entry on 
the Options menu causes Autoruns to show all the locations it inspects. The Options menu also 
has selections to direct Autoruns to hide Microsoft entries, but you should always combine this 
option with Verify Image Signatures; otherwise, you risk hiding malicious programs that include 
false information about their company name information. 

  

eXPerIMeNT: autoruns 

Many users are unaware of how many programs execute as part of their logon. Original 
equipment manufacturers (OEMs) often configure their systems with add-on utilities that execute 
in the background using registry values or file system directories processed for automatic 
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execution and so are not normally visible. See what programs are configured to start automatically 
on your computer by running the Autoruns utility from Sysinternals. Compare the list shown in 
Autoruns with that shown in Msconfig and identify any differences. Then ensure that you 
understand the purpose of each program. 

13.2 Troubleshooting Boot and Startup Problems 

This section presents approaches to solving problems that can occur during the Windows 
startup process as a result of hard disk corruption, file corruption, missing files, and thirdparty 
driver bugs. First we describe three Windows boot-problem recovery modes: last known good, 
safe mode, and Windows Recovery Environment (WinRE). Then we present common boot 
problems, their causes, and approaches to solving them. The solutions refer to last known good, 
safe mode, WinRE, and other tools that ship with Windows. 

Last Known Good 

Last known good (LKG) is a useful mechanism for getting a system that crashes during the 
boot process back to a bootable state. Because the system’s configuration settings are stored in 
HKLM\SYSTEM\CurrentControlSet\Control and driver and service configuration is stored in 
HKLM\SYSTEM\CurrentControlSet\Services, changes to these parts of the registry can render a 
system unbootable. For example, if you install a device driver that has a bug that crashes the 
system during the boot, you can press the F8 key during the boot and select last known good from 
the resulting menu. The system marks the control set that it was using to boot the system as failed 
by setting the Failed value of HKLM\SYSTEM\Select and then changes 
HKLM\SYSTEM\Select\Current to the value stored in HKLM\SYSTEM\Select\LastKnownGood. 
It also updates the symbolic link  HKLM\SYSTEM\CurrentControlSet to point at the 
LastKnownGood control set. Because the new driver’s key is not present in the Services subkey of 
the LastKnownGood control set, the system will boot successfully.  

Safe Mode 

Perhaps the most common reason Windows systems become unbootable is that a device 
driver crashes the machine during the boot sequence. Because software or hardware 
configurations can change over time, latent bugs can surface in drivers at any time. Windows 
offers a way for an administrator to attack the problem: booting in safe mode. Safe mode is a boot 
configuration that consists of the minimal set of device drivers and services. By relying on only 
the drivers and services that are necessary for booting, Windows avoids loading thirdparty and 
other nonessential drivers that might crash. 

When Windows boots, you press the F8 key to enter a special boot menu that contains the 
safe-mode boot options. You typically choose from three safe-mode variations: Safe Mode, Safe 
Mode With Networking, and Safe Mode With Command Prompt. Standard safe mode includes the 
minimum number of device drivers and services necessary to boot successfully.  

Networking-enabled safe mode adds network drivers and services to the drivers and services 
that standard safe mode includes. Finally, safe mode with command prompt is identical to 
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standard safe mode except that Windows runs the command prompt application (Cmd.exe) instead 
of Windows Explorer as the shell when the system enables GUI mode. 

Windows includes a fourth safe mode—Directory Services Restore mode—which is different 
from the standard and networking-enabled safe modes. You use Directory Services Restore mode 
to boot the system into a mode where the Active Directory service of a domain controller is offline 
and unopened. This allows you to perform repair operations on the database or restore it from 
backup media. All drivers and services, with the exception of the Active Directory service, load 
during a Directory Services Restore mode boot. In cases where you can’t log on to a system 
because of Active Directory database corruption, this mode enables you to repair the corruption. 

Driver Loading in Safe Mode 

How does Windows know which device drivers and services are part of standard and 
networking-enabled safe mode? The answer lies in the HKLM\SYSTEM\CurrentControlSet 
\Control\SafeBoot registry key. This key contains the Minimal and Network subkeys. Each subkey 
contains more subkeys that specify the names of device drivers or services or of groups of drivers. 
For example, the vga.sys subkey identifies the VGA display device driver that the startup 
configuration includes. The VGA display driver provides basic graphics services for any 
PC-compatible display adapter. The system uses this driver as the safe-mode display driver in lieu 
of a driver that might take advantage of an adapter’s advanced hardware features but that might 
also prevent the system from booting. Each subkey under the SafeBoot key has a default value 
that describes what the subkey identifies; the vga.sys subkey’s default value is “Driver”. 

The Boot file system subkey has as its default value “Driver Group”. When developers 
design a device driver’s installation script, they can specify that the device driver belongs to a 
driver group. The driver groups that a system defines are listed in the List value of the 
HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder key. A developer specifies a 
driver as a member of a group to indicate to Windows at what point during the boot process the 
driver should start. The ServiceGroupOrder key’s primary purpose is to define the order in which 
driver groups load; some driver types must load either before or after other driver types. The 
Group value beneath a driver’s configuration registry key associates the driver with a group. 

Driver and service configuration keys reside beneath HKLM\SYSTEM\CurrentControlSet 
\Services. If you look under this key, you’ll find the VgaSave key for the VGA display device 
driver, which you can see in the registry is a member of the Video Save group. Any file system 
drivers that Windows requires for access to the Windows system drive are automatically loaded as 
if part of the Boot file system group. Other file system drivers are part of the File system group, 
which the standard and networking-enabled safe-mode configurations also include. 

When you boot into a safe-mode configuration, the boot loader (Winload) passes an 
associated switch to the kernel (Ntoskrnl.exe) as a command-line parameter, along with any 
switches you’ve specified in the BCD for the installation you’re booting. If you boot into any safe 
mode, Winload sets the safeboot BCD option with a value describing the type of safe mode you 
select. For standard safe mode, Winload sets minimal, and for networking-enabled safe mode, it 
adds network. Winload adds minimal and sets safebootalternateshell for safe mode with command 
prompt and dsrepair for Directory Services Restore mode. 
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The Windows kernel scans boot parameters in search of the safe-mode switches early during 
the boot, during the InitSafeBoot function, and sets the internal variable InitSafeBootMode to a 
value that reflects the switches the kernel finds. The kernel writes the InitSafeBootMode value to 
the registry value HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\OptionValue so 
that user-mode components, such as the SCM, can determine what boot mode the system is in. In 
addition, if the system is booting in safe mode with command prompt, the kernel sets the 
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\UseAlternateShell value to 1. The 
kernel records the parameters that Winload passes to it in the value HKLM\SYSTEM 
\CurrentControlSet\Control\SystemStartOptions.  

When the I/O manager kernel subsystem loads device drivers that HKLM\SYSTEM 
\CurrentControlSet\Services specifies, the I/O manager executes the function IopLoadDriver. 
When the Plug and Play manager detects a new device and wants to dynamically load the device 
driver for the detected device, the Plug and Play manager executes the function 
PipCallDriverAddDevice. Both these functions call the function IopSafebootDriverLoad before 
they load the driver in question. IopSafebootDriverLoad checks the value of InitSafeBootMode 
and determines whether the driver should load. For example, if the system boots in standard safe 
mode, IopSafebootDriverLoad looks for the driver’s group, if the driver has one, under the 
Minimal subkey. If IopSafebootDriverLoad finds the driver’s group listed, IopSafeboot- 
DriverLoad indicates to its caller that the driver can load. Otherwise, IopSafebootDriverLoad 
looks for the driver’s name under the Minimal subkey. If the driver’s name is listed as a subkey, 
the driver can load. If IopSafebootDriverLoad can’t find the driver group or driver name subkeys, 
the driver can’t load. If the system boots in networkingenabled safe mode, IopSafebootDriverLoad 
performs the searches on the Network subkey. If the system doesn’t boot in safe mode, 
IopSafebootDriverLoad lets all drivers load.  

Note An exception exists regarding the drivers that safe mode excludes from a boot: Winload, 
rather than the kernel, loads any drivers with a Start value of 0 in their registry key, which 
specifies loading the drivers at boot time. Winload doesn’t check the SafeBoot registry key 
because it assumes that any driver with a Start value of 0 is required for the system to boot 
successfully. Because Winload doesn’t check the SafeBoot registry key to identify which drivers 
to load, Winload loads all boot-start drivers (and later Ntoskrnl starts them). 

Safe-Mode-Aware User Programs  

When the service control manager (SCM) user-mode component (which Services.exe 
implements) initializes during the boot process, the SCM checks the value of HKLM\SYSTEM 
\CurrentControlSet\Control\SafeBoot\Option\OptionValue to determine whether the system is 
performing a safe-mode boot. If so, the SCM mirrors the actions of IopSafeboot- DriverLoad. 
Although the SCM processes the services listed under HKLM\SYSTEM\CurrentControlSet 
\Services, it loads only services that the appropriate safe-mode subkey specifies by name. You can 
find more information on the SCM initialization process in the section “Services” in Chapter 4. 

Userinit, the component that initializes a user’s environment when the user logs on 
(\Windows\System32\Userinit.exe), is another user-mode component that needs to know whether 
the system is booting in safe mode. It checks the value of HKLM\SYSTEM\Current-ControlSet 
\Control\SafeBoot\Option\UseAlternateShell. If this value is set, Userinit runs the program 
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specified as the user’s shell in the value HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot 
\AlternateShell rather than executing Explorer.exe. Windows writes the program name Cmd.exe to 
the AlternateShell value during installation, making the Windows command prompt the default 
shell for safe mode with command prompt. Even though the command prompt is the shell, you can 
type explorer.exe at the command prompt to start Windows Explorer, and you can run any other 
GUI program from the command prompt as well. 

How does an application determine whether the system is booting in safe mode? By calling 
the Windows GetSystemMetrics(SM_CLEANBOOT) function. Batch scripts that need to perform 
certain operations when the system boots in safe mode look for the SAFEBOOT_OPTION 
environment variable because the system defines this environment variable only when booting in 
safe mode. 

Boot Logging in Safe Mode 

When you direct the system to boot into safe mode, Winload hands the string specified by the 
bootlog option to the Windows kernel as a parameter, together with the parameter that requests 
safe mode. When the kernel initializes, it checks for the presence of the boot log parameter 
whether or not any safe-mode parameter is present. If the kernel detects a boot log string, the 
kernel records the action the kernel takes on every device driver it considers for loading. For 
example, if IopSafebootDriverLoad tells the I/O manager not to load a driver, the I/O manager 
calls IopBootLog to record that the driver wasn’t loaded. Likewise, after IopLoadDriver 
successfully loads a driver that is part of the safe-mode configuration, IopLoadDriver calls 
IopBootLog to record that the driver loaded. You can examine boot logs to see which device 
drivers are part of a boot configuration. 

Because the kernel wants to avoid modifying the disk until Chkdsk executes, late in the boot 
process, IopBootLog can’t simply dump messages into a log file. Instead, IopBootLog records 
messages in the HKLM\SYSTEM\CurrentControlSet\BootLog registry value. As the first 
user-mode component to load during a boot, the Session Manager (\Windows\System32\Smss.exe) 
executes Chkdsk to ensure the system drives’ consistency and then completes registry 
initialization by executing the NtInitializeRegistry system call. The kernel takes this action as a 
cue that it can safely open a log file on the disk, which it does, invoking the function 
IopCopyBootLogRegistryToFile. This function creates the file Ntbtlog.txt in the Windows system 
directory (\Windows by default) and copies the contents of the BootLog registry value to the file. 
IopCopyBootLogRegistryToFile also sets a flag for IopBootLog that lets  IopBootLog know that 
writing directly to the log file, rather than recording messages in the registry, is now OK. The 
following output shows the partial contents of a sample boot log:  

1. Microsoft (R) Windows (R) Version 6.0 (Build 6000)   
2. 10 4 2007 09:04:53.375  
3. Loaded driver \SystemRoot\system32\ntkrnlpa.exe   
4. Loaded driver \SystemRoot\system32\hal.dll   
5. Loaded driver \SystemRoot\system32\kdcom.dll   
6. Loaded driver \SystemRoot\system32\mcupdate_GenuineIntel.dll   
7. Loaded driver \SystemRoot\system32\PSHED.dll   
8. Loaded driver \SystemRoot\system32\BOOTVID.dll   
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9. Loaded driver \SystemRoot\system32\CLFS.SYS   
10. Loaded driver \SystemRoot\system32\CI.dll   
11. Loaded driver \SystemRoot\system32\drivers\Wdf01000.sys   
12. Loaded driver \SystemRoot\system32\drivers\WDFLDR.SYS   
13. Loaded driver \SystemRoot\system32\drivers\acpi.sys   
14. Loaded driver \SystemRoot\system32\drivers\WMILIB.SYS   
15. Loaded driver \SystemRoot\system32\drivers\msisadrv.sys   
16. Loaded driver \SystemRoot\system32\drivers\pci.sys   
17. Loaded driver \SystemRoot\system32\drivers\volmgr.sys   
18. Loaded driver \SystemRoot\system32\DRIVERS\compbatt.sys   
19. Loaded driver \SystemRoot\system32\DRIVERS\BATTC.SYS   
20. Loaded driver \SystemRoot\System32\drivers\mountmgr.sys   
21. Loaded driver \SystemRoot\system32\drivers\intelide.sys   
22. Loaded driver \SystemRoot\system32\drivers\PCIIDEX.SYS   
23. Loaded driver \SystemRoot\system32\DRIVERS\pciide.sys   
24. Loaded driver \SystemRoot\System32\drivers\volmgrx.sys   
25. Loaded driver \SystemRoot\system32\drivers\atapi.sys   
26. Loaded driver \SystemRoot\system32\drivers\ataport.SYS   
27. Loaded driver \SystemRoot\system32\drivers\fltmgr.sys   
28. Loaded driver \SystemRoot\system32\drivers\fileinfo.sys   
29. §   
30. Did not load driver @battery.inf,%acpi\acpi0003.devicedesc%;     

Microsoft AC Adapter 
31. Did not load driver @battery.inf,%acpi\pnp0c0a.devicedesc%;Microsoft            
         ACPI-Compliant Control   
32. Method Battery   
33. Did not load driver @oem46.inf,%nvidia_g71.dev_0297.1%;NVIDIA              
         GeForce Go 7950 GTX   
34. Did not load driver @oem5.inf,%nic_mpciex%;Intel(R) PRO/Wireless              
        3945ABG Network Connection   
35. Did not load driver @netb57vx.inf,%bcm5750a1clnahkd%;Broadcom              
         NetXtreme 57xx Gigabit   
36. Controller   
37. Did not load driver @sdbus.inf,%pci\cc_080501.devicedesc%;SDA                
         Standard Compliant SD Host   
38. Controller   
39. §  

Windows Recovery Environment (WinRE) 

Safe mode is a satisfactory fallback for systems that become unbootable because a device 
driver crashes during the boot sequence, but in some situations a safe-mode boot won’t help the 
system boot. For example, if a driver that prevents the system from booting is a member of a Safe 
group, safe-mode boots will fail. Another example of a situation in which safe mode won’t help 
the system boot is when a third-party driver, such as a virus scanner driver, that loads at the boot 
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prevents the system from booting. (Boot-start drivers load whether or not the system is in safe 
mode.) Other situations in which safe-mode boots will fail are when a system module or critical 
device driver file that is part of a safe-mode configuration becomes corrupt or when the system 
drive’s Master Boot Record (MBR) is damaged.  

You can get around these problems by using the Windows Recovery Environment. The 
Windows Recovery Environment provides an assortment of tools and automated repair 
technologies to automatically fix the most common startup problems. It includes five main tools: 

■ Startup Repair An automated tool that detects the most common Windows startup 
problems and automatically attempts to repair them. 

■ System Restore Allows restoring to a previous restore point in cases in which you cannot 
boot the Windows installation to do so, even in safe mode. 

■ Complete PC Restore Called ASR (Automated System Recovery) in previous versions of 
Windows, this restores a Windows installation from a complete backup, not just a system restore 
point, which may not contain all damaged files and lost data. 

■ Windows Memory Diagnostic Tool Performs memory diagnostic tests that check for signs 
of faulty RAM. Faulty RAM can be the reason for random kernel and application crashes and 
erratic system behavior. 

■ Command Prompt For cases where troubleshooting or repair requires manual intervention 
(such as copying files from another drive or manipulating the BCD), you can use the command 
prompt to have a full Windows shell that can launch any Windows program—unlike the Recovery 
Console on earlier versions of Windows, which only supported a limited set of specialized 
commands. 

When you boot a system from the Windows CD or boot disks, Windows Setup gives you the 
choice of installing Windows or repairing an existing installation. If you choose to repair an 
installation, the system displays a dialog box called System Recovery Options, shown in Figure 
13-6. 

Some OEMs install WinRE to a recovery partition on their systems. On these systems, you 
can access WinRE by using the F8 option to access advanced boot options during Bootmgr 
execution. If you see an option Repair Your Computer, your machine has a local hard disk copy. 
By following the instructions at the Microsoft WinRE blog (http://blogs.msdn.com/winre) you can 
also install WinRE on the hard disk yourself from your Windows installation media and Windows 
Automated Installation Kit (AIK). 
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Additionally, if your system failed to boot as the result of damaged files or any other reason 
that Winload can understand, it instructs Bootmgr to automatically start WinRE at the next reboot 
cycle. Instead of the dialog box shown in Figure 13-6, the recovery environment will 
automatically launch the Startup Repair tool, shown in Figure 13-7.  

  

At the end of the scan and repair cycle, the tool will automatically attempt to fix any damage 
found, including replacing system files from the installation media. You can click the details link 
to see information about the damage that was fixed. For example, in Figure 13-8, the Startup 
Repair tool fixed a damaged boot sector. 
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If the Startup Repair tool cannot automatically fix the damage, or if you cancel the operation, 
you’ll get a chance to try other methods and the System Recovery Options dialog box will be 
displayed. 

Boot Status File 

Windows uses a boot status file (%SystemRoot%\Bootstat.dat) to record the fact that it has 
progressed through various stages of the system life cycle, including boot and shutdown. This 
allows the Boot Manager, Windows loader, and the Startup Repair tool to detect abnormal 
shutdown or a failure to shut down cleanly and offer the user recovery and diagnostic boot options, 
like Last Known Good and Safe Mode. This binary file contains information through which the 
system reports the success of the following phases of the system life cycle: 

■ Boot (the definition of a successful boot is the same as the one used for determining Last 
Known Good status, which was described earlier) 

■ Shutdown 

■ Resume from hibernate or suspend 

The boot status file also indicates whether a problem was last detected and the recovery 
options shown, indicating that the user has been made aware of the problem and taken action. 
Runtime Library APIs (Rtl) in Ntdll.dll contain the private interfaces that Windows uses to read 
from and write to the file. Like the BCD, it cannot be edited by users. 

This section describes problems that can occur during the boot process, describing their 
symptoms, causes, and approaches to solving them. To help you locate a problem that you might 
encounter, they are organized according to the place in the boot at which they occur. Note that for 
most of these problems, you should be able to simply boot into the Windows Recovery 
Environment and allow the Startup Repair tool to scan your system and perform any automated 
repair tasks. 

MBR Corruption 

■ Symptoms A system that has Master Boot Record (MBR) corruption will execute the BIOS 
power-on self test (POST), display BIOS version information or OEM branding, switch to a black 
screen, and then hang. Depending on the type of corruption the MBR has experienced, you might 
see one of the following messages: “Invalid partition table,” “Error loading operating system,” or 
“Missing operating system.” 

■ Cause The MBR can become corrupt because of hard-disk errors, disk corruption as a 
result of a driver bug while Windows is running, or intentional scrambling as a result of a virus. 

■ Resolution Boot into the Windows Recovery Environment, choose the Command Prompt 
option, and then execute the bootrec /fixmbr command. This command replaces the executable 
code in the MBR.  

Boot Sector Corruption 
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■ Symptoms Boot sector corruption can look like MBR corruption, where the system hangs 
after BIOS POST at a black screen, or you might see the messages “A disk read error occurred,” 
“BOOTMGR is missing,” or “ BOOTMGR is compressed” displayed on a black screen. 

■ Cause The boot sector can become corrupt because of hard-disk errors, disk corruption as a 
result of a driver bug while Windows is running, or intentional scrambling as a result of a virus. 

■ Resolution Boot into the Windows Recovery Environment, choose the Command Prompt 
option, and then execute the bootrec /fixboot command. This command rewrites the boot sector of 
the volume that you specify. You should execute the command on both the system and boot 
volumes if they are different.  

BCD Misconfiguration 

■ Symptom After BIOS POST, you’ll see a message that begins “Windows could not start 
because of a computer disk hardware configuration problem,” “Could not read from selected boot 
disk,” or “Check boot path and disk hardware.” 

■ Cause The BCD has been deleted, become corrupt, or no longer references the boot volume 
because the addition of a partition has changed the name of the volume.  

■ Resolution Boot into the Windows Recovery Environment, choose the Command Prompt 
option, and then execute the bootrec /scanos and bootrec /rebuildbcd commands. These commands 
will scan each volume looking for Windows installations. When they discover an installation, they 
will ask you whether they should add it to the BCD as a boot option and what name should be 
displayed for the installation in the boot menu. For other kinds of BCD-related damage, you can 
also use Bcdedit.exe to perform tasks such as building a new BCD from scratch or cloning an 
existing good copy. 

System File Corruption 

■ Symptoms There are several ways the corruption of system files—which include 
executables, drivers, or DLLs—can manifest. One way is with a message on a black screen after 
BIOS POST that says, “Windows could not start because the following file is missing or corrupt,” 
followed by the name of a file and a request to reinstall the file. Another way is with a blue screen 
crash during the boot with the text, “STOP: 0xC0000135 {Unable to Locate Component}.” 

■ Causes The volume on which a system file is located is corrupt or one or more system files 
have been deleted or become corrupt. 

■ Resolution Boot into the Windows Recovery Environment, choose the Command Prompt 
option, and then execute the chkdsk command. Chkdsk will attempt to repair volume corruption. 
If Chkdsk does not report any problems, obtain a backup copy of the system file in question. One 
place to check is in the \Windows\winsxs\Backup directory, in which Windows places copies of 
many system files for access by Windows Resource Protection. (See the “Windows Resource 
Protection” sidebar.) If you cannot find a copy of the file there, see if you can locate a copy from 
another system in the network. Note that the backup file must be from the same service pack or 
hotfix as the file that you are replacing. 
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In some cases, multiple system files are deleted or become corrupt, so the repair process can 
involve multiple reboots and boot failures as you repair the files one by one. If you believe the 
system file corruption to be extensive, you should consider restoring the system from a backup 
image, such as one generated by Windows Vista CompletePC Backup or from a system restore 
point. 

When you run Windows Backup (located in the System folder under Accessories on the Start 
menu), you can generate a CompletePC backup image, which includes all the files on the system 
and boot volumes, plus a floppy disk on which it stores information about the system’s disks and 
volumes. To restore a system from an ASR backup image, back up boot from the Windows setup 
media and press F2 when prompted. 

If you do not have a backup from which to restore, a last resort is to execute a Windows 
repair install: boot from the Windows setup media, and follow the wizard as if you were going to 
perform a new installation. The wizard will ask you whether you want to perform a repair or fresh 
install. When you tell it that you want to repair, Setup reinstalls all system files, leaving your 
application data and registry settings intact. 

Windows resource Protection  

To preserve the integrity of the many components involved in the boot process, as well as 
other critical Windows files, libraries, and applications, Windows implements a technology called 
Windows Resource Protection (WRP). WRP is implemented through access control lists (ACLs) 
that protect critical system files on the machine. It is also exposed through an API (located in 
\Windows\System32\Sfc.dll and \Windows\System32\Sfc_os.dll) that can be accessed by the 
Sfc.exe utility to manually check a file for corruption and restore it. 

WRP will also protect entire critical folders if required, even locking down the folder so that 
it is inaccessible by administrators (without modifying the access control list on the folder). The 
only supported way to modify WRP-protected files is through the Windows Modules Installer 
service, which can run under the TrustedInstaller account. This service is used for the installation 
of patches, service packs, hotfixes, and Windows Update. This account has access to the various 
protected files and is trusted by the system (as its name implies) to modify critical files and 
replace them. WRP also protects critical registry keys, and it may even lock entire registry trees if 
all the values and subkeys are considered to be critical. 

Unlike the previous incarnation of WRP, called WFP (Windows File Protection), this 
implementation does not make use of file and directory change notifications to prevent 
replacement of critical files. Instead, the ACL on protected files, directories, or registry keys is set 
so that only the TrustedInstaller account is able to modify or delete these files. Application 
developers can use the SfcIsFileProtected or SfcIsKeyProtected APIs to check whether a file or 
registry key is locked down. 

For backward compatibility, certain installers are considered well-known—an application 
compatibility shim exists that will suppress the “access denied” error that certain installers would 
receive while attempting to modify WRP-protected resources. Instead, the installer receives a fake 
“success” code, but the modification isn’t made. This virtualization is similar to the User Access 
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Control (UAC) virtualization technology discussed in Chapter 6, but it applies to write operations 
as well. It applies if the following are true: 

■ The application is a legacy application, meaning that it does not contain a manifest file 
compatible with Windows Vista or Windows Server 2008 with the requestedExecutionLevel value 
set. 

■ The application is trying to modify a WRP-protected resource (the file or registry key 
contains the TrustedInstaller SID). 

■ The application is being run under an administrator account (always true on systems with 
UAC enabled because of automatic installer program detection).  

WRP copies files that are needed to restart Windows to the cache directory located at 
\Windows\winsxs\Backup. Critical files that are not needed to restart Windows are not copied to 
the cache directory. The size of the cache directory and the list of files copied to the cache cannot 
be modified. To recover a file from the cache directory, you can use the System File Checker 
(Sfc.exe) tool, which can scan your system for modified protected files and restore them from a 
good copy.  

System Hive Corruption 

■ Symptoms If the System registry hive (which is discussed along with hive files in the 
section “The Registry” in Chapter 4) is missing or corrupted, Winload will display the message 
“Windows could not start because the following file is missing or corrupt: 
\WINDOWS\SYSTEM32\CONFIG\SYSTEM,” on a black screen after the BIOS POST. 

■ Causes The System registry hive, which contains configuration information necessary for 
the system to boot, has become corrupt or has been deleted. 

■ Resolution Boot into the Windows Recovery Environment, choose the Command Prompt 
option, and then execute the chkdsk command. If the problem is not corrected, obtain a backup of 
the System registry hive. Windows makes copies of the registry hives every 12 hours (keeping the 
immediately previous copy with a .OLD extension) in a folder called \Windows\System32 
\Config\RegBack, so copy the file named System to \Windows\System32\Config.  

If System Restore is enabled (System Restore is discussed in Chapter 11), you can often 
obtain a more recent backup of the registry hives, including the System hive, from the most recent 
restore point. You can choose System Restore from the Windows Recovery Environment to 
restore your registry from the last restore point. 

Post–Splash Screen Crash or Hang 

■ Symptoms Problems that occur after the Windows splash screen displays, the desktop 
appears, or you log on fall into this category and can appear as a blue screen crash or a hang, 
where the entire system is frozen or the mouse cursor tracks the mouse but the system is otherwise 
unresponsive. 

■ Causes These problems are almost always a result of a bug in a device driver, but they can 
sometimes be the result of corruption of a registry hive other than the System hive. 
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■ Resolution You can take several steps to try and correct the problem. The first thing you 
should try is the last known good configuration. Last known good (LKG), which is described 
earlier in this chapter and in the “Services” section of Chapter 4, consists of the registry control set 
that was last used to boot the system successfully. Because a control set includes core system 
configuration and the device driver and services registration database, using a version that does 
not reflect changes or newly installed drivers or services might avoid the source of the problem. 
You access last known good by pressing the F8 key early in the boot process to access the same 
menu from which you can boot into safe mode. 

As stated earlier in the chapter, when you boot into LKG, the system saves the control set 
that you are avoiding and labels it as the failed control set. You can leverage the failed control set 
in cases where LKG makes a system bootable to determine what was causing the system to fail to 
boot by exporting the contents of the current control set of the successful boot and the failed 
control set to .reg files. You do this by using the Regedit’s export functionality, which you access 
under the File menu: 

1. Run Regedit, and select HKLM\SYSTEM\CurrentControlSet. 

2. Select Export from the File menu, and save to a file named good.reg. 

3. Open HKLM\SYSTEM\Select, read the value of Failed, and select the subkey named 
HKLM\SYSTEM\ControlXXX, where XXX is the value of Failed. 

4. Export the contents of the control set to bad.reg. 

5. Use WordPad (which is found under Accessories on the Start menu) to globally replace all 
instances of CurrentControlSet in good.reg with ControlSet. 

6. Use WordPad to change all instances of ControlXXX (replacing XXX with the value of 
the Failed control set) in bad.reg with ControlSet. 

7. Run Windiff from the Support Tools, and compare the two files. 

The differences between a failed control set and a good one can be numerous, so you should 
focus your examination on changes beneath the Control subkey as well as under the Parameters 
subkeys of drivers and services registered in the Services subkey. Ignore changes made to Enum 
subkeys of driver registry keys in the Services branch of the control set.  

If the problem you’re experiencing is caused by a driver or service that was present on the 
system since before the last successful boot, LKG will not make the system bootable. Similarly, if 
a problematic configuration setting changed outside the control set or was made before the last 
successful boot, LKG will not help. In those cases, the next option to try is safe mode (described 
earlier in this section). If the system boots successfully in safe mode and you know that particular 
driver was causing the normal boot to fail, you can disable the driver by using the Device Manager 
(accessible from the Hardware tab of the System Control Panel item). To do so, select the driver in 
question and choose Disable from the Action menu. If you recently updated the driver, and believe 
that the update introduced a bug, you can choose to roll back the driver to its previous version 
instead, also with the Device Manager. To restore a driver to its previous version, double-click on 
the device to open its Properties dialog box and click Roll Back Driver on the Driver tab. 
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On systems with System Restore enabled, an option when LKG fails is to roll back all system 
state (as defined by System Restore) to a previous point in time. Safe mode detects the existence 
of restore points, and when they are present it will ask you whether you want to log on to the 
installation to perform a manual diagnosis and repair or launch the System Restore Wizard. Using 
System Restore to make a system bootable again is attractive when you know the cause of a 
problem and want the repair to be automatic or when you don’t know the cause but do not want to 
invest time to determine the cause. 

If System Restore is not an option or you want to determine the cause of a crash during the 
normal boot and the system boots successfully in safe mode, attempt to obtain a boot log from the 
unsuccessful boot by pressing F8 to access the special boot menu and choosing the boot logging 
option. As described earlier in this chapter, Session Manager (\Windows\System32\Smss.exe) 
saves a log of the boot that includes a record of device drivers that the system loaded and chose 
not to load to \Windows\ntbtlog.txt, so you’ll obtain a boot log if the crash or hang occurs after 
Session Manager initializes. When you reboot into safe mode, the system appends new entries to 
the existing boot log. Extract the portions of the log file that refer to the failed attempt and 
safe-mode boots into separate files. Strip out lines that contain the text “Did not load driver”, and 
then compare them with a text comparison tool such as Windiff. One by one, disable the drivers 
that loaded during the normal boot but not in the safe-mode boot until the system boots 
successfully again. (Then reenable the drivers that were not responsible for the problem.) 

If you cannot obtain a boot log from the normal boot (for instance, because the system is 
crashing before Session Manager initializes), if the system also crashes during the safe-mode boot, 
or if a comparison of boot logs from the normal and safe-mode boots do not reveal any significant 
differences (for example, when the driver that’s crashing the normal boot starts after Session 
Manager initializes), the next tool to try is the Driver Verifier combined with crash dump analysis. 
(See Chapter 14 for more information on both these topics.) 

13.3 Shutdown 

If someone is logged on and a process initiates a shutdown by calling the Windows 
Exit-WindowsEx function, a message is sent to that session’s Csrss instructing it to perform the 
shutdown. Csrss in turn impersonates the caller and sends an RPC message to Winlogon, telling it 
to perform a system shutdown. Winlogon then impersonates the currently logged-on user (who 
might or might not have the same security context as the user who initiated the system shutdown) 
and calls ExitWindowsEx with some special internal flags. Again, this call causes a message to be 
sent to the Csrss process inside that session, requesting a system shutdown. 

This time, Csrss sees that the request is from Winlogon and loops through all the processes in 
the logon session of the interactive user (again, not the user who requested a shutdown) in reverse 
order of their shutdown level. A process can specify a shutdown level, which indicates to the 
system when they want to exit with respect to other processes, by calling 
SetProcessShutdownParameters. Valid shutdown levels are in the range 0 through 1023, and the 
default level is 640. Explorer, for example, sets its shutdown level to 2 and Task Manager 
specifies 1. For each process that owns a top-level window, Csrss sends the WM_QUERYEND 
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SESSION message to each thread in the process that has a Windows message loop. If the thread 
returns TRUE, the system shutdown can proceed. Csrss then sends the WM_ENDSESSION 
Windows message to the thread to request it to exit. Csrss waits the number of seconds defined in 
HKCU\Control Panel\Desktop\HungAppTimeout for the thread to exit. (The default is 5000 
milliseconds.) 

If the thread doesn’t exit before the timeout, Csrss fades out the screen and displays the 
hung-program screen shown in Figure 13-9. (You can disable this screen by changing the registry 
value HKCU\Control Panel\Desktop\AutoEndTasks to 1.) This screen indicates which programs 
are currently running and, if available, their current state. Windows indicates which program isn’t 
shutting down in a timely manner and gives the user a choice of either killing the process or 
aborting the shutdown. (There is no timeout on this screen, which means that a shutdown request 
could wait forever at this point.) Additionally, third-party applications can add their own specific 
information regarding state—for example, a virtualization product could display the number of 
actively running virtual machines.  

If the thread does exit before the timeout, Csrss continues sending the WM_QUERYEND 
SESSION/WM_ENDSESSION message pairs to the other threads in the process that own 
windows. Once all the threads that own windows in the process have exited, Csrss terminates the 
process and goes on to the next process in the interactive session. 

eXPerIMeNT: Witnessing the HungappTimeout 

You can see the use of the HungAppTimeout registry value by running Notepad, entering 
text into its editor, and then logging off. After the amount of time specified by the 
HungAppTimeout registry value has expired, Csrss.exe presents a prompt that asks you whether 
or not you want to end the Notepad process, which has not exited because it’s waiting for you to 
tell it whether or not to save the entered text to a file. If you click the Cancel button, Csrss.exe 
aborts the shutdown. 

As a second experiment, if you try shutting down again (with Notepad’s query dialog box 
still open), Notepad will display its own message box to inform you that shutdown cannot cleanly 
proceed. However, this dialog box is merely an informational message to help users—Csrss.exe 
will still consider that Notepad is “hung” and display the user interface to terminate unresponsive 
processes. 

  

If Csrss finds a console application, it invokes the console control handler by sending the 
CTRL_LOGOFF_EVENT event. (Only service processes receive the CTRL_SHUTDOWN_ 
EVENT event on shutdown.) If the handler returns FALSE, Csrss kills the process. If the handler 
returns TRUE or doesn’t respond by the number of seconds defined by HKCU\Control 
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Panel\Desktop\WaitToKillAppTimeout (the default is 20,000 milliseconds), Csrss displays the 
hung-program screen shown in Figure 13-9. 

Next, Winlogon calls ExitWindowsEx to have Csrss terminate any COM processes that are 
part of the interactive user’s session. 

At this point, all the processes in the interactive user’s session have been terminated. Wininit 
next calls ExitWindowsEx, which this time executes within the system process context. This 
causes Wininit to send a message to the Csrss part of session 0, where the services live. Csrss then 
looks at all the processes belonging to the system context and performs and sends the 
WM_QUERYENDSESSION/WM_ENDSESSION messages to GUI threads (as before). Instead 
of sending CTRL_LOGOFF_EVENT, however, it sends CTRL_SHUTDOWN_EVENT to 
console applications that have registered control handlers. Note that the SCM is a console program 
that does register a control handler. When it receives the shutdown request, it in turn sends the 
service shutdown control message to all services that registered for shutdown notification. For 
more details on service shutdown (such as the shutdown timeout Csrss uses for the SCM), see the 
“Services” section in Chapter 4. 

  

Although Csrss performs the same timeouts as when it was terminating the user processes, it 
doesn’t display any dialog boxes and doesn’t kill any processes. (The registry values for the 
system process timeouts are taken from the default user profile.) These timeouts simply allow 
system processes a chance to clean up and exit before the system shuts down. Therefore, many 
system processes are in fact still running when the system shuts down, such as Smss, Wininit, 
Services, and Lsass. 

Once Csrss has finished its pass notifying system processes that the system is shutting down, 
Winlogon finishes the shutdown process by calling the executive subsystem function 
NtShutdownSystem. This function calls the function PoSetSystemPowerState to orchestrate the 
shutdown of drivers and the rest of the executive subsystems (Plug and Play manager, power 
manager, executive, I/O manager, configuration manager, and memory manager).  
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For example, PoSetSystemPowerState calls the I/O manager to send shutdown I/O packets to 
all device drivers that have requested shutdown notification. This action gives device drivers a 
chance to perform any special processing their device might require before Windows exits. The 
stacks of worker threads are swapped in, the configuration manager flushes any modified registry 
data to disk, and the memory manager writes all modified pages containing file data back to their 
respective files. If the option to clear the paging file at shutdown is enabled, the memory manager 
clears the paging file at this time. The I/O manager is called a second time to inform the file 
system drivers that the system is shutting down. System shutdown ends in the power manager. 
The action the power manager takes depends on whether the user specified a shutdown, a reboot, 
or a power down. 

13.4 Conclusion 

In this chapter, we’ve examined the detailed steps involved in starting and shutting down 
Windows (both normally and in error cases). We’ve examined the overall structure of Windows 
and the core system mechanisms that get the system going, keep it running, and eventually shut it 
down. The final chapter of this book explains how to deal with an unusual type of shutdown: 
system crashes. 
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14. Crash Dump Analysis 

Almost every Windows user has heard of, if not experienced, the infamous “blue screen of 
death.” This ominous term refers to the blue screen that is displayed when Windows crashes, or 
stops executing, because of a catastrophic fault or an internal condition that prevents the system 
from continuing to run. 

In this chapter, we’ll cover the basic problems that cause Windows to crash, describe the 
information presented on the blue screen, and explain the various configuration options available 
to create a crash dump, a record of system memory at the time of a crash that can help you figure 
out which component caused the crash and why. This section is not intended to provide detailed 
troubleshooting information on how to analyze a Windows system  crash. This section will also 
show you how to analyze a crash dump to identify a faulty driver or component. The effort 
required to perform basic crash dump analysis is minimal and takes a few minutes. Even if an 
analysis ascertains the problematic driver for only one out of every five or ten crash dumps, it’s 
still worth doing: one successful analysis can avoid future data loss, system downtime, and 
frustration. 

14.1 Why Does Windows Crash? 

Windows crashes (stops execution and displays the blue screen) for many possible reasons. A 
common source is a reference to a memory address that causes an access violation, either a write 
operation to read-only memory or a read operation on an address that is not mapped. Another 
common cause is an unexpected exception or trap. Crashes also occur when a kernel subsystem 
(such as the memory manager and power manager) or a driver (such as a USB or display driver) 
detect inconsistencies in their operation. 

When a kernel-mode device driver or subsystem causes an illegal exception, Windows faces 
a difficult dilemma. It has detected that a part of the operating system with the ability to access 
any hardware device and any valid memory has done something it wasn’t supposed to do. But 
why does that mean Windows has to crash? Couldn’t it just ignore the exception and let the device 
driver or subsystem continue as if nothing had happened? The possibility exists that the error was 
isolated and that the component will somehow recover. But what’s more likely is that the detected 
exception resulted from deeper problems—for example, from a general corruption of memory or 
from a hardware device that’s not functioning properly. Permitting the system to continue 
operating would probably result in more exceptions, and data stored on disk or other peripherals 
could become corrupt—a risk that’s too high to take. So Windows adopts a fail fast policy in 
attempting to prevent the corruption in RAM from spreading to disk. 
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14.2 The Blue Screen 

Regardless of the reason for a system crash, the function that actually performs the crash is 
KeBugCheckEx, documented in the Windows Driver Kit (WDK). This function takes a stop code 
(sometimes called a bugcheck code) and four parameters that are interpreted on a per– stop code 
basis. After KeBugCheckEx masks out all interrupts on all processors of the system, it switches 
the display into a low-resolution VGA graphics mode (one implemented by all Windows- 
supported video cards), paints a blue background, and then displays the stop code, followed by 
some text suggesting what the user can do. Finally, KeBugCheckEx calls any registered device 
driver bugcheck callbacks (registered by calling the KeRegisterBugCheckCallback function), 
allowing drivers an opportunity to stop their devices. It then calls registered reason callbacks 
(registered with KeRegisterBugCheckReasonCallback), which allow drivers to append data to the 
crash dump or write crash dump information to alternate devices. (It’s possible that system data 
structures have been so seriously corrupted that the blue screen isn’t displayed.) Figure 14-1 
shows a sample Windows blue screen. 

  

KeBugCheckEx displays the textual representation of the stop code near the top of the blue 
screen and the numeric stop code and four parameters at the bottom of the blue screen. The first 
line in the Technical information section lists the stop code and the four additional parameters 
passed to KeBugCheckEx. A text line near the top of the screen provides the text equivalent of the 
stop code’s numeric identifier. According to the example in Figure 14-1, the stop code 
0x000000D1 is a DRIVER_IRQL_NOT_LESS_OR_EQUAL crash. When a parameter contains 
an address of a piece of operating system or device driver code (as in Figure 14-1), Windows 
displays the base address of the module the address falls in, the date stamp, and the file name of 
the device driver. This information alone might help you pinpoint the faulty component.  

Although there are more than 300 unique stop codes, most are rarely, if ever, seen on 
production systems. Instead, just a few common stop codes represent the majority of Windows 
system crashes. Also, the meaning of the four additional parameters depends on the stop code (and 
not all stop codes have extended parameter information). Nevertheless, looking up the stop code 
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and the meaning of the parameters (if applicable) might at least assist you in diagnosing the 
component that is failing (or the hardware device that is causing the crash).  

You can find stop code information in the section “Bug Checks (Blue Screens)” in the 
Debugging Tools for Windows help file. (For information on the Debugging Tools for Windows, 
see Chapter 1.) You can also search Microsoft’s Knowledge Base (http://support.microsoft.com) 
for the stop code and the name of the suspect hardware or application. You might find information 
about a workaround, an update, or a service pack that fixes the problem you’re having. The 
Bugcodes.h file in the WDK contains a complete list of the 300 or so stop codes, with some 
additional details on the reasons for some of them. Based on data collected from the release of 
Windows Vista through the release of Windows Vista SP1, the top 30 stop codes account for 96 
percent of crashes and can be grouped into a dozen categories: 

■ Page fault A page fault on memory backed by data in a paging file or a memorymapped file 
occurs at an IRQL of DPC/dispatch level or above, which would require the memory manager to 
have to wait for an I/O operation to occur. The kernel cannot wait or reschedule threads at an 
IRQL of DPC/dispatch level or higher. (See Chapter 3 for details on IRQLs.) This category also 
includes page faults in nonpaged areas. The common stop codes are: 

� 0xA - IRQL_NOT_LESS_OR_EQUAL 

� 0xD1 - DRIVER_IRQL_NOT_LESS_OR_EQUAL 

■ Power management A device driver or an operating system function running in kernel 
mode is in an inconsistent or invalid power state. Most frequently, some component has failed to 
complete a power management I/O request operation within 10 minutes. This crash category is 
new in Windows Vista. In previous versions of the Windows operating system, these failures 
generally resulted in a system hang with no crash. The stop codes are: 

� 0x9F - DRIVER_POWER_STATE_FAILURE 

� 0xA0 - INTERNAL_POWER_ERROR 

■ Exceptions and traps A device driver or an operating system function running in kernel 
mode incurs an unexpected exception or trap. The common stop codes are: 

� 0x1E - KMODE_EXCEPTION_NOT_HANDLED 

� 0x3B - SYSTEM_SERVICE_EXCEPTION 

� 0x7E - SYSTEM_THREAD_EXCEPTION_NOT_HANDLED 

� 0x7F - UNEXPECTED_KERNEL_MODE_TRAP 

� 0x8E - KERNEL_MODE_EXCEPTION_NOT_HANDLED with P1 != 0xC0000005 
STATUS_ACCESS_VIOLATION 

■ Access violations A device driver or an operating system function running in kernel mode 
incurs a memory access violation, which is caused either by attempting to write to a read-only 
page or by attempting to read an address that isn’t currently mapped and therefore is not a valid 
memory location. The common stop codes are: 
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� 0x50 - PAGE_FAULT_IN_NONPAGED_AREA 

� 0x8E - KERNEL_MODE_EXCEPTION_NOT_HANDLED with P1 = 0xC0000005 
STATUS_ACCESS_VIOLATION 

■ Display The display device driver detects that it can no longer control the graphics 
processing unit or detects an inconsistency in video memory management. The common stop 
codes are: 

� 0xEA - THREAD_STUCK_IN_DEVICE_DRIVER 

� 0x10E - VIDEO_MEMORY_MANAGEMENT_INTERNAL 

� 0x116 - VIDEO_TDR_FAILURE 

■ Pool The kernel pool manager detects an improper pool reference. The common stop codes 
are: 

� 0xC2 - BAD_POOL_CALLER 

� 0xC5 - DRIVER_CORRUPTED_EXPOOL 

■ Memory management The kernel memory manager detects a corruption of memory 
management data structures or an improper memory management request. The common stop 
codes are: 

� 0x1A - MEMORY_MANAGEMENT 

� 0x4E - PFN_LIST_CORRUPT 

■ Consistency check This is a catch-all category for various other consistency checks 
performed by the kernel or device drivers. The common stop codes are: 

� 0x18 - REFERENCE_BY_POINTER 

� 0x35 - NO_MORE_IRP_STACK_LOCATIONS 

� 0x44 - MULTIPLE_IRP_COMPLETE_REQUESTS 

� 0xCE - 
DRIVER_UNLOADED_WITHOUT_CANCELLING_PENDING_OPERATIONS 

� 0x8086 – This is a stop code used by the Intel storage driver iastor.sys 

■ Hardware A hardware error, such as a machine check or a nonmaskable interrupt (NMI), 
occurs. This category also includes disk failures when the memory manager is attempting to read 
data to satisfy page faults. The common stop codes are: 

� 0x77 – KERNEL_STACK_INPAGE_ERROR 

� 0x7A - KERNEL_DATA_INPAGE_ERROR 

� 0x124 - WHEA_UNCORRECTABLE_ERROR 

� 0x101 - CLOCK_WATCHDOG_TIMEOUT (Software bugs can cause these errors too, 
but they are most common on over-clocked hardware systems.) 
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■ USB An unrecoverable error occurs in a universal serial bus operation. The common stop 
code is: 

� 0xFE - BUGCODE_USB_DRIVER 

■ Critical object A fatal error occurs in a critical object without which Windows cannot 
continue to run. The common stop code is: 

� 0xF4 - CRITICAL_OBJECT_TERMINATION 

■ NTFS file system A fatal error is detected by the NTFS file system. The common stop code 
is: 

� 0x24 - NTFS_FILE_SYSTEM 

Figure 14-2 shows the distribution of these categories for Windows Vista SP1 in September 
2008: 

  

14.3 Troubleshooting Crashes 

You often begin seeing blue screens after you install a new software product or piece of 
hardware. If you’ve just added a driver, rebooted, and gotten a blue screen early in system 
initialization, you can reset the machine, press the F8 key when instructed, and then select Last 
Known Good Configuration. Enabling last known good causes Windows to revert to a copy of the 
registry’s device driver registration key (HKLM\SYSTEM\CurrentControlSet\ Services) from the 
last successful boot (before you installed the driver). From the perspective of last known good, a 
successful boot is one in which all services and drivers have finished loading and at least one 
logon has succeeded. (Last known good is further described in Chapter 13.) 

During the reboot after a crash, the Boot Manager (Bootmgr) will automatically detect that 
Windows did not shut down properly and display a Windows Error Recovery message similar to 
the one shown in Figure 14-3. This screen gives you the option to attempt booting into safe mode 
so that you can disable or uninstall the software component that might be broken. 



 1013

  

If you keep getting blue screens, an obvious approach is to uninstall the components you 
added just before the first blue screen appeared. If some time has passed since you added 
something new or you added several things at about the same time, you need to note the names of 
the device drivers referenced in any of the parameters. If you recognize any of the names as being 
related to something you just added (such as Storport.sys if you put on a new SCSI drive), you’ve 
possibly found your culprit. 

Many device drivers have cryptic names, but one approach you can take to figure out which 
application or hardware device is associated with a name is to find out the name of the service in 
the registry associated with a device driver by searching for the name of the device driver under 
the HKLM\SYSTEM\CurrentControlSet\Services key. This branch of the registry is where 
Windows stores registration information for every device driver in the system. If you find a match, 
look for values named DisplayName and Description. Some drivers fill in these values to describe 
the device driver’s purpose. For example, you might find the string “Virus Scanner” in the 
DisplayName value, which can implicate the antivirus software you have running. The list of 
drivers can be displayed in the System Information tool (from the Start menu, select Programs, 
System Tools, System Information. In System Information, expand Software Environment, and 
then select System Drivers. Process Explorer also lists the currently loaded drivers, including their 
version numbers and load addresses, in the DLL view of the System process. Another option is to 
open the Properties dialog box for the driver file and examine the information on the Details tab, 
which often contains the description and company information for the driver. Keep in mind that 
the registry information and file description are provided by the driver manufacturer, and there is 
nothing to guarantee their accuracy. 

More often than not, however, the stop code and the four associated parameters aren’t enough 
information to troubleshoot a system crash. For example, you might need to examine the 
kernel-mode call stack to pinpoint the driver or system component that triggered the crash. Also, 
because the default behavior on Windows systems is to automatically reboot after a system crash, 
it’s unlikely that you would have time to record the information displayed on the blue screen. That 
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is why, by default, Windows attempts to record information about the system crash to the disk for 
later analysis, which takes us to our next topic, crash dump files. 

14.4 Crash Dump Files 

By default, all Windows systems are configured to attempt to record information about the 
state of the system when the system crashes. You can see these settings by opening the System 
tool in Control Panel, clicking the Advanced tab in the System Properties dialog box, and then 
clicking the Settings button under Startup And Recovery. The default settings for a Windows 
system are shown in Figure 14-4. 

  

Three levels of information can be recorded on a system crash: 

■ Complete memory dump A complete memory dump contains all of physical memory at the 
time of the crash. This type of dump requires that a page file be at least the size of physical 
memory plus 1 MB for the header. Device drivers can take advantage of up to 256 MB for device 
dump data, but the additional space is not required for a header. Because it can require an 
inordinately large page file on large memory systems, this type of dump file is the least common 
setting. If the system has more than 2 GB of RAM, this option will be disabled in the UI, but you 
can manually enable it by setting the CrashDumpEnabled value to 1 in the 
HKLM\SYSTEM\CurrentControlSet\Control\CrashControl registry key. At initialization time, 
Windows will check whether the page-file size is large enough for a complete dump and 
automatically switch to creating a small memory dump if not. Large server systems might not 
have space for a complete dump but may be able to dump useful information, so you can add the 
IgnorePagefileSize value to the same registry key to have the system generate a dump file until it 
runs out of space. 

■ Kernel memory dump A kernel memory dump contains only the kernel-mode read/write 
pages present in physical memory at the time of the crash. This type of dump doesn’t contain 
pages belonging to user processes. Because only kernel-mode code can directly cause Windows to 
crash, however, it’s unlikely that user process pages are necessary to debug a crash. In addition, all 
data structures relevant for crash dump analysis—including the list of running processes, stack of 
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the current thread, and list of loaded drivers—are stored in nonpaged memory that saves in a 
kernel memory dump. There is no way to predict the size of a kernel memory dump because its 
size depends on the amount of kernel-mode memory allocated by the operating system and drivers 
present on the machine. This is the default setting for both Windows Vista and Windows Server 
2008. 

■ Small memory dump A small memory dump, which is typically between 128 KB and 1 
MB in size and is also called a minidump or triage dump, contains the stop code and parameters, 
the list of loaded device drivers, the data structures that describe the current process and thread 
(called the EPROCESS and ETHREAD—described in Chapter 5), the kernel stack for the thread 
that caused the crash, and additional memory considered potentially relevant by crash dump 
heuristics, such as the pages referenced by processor registers that contain memory addresses and 
secondary dump data added by drivers. 

Note Device drivers can register a secondary dump data callback routine by calling 
KeRegisterBugCheckReasonCallback. The kernel invokes these callbacks after a crash and a 
callback routine can add additional data to a crash dump file, such as device hardware memory or 
device information for easier debugging. Up to 256 MB can be added systemwide by all drivers, 
depending on the space required to store the dump and the size of the file into which the dump is 
written, and each driver can add at most one-eighth of the available additional space. Once the 
additional space is consumed, drivers subsequently called are not offered the chance to add data. 

The debugger indicates that it has limited information available to it when it loads a 
minidump, and basic commands like !process, which lists active processes, don’t have the data 
they need. Here is an example of !process executed on a minidump:  

1. Microsoft (R) Windows Debugger Version 6.10.0003.233 X86  
2. Copyright (c) Microsoft Corporation. All rights reserved.   
3. Loading Dump File [C:\Windows\Minidump\Mini100108-01.dmp]   
4. Mini Kernel Dump File: Only registers and stack trace are available   
5. ...   
6. 0: kd> !process 0 0  
7. **** NT ACTIVE PROCESS DUMP ****   
8. GetPointerFromAddress: unable to read from 81d3a86c   
9. Error in reading nt!_EPROCESS at 00000000  

A kernel memory dump includes more information, but switching to a different process’s address 
space mappings won’t work because required data isn’t in the dump file. Here is an example of the 
debugger loading a kernel memory dump, followed by an attempt to switch process address 
spaces: 

1. Microsoft (R) Windows Debugger Version 6.10.0003.233 X86  
2. Copyright (c) Microsoft Corporation. All rights reserved.   
3. Loading Dump File [C:\Windows\MEMORY.DMP]   
4. Kernel Summary Dump File: Only kernel address space is available   
5. ...   
6. 0: kd> !process 0 0 explorer.exe   
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7. PROCESS 867250a8 ...   
8. 0: kd> .process 867250a8 ...   
9. Process 867250a8 has invalid page directories  

While a complete memory dump is a superset of the other options, it has the drawback that its 
size tracks the amount of physical memory on a system and can therefore become unwieldy. It’s 
not unusual for systems today to have several gigabytes of memory, resulting in crash dump files 
that are too large to be uploaded to an FTP server or burned onto a CD. Because user-mode code 
and data are not used during the analysis of most crashes (because crashes originate as a result of 
problems in kernel memory, and system data structures reside in kernel memory) much of the data 
stored in a complete memory dump is not relevant to analysis and therefore contributes wastefully 
to the size of a dump file. A final disadvantage is that the paging file on the boot volume (the 
volume with the \Windows directory) must be at least as large as the amount of physical memory 
on the system plus up to 365 MB. Because the size of the paging files required, in general, 
inversely tracks the amount of physical memory present, this requirement can force the paging file 
to be unnecessarily large. You should therefore consider the advantages offered by the small and 
kernel memory dump options. 

An advantage of a minidump is its small size, which makes it convenient for exchange via 
e-mail, for example. In addition, each crash generates a file in the directory \Windows\Minidump 
with a unique file name consisting of the string “Mini” plus the date plus a sequence number that 
counts the number of minidumps on that day (for example, Mini082608-01.dmp). A disadvantage 
of minidumps is that to analyze them, you must have access to the exact images used on the 
system that generated the dump at the time you analyze the dump. (At a minimum, a copy of the 
matching Ntoskrnl.exe is needed to perform the most basic analysis.) This can be problematic if 
you want to analyze a dump on a system different from the system that generated the dump. 
However, the Microsoft symbol server contains images (and symbols) for all recent Windows 
versions, so you can set the image path in the debugger to point to the symbol server, and the 
debugger will automatically download the needed images. (Of course, the Microsoft symbol 
server won’t have images for thirdparty drivers you have installed.) 

A more significant disadvantage is that the limited amount of data stored in the dump can 
hamper effective analysis. You can also get the advantages of minidumps even when you 
configure a system to generate kernel or complete crash dumps by opening the larger crash with 
WinDbg and using the .dump /m command to extract a minidump. Note that a minidump is 
automatically created even if the system is set for full or kernel dumps.  

Note You can use the .dump command from within Livekd to generate a memory image of a 
live system that you can analyze offline without stopping the system. This approach is useful 
when a system is exhibiting a problem, but is still delivering services, and you want to 
troubleshoot the problem without interrupting service. The resultant crash image isn’t necessarily 
fully consistent because the contents of different regions of memory reflect different points in time, 
but it might contain information useful for an analysis. 

The kernel memory dump option offers a practical middle ground. Because it contains all of 
kernel-mode-owned physical memory, it has the same level of analysis-related data as a complete 
memory dump, but it omits the usually irrelevant user-mode data and code, and therefore can be 
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significantly smaller. As an example, on a system running Windows Vista with 4 GB of RAM, a 
kernel memory dump was 160 MB in size. 

When you configure kernel memory dumps, the system checks whether the paging file is 
large enough, as described earlier. Some general recommendations follow in Table 14-1, but these 
are only estimated sizes because there is no way to predict the size of a kernel memory dump. The 
reason you can’t predict the size of a kernel memory dump is that its size depends on the amount 
of kernel-mode memory in use by the operating system and drivers present on the machine at the 
time of the crash.  

  

Therefore, it is possible that at the time of the crash, the paging file is too small to hold a 
kernel dump. If you want to see the size of a kernel dump on your system, force a manual crash 
either by configuring the option to allow you to initiate a manual system crash from the console or 
by using the Notmyfault tool described later in this chapter. (Both these approaches are described 
later in the chapter.) When you reboot, you can check to make sure that a kernel dump was 
generated and check its size to gauge how large to make your boot volume paging file. To be 
conservative, on 32-bit systems you can choose a page file size of 2 GB plus up to 356 MB, 
because 2 GB is the maximum kernel-mode address space available (unless you are booting with 
the 3gb and/or userva boot options, in which case this can be up to 3 GB). If you do not have 
enough space on the boot volume for saving the memory.dmp file, you can choose a location on 
any other local hard disk through the dialog box shown in Figure 14-4. 

Crash Dump Generation 

When the system boots, it checks the crash dump options configured by reading the registry 
value HKLM\SYSTEM\CurrentControlSet\Control\CrashControl. If a dump is configured, it 
makes a copy of the disk miniport driver used to write to the boot  volume in memory and gives it 
the same name as the miniport with the word “dump_” prefixed. It also checksums the 
components involved with writing a crash dump—including the copied disk miniport driver, the 
I/O manager functions that write the dump, and the map of where the boot volume’s paging file is 
on disk—and saves the checksum. When KeBugCheckEx executes, it checksums the components 
again and compares the new checksum with that obtained at the boot. If there’s not a match, it 
does not write a crash dump, because doing so would likely fail or corrupt the disk. Upon a 
successful checksum match, KeBugCheckEx writes the dump information directly to the sectors 
on disk occupied by the paging file, bypassing the file system driver and storage driver stack 
(which might be corrupted or even have caused the crash).  

Note Because the page file is created early in system startup during memory manager 
initialization, most crashes the are caused by bugs in system-start driver initialization result in a 
dump file. Crashes in early Windows boot components such as the HAL or the initialization of 
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boot drivers occur too early for the system to have a page file, so using another computer to debug 
the startup process is the only way to perform dump analysis in those cases. 

When the Session Manager (SMSS) re-initializes the page file during the boot process, it 
calls the function SmpCheckForCrashDump, which looks in the boot volume’s current paging file 
(created by the kernel during the boot process) to see whether a crash dump is present. SMSS then 
checks whether the target dump file is on a different volume than the paging file. If so, it renames 
the paging file to a temporary dump file name, Dumpxxx.tmp (where xxx is the current low value 
of the system’s tick count), and truncates the file to the size of the dump data. (This information is 
stored in the header on top of each dump file.) It also removes both the hidden and system 
attributes from the file. SMSS then creates the volatile registry key HKLM\SYSTEM 
\CurrentControlSet\Control\CrashControl\MachineCrash and stores the temporary dump file name 
in the value “DumpFile”. It then writes a REG_DWORD to the “TempDestination” value 
indicating whether the dump file location is only the temporary destination. If the paging file is on 
the same volume as the destination dump file, a temporary dump file isn’t used, and the paging 
file is directly renamed to the dump file name. In this case, the DumpFile value will be 
%SystemRoot%\Memory.dmp and TempDestination will be 0. 

Later in the boot, Wininit checks for the presence of the MachineCrash key, and if it exists, 
Wininit launches WerFault, which reads the TempDestination and DumpFile values and either 
renames or copies the temporary file to its target location (typically %System Root%\Mem 
ory.dmp, unless configured otherwise) depending on whether the target is on the same volume as 
the Windows directory. WerFault then writes the final dump file name to the FinalDumpFile 
Location value in the MachineCrash key. These steps are shown in Figure 14-5.  

  

To support machines that might not have a paging file or no paging file on the boot volume, 
for example on systems that boot from a SAN or read-only media, Windows also supports the use 
of a dedicated dump file that is configured in the DedicatedDumpFile and DumpFileSize values 
under the HKLM\SYSTEM\CurrentControlSet\Control\CrashControl registry key. When a 
dedicated dump file is specified, the crash dump driver (%SystemRoot%\System32 
\Drivers\Crashdmp.sys) creates the dump file of the required size and writes the crash data there 
instead of the paging file. If a full or kernel dump is configured but there is not enough space on 
the target volume to create the dedicated dump file of the required size, the system falls back to 
writing a minidump. 
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14.5 Windows error reporting 

As mentioned in Chapter 3, Windows includes a facility called Windows Error Reporting 
(WER), which facilitates the automatic submission of process and system failures (such as crashes 
and/or hangs) to Microsoft (or an internal error reporting server) for analysis. This feature is 
enabled by default, but it can be modified by changing WER’s behavior, which takes the 
additional step of determining whether the system is configured to send a crash dump to Microsoft 
(or a private server, explained further in the “Online Crash Analysis” section later in the chapter) 
for analysis on a reboot following a crash. The WER Advanced Settings screen, which you access 
from the Problem Reports And Solutions screen of the Control Panel’s System applet, is shown in 
Figure 14-6. This dialog box allows you to configure the system’s error reporting settings. 

  

As mentioned earlier, if Wininit.exe finds the HKLM\SYSTEM\CurrentControlSet 
\Control\CrashControl\MachineCrash key, it executes WerFault.exe with the –k –c flags (the k 
flag indicates kernel error reporting, and the c flag indicates that the full or kernel dump should be 
converted to a minidump) to have WerFault.exe check for a kernel crash dump file. WerFault 
takes the following steps for preparing to send a crash dump report to the Microsoft Online Crash 
Analysis (OCA) site (or, if configured, an internal error reporting server): 

1. If the type of dump it generated was not a minidump, it extracts a minidump from the 
dump file and stores it in the default location of \Windows\Minidumps, unless otherwise 
configured through the MinidumpDir value in the HKLM\SYSTEM\CurrentControlSet 
\Control\CrashControl\ key.  

2. It writes the name of the minidump files to HKLM\SOFTWARE\Microsoft 
\Windows\Windows Error Reporting\KernelFaults\Queue. 

3. It adds a command to execute WerFault.exe (\Windows\System32\WerFault.exe) to 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce so that WerFault is executed 
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one more time during the first user’s logon to the system for purposes of actually sending the error 
report. 

14.6 Online Crash analysis 

When the WerFault utility executes during logon, as a result of having configured itself to 
start, it checks the HKLM\SOFTWARE\Microsoft\Windows\Windows Error Reporting 
\KernelFaults\Queue key to look for queued reports that may have been added in the previous 
dump conversion phase. It also checks whether there are previously unsent crash reports from 
previous sessions. If there are, it launches WerFault.exe with the –k –q flags (the q flag specifies 
the usage of queued reporting mode) to generate an XML-formatted file containing a basic 
description of the system, including the operating system version, a list of drivers installed on the 
machine, and the list of Plug and Play drivers loaded on the system at the time of the crash. 

If configured to ask for user input (which is not the default), it then presents the dialog box 
shown in Figure 14-7, which asks the user whether he or she wants to send an error report to 
Microsoft. If the user chooses to send the error report, and unless overridden by Group Policy, 
WerFault sends the XML file and minidump to http://oca.microsoft.com, which forwards the data 
to a server farm for automated analysis, described in the next section. 

  

The server farm’s automated analysis uses the same analysis engine that the Microsoft kernel 
debuggers use when you load a crash dump file into them (described shortly). The analysis 
generates a bucket ID, which is a signature that identifies a particular crash type. The server farm 
queries a database using the bucket ID to see whether a resolution has been found for the crash, 
and it sends a URL back to WerFault that refers it to the OCA Web site (http://oca.microsoft.com). 
If configured to do so, WerFault launches the Windows Error Reporting Console, or WerCon 
(%SystemRoot%\System32\Wercon.exe), which is a program that allows users to interface with 
WER for receiving problem resolution and tracking information as well as for configuring WER 
behavior. When browsing for solutions, WerCon contains an Internet browser frame to open the 
page on the WER Web site that reports the preliminary crash analysis. If a resolution is available, 
the page instructs the user where to obtain a hotfix, service pack, or third-party driver update. 
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14.7 Basic Crash Dump analysis 

If OCA fails to identify a resolution or you are unable to submit the crash to OCA, an 
alternative is analyzing crashes yourself. As mentioned earlier, WinDbg and Kd both execute the 
same analysis engine used by OCA when you load a crash dump file, and the basic analysis can 
sometimes pinpoint the problem. So you might be fortunate and have the crash dump solved by 
the automatic analysis. But if not, there are some straightforward techniques to try to solve the 
crash. 

This section explains how to perform basic crash analysis steps, followed by tips on 
leveraging the Driver Verifier (which is introduced in Chapter 7) to catch buggy drivers when they 
corrupt the system so that a crash dump analysis pinpoints them. 

Note OCA’s automated analysis may occasionally identify a highly likely cause of a crash 
but not be able to inform you of the suspected driver. This happens because it only reports the 
cause for crashes that have their bucket ID entry populated in the OCA database, and entries are 
created only when Microsoft crash-analysis engineers have verified the cause. If there’s no bucket 
ID entry, OCA reports that the crash was caused by “unknown driver.”  

Notmyfault 

You can use the Notmyfault utility from Windows Sysinternals (www.microsoft.com 
/technet/sysinternals) to generate the crashes described here. Notmyfault consists of an executable 
named Notmyfault.exe and a driver named Myfault.sys. When you run the Notmyfault executable, 
it loads the driver and presents the dialog box shown in Figure 14-8, which allows you to crash the 
system in various ways or to cause the driver to leak paged pool. The crash types offered represent 
the ones most commonly seen by Microsoft’s product support services. Selecting an option and 
clicking the Do Bug button causes the executable to tell the driver, by using the DeviceIoControl 
Windows API, which type of bug to trigger.  

Note You should execute Notmyfault crashes on a test system or on a virtual machine 
because there is a small risk that memory it corrupts will be written to disk and result in file or 
disk corruption. 
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Note The names of the Notmyfault executable and driver highlight the fact that user mode 
cannot directly cause the system to crash. The Notmyfault executable can cause a crash only by 
loading a driver to perform an illegal operation for it in kernel mode. 

Basic Crash Dump analysis 

The most straightforward Notmyfault crash to debug is the one caused by selecting the High 
IRQL Fault (Kernelmode) option and clicking the Do Bug button. This causes the driver to 
allocate a page of paged pool, free the pool, raise the IRQL to above DPC/dispatch level, and then 
touch the page it has freed. (See Chapter 3 for more information on IRQLs.) If that doesn’t cause a 
crash, the process continues by reading memory past the end of the page until it causes a crash by 
accessing invalid pages. The driver performs several illegal operations as a result: 

1. It references memory that doesn’t belong to it. 

2. It references paged pool at an IRQL that’s DPC/dispatch level or higher, which is illegal 
because page faults are not permitted when the processor IRQL is DPC/dispatch level or higher. 

3. When it goes past the end of the memory that it had allocated, it tries to reference memory 
that is potentially invalid. 

The reason the first page reference might not cause a crash is that it won’t generate a page 
fault if the page that the driver frees remains in the system working set. (See Chapter 9 for 
information on the system working set.) 

When you load a crash generated with this bug into WinDbg, the tool’s analysis displays 
something like this: 

1. Microsoft (R) Windows Debugger Version 6.9.0003.113 X86  
2. Copyright (c) Microsoft Corporation. All rights reserved.   
3. Loading Dump File [C:\windows\MEMORY.DMP]   
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4. Kernel Summary Dump File: Only kernel address space is available   
5. Symbol search path is: srv*c:\programming\symbols\*http://msdl.microsoft.com    

/download/ 
6. symbols   
7. Executable search path is:   
8. Windows Server 2008 Kernel Version 6001 (Service Pack 1) MP (2 procs) Free x86   
         compatible   
9. Product: WinNt, suite: TerminalServer SingleUserTS   
10. Built by: 6001.18063.x86fre.vistasp1_gdr.080425-1930  
11. Kernel base = 0x81804000 PsLoadedModuleList = 0x8191bc70  
12. Debug session time: Sun Sep 21 22:58:19.994 2008 (GMT-4)   
13. System Uptime: 2 days 0:11:17.876  
14. Loading Kernel Symbols   
15. ............................................................................................   
16. ....................................................   
17. Loading User Symbols   
18. Loading unloaded module list   
19. .......   
20. ********************************************************************** 
21. * *   
22. * Bugcheck Analysis *   
23. * *   
24. ********************************************************************** 
25. Use !analyze -v to get detailed debugging information.   
26. BugCheck D1, {a35db800, 1c, 0, 9879c3dd}   
27. *** ERROR: Module load completed but symbols could not be loaded for myfault.sys  
28. Probably caused by : myfault.sys ( myfault+3dd )   
29. Followup: MachineOwner   
30. ---------   
The first thing to note is that WinDbg reports errors trying to load symbols for Myfault.sys and 
Notmyfault.exe. These are expected because the symbol files for Myfault.sys and Notmyfault.exe 
are not on the symbol-file path (which is configured to point at the Microsoft symbol server). 
You’ll see similar errors for third-party drivers and executables that do not ship with the operating 
system.  

The analysis text itself is terse, showing the numeric stop code and bug-check parameters 
followed by a “Probably caused by” line that shows the analysis engine’s best guess at the 
offending driver. In this case it’s on the mark and points directly at Myfault.sys, so there’s no need 
for manual analysis. 

The “Followup” line is not generally useful except within Microsoft, where the debugger 
looks for the module name in the Triage.ini file that’s located within the Triage directory of the 
Debugging Tools for Windows installation directory. The Microsoft-internal version of that file 
lists the developer or group responsible for handling crashes in a specific driver, and the debugger 
displays the developer’s or group’s name in the Followup line when appropriate. 
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Verbose Analysis  

Even though the basic analysis of the Notmyfault crash identifies the faulty driver, you 
should always have the debugger execute a verbose analysis by entering the command: 

1. !analyze –v  
The first obvious difference between the verbose and default analysis is the description of the stop 
code and its parameters. Following is the output of the command when executed on the same 
dump:  
1. DRIVER_IRQL_NOT_LESS_OR_EQUAL (d1)   
2. An attempt was made to access a pageable (or completely invalid) address at an   
3. interrupt request level (IRQL) that is too high. This is usually   
4. caused by drivers using improper addresses.   
5. If kernel debugger is available get stack backtrace.   
6. Arguments:   
7. Arg1: a35db800, memory referenced   
8. Arg2: 0000001c, IRQL   
9. Arg3: 00000000, value 0 = read operation, 1 = write operation   
10. Arg4: 9879c3dd, address which referenced memory   
This saves you the trouble of opening the help file to find the same information, and the text 
sometimes suggests troubleshooting steps, an example of which you’ll see in the next section on 
advanced crash dump analysis.  

The other potentially useful information in a verbose analysis is the stack trace of the thread 
that was executing on the processor that crashed at the time of the crash. Here’s what it looks like 
for the same dump: 

1. STACK_TEXT:   
2. 80395b78 9879c3dd badb0d00 8312d054 00000003 nt!KiTrap0E+0x2ac   
3. WARNING: Stack unwind information not available. Following frames may be wrong.  
4. 80395c44 81a505e5 855802e0 849e26c0 849e2730 myfault+0x3dd   
5. 80395c64 81a50d8a 83746238 855802e0 00000000 nt!IopSynchronousServiceTail    

+0x1d9   
6. 80395d00 81a3aa61 83746238 849e26c0 00000000 nt!IopXxxControlFile+0x6b7  
7. 80395d34 8185ba7a 0000007c 00000000 00000000 nt!NtDeviceIoControlFile+0x2a   
8. 80395d34 770f9a94 0000007c 00000000 00000000 nt!KiFastCallEntry+0x12a   
9. 0012f4a0 77e84c9b 0000007c 00000000 00000000 ntdll!ZwDeviceIoControlFile+0xb 
10. 0012f504 004017c3 0000007c 83360018 00000000 KERNEL32!DeviceIoControl 

+0x100  
11. 000200ac 00000000 00000000 00000000 00000000 NotMyfault+0x17c3  
The preceding stack shows that the Notmyfault executable image, shown at the bottom, invoked 
the DeviceIoControl function in Kernel32.dll, which in turn invoked ZwDeviceIoControl File in 
Ntdll.dll, and so on, until finally the system crashed with the execution of an instruction in the 
Myfault image. A stack trace like this can be useful because crashes sometimes occur as the result 
of one driver passing another one that is improperly formatted or corrupt or has illegal parameters. 
The driver that’s passed the invalid data might cause a crash and get the blame in an analysis, 
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when the stack reveals that another driver was involved. In this sample trace, no driver other than 
Myfault is listed. (The module “nt” is Ntoskrnl.)  

If the driver singled out by an analysis is unfamiliar to you, use the lm (list modules) 
command to look at the driver’s version information. Add the k (kernel modules) and v (verbose) 
options along with the m (match) option followed by the name of the driver and a wildcard: 

1. lkd> lm kv m myfault*   
2. start end module name   
3. a98e1000 a98e1ec0 myfault (deferred)   
4. Image path: \??\C:\Windows\system32\drivers\myfault.sys   
5. Image name: myfault.sys   
6. Timestamp: Sat Oct 14 16:09:18 2006 (453143EE)   
7. CheckSum: 0000295E   
8. ImageSize: 00000EC0  
9. File version: 2.0.0.0  
10. Product version: 2.0.0.0  
11. File flags: 0 (Mask 3F)   
12. File OS: 40004 NT Win32  
13. File type: 3.7 Driver   
14. File date: 00000000.00000000  
15. Translations: 0409.04b0  
16. CompanyName: Sysinternals   
17. ProductName: Sysinternals Myfault   
18. InternalName: myfault.sys   
19. OriginalFilename: myfault.sys   
20. ProductVersion: 2.0  
21. FileVersion: 2.0  
22. FileDescription: Crash Test Driver   
23. LegalCopyright: Copyright (C) M. Russinovich 2002-2004  
In addition to using the description to identify the purpose of a driver, you can also use the file and 
product version numbers to see whether the version installed is the most up-to-date version 
available. (You can do this by checking the vendor Web site, for instance.) If version information 
isn’t present (because it might have been paged out of physical memory at the time of the crash), 
look at the driver image file’s properties in Windows Explorer on the system that crashed. 

14.8 Using Crash Troubleshooting Tools 

The crash generated in the preceding section with Notmyfault’s High IRQL Fault 
(Kernelmode) option poses no challenge for the debugger’s automated analysis. Unfortunately, 
most crashes are not so easy and sometimes are impossible to debug. There are several levels of 
increasing severity in terms of system performance degradation that might help turn system 
crashes that cannot be analyzed into ones that can be. If the crashes generated after you configure 
a level and reboot aren’t revealing the cause, try the next level. 
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1. If there are one or more drivers you consider likely sources of the crashes—because they 
were introduced into the system relatively recently, they were recently updated, or the 
circumstances of the crash implicate them—enable them for verification using the Driver Verifier 
and check all the verification options except for low resources simulation. (See Chapter 7 for more 
information on Driver Verifier.) 

2. Enable the same level of verification as in level 1 on all unsigned drivers in the system. 

3. Enable the same verification as in level 1 on all drivers in the system. To maintain 
reasonable performance, you may want to divide the drivers into groups, enabling the Driver 
Verifier on one group at a time between reboots  

Obviously, before you spend time and energy making system configuration changes and 
analyzing crashes, you should ensure that your system’s kernel and drivers are the most recent 
available by using the services of Windows Update and third-party driver support sites. 

Note If your system becomes unbootable because the Driver Verifier detects a driver error 
and crashes the system, then start in safe mode (where verification is disabled), run the Driver 
Verifier, and delete verification settings. 

The following sections demonstrate how the Driver Verifier can make impossible-to-debug 
crashes into ones that you can solve. 

14.8.1 Buffer Overrun, Memory Corruptions, and Special Pool 

By far the most common source of crashes on Windows is pool corruption. Pool corruption 
usually occurs when a driver suffers from a buffer overrun or buffer underrun bug that causes it to 
overwrite data past either the end or start of a buffer it has allocated from paged or nonpaged pool. 
The Executive’s pool-tracking structures reside on either side of a pool buffer and separate buffers 
from each other. These bugs, therefore, cause corruption to the pool tracking structures, to buffers 
owned by other drivers, or to both. You can often catch the culprit of a pool overrun by using 
the !pool command to examine the surrounding pool tags. Find the address at which the corruption 
occurred and use !pool address_of_corruption. This command will display all the pool allocations 
that are on the same page as the corruption. Looking in the left column, find the range of the 
corrupted address and then look at the allocation just previous to it and find its pool tag. This will 
likely be the culprit in a buffer overrun. You can use the pooltag.txt file in the Triage folder of the 
Debugging Tools for Windows installation directory to find the driver that owns the pool tag, or 
use the Strings utility from Sysinternals. 

Pool corruption can also occur when a driver writes to pool it had previously owned but 
subsequently freed. This is called a use after free bug and is usually caused by a race condition in 
a driver. These bugs are particularly hard to debug because the driver that corrupts memory no 
longer has any traceable ties to the memory, such as a neighboring pool tag as in a buffer overrun. 
Another fairly common cause of pool corruption is direct memory access (DMA). DMA occurs 
when hardware writes directly to RAM instead of going through a driver; however, the driver is 
still responsible for coordinating the whole process by allocating the memory that the hardware 
will write to and programming the hardware registers of the device with the details of the 



 1027

operation. If a driver has a bug that releases the memory it is using for DMA before the hardware 
writes to it, the memory can be given to another driver or even to a user-mode application, which 
will certainly not expect to have hardware writing to it.  

The crashes caused by pool corruption are virtually impossible to debug because the system 
crashes when corrupted data is referenced, not when the corruption occurs. However, sometimes 
you can take steps to at least obtain a clue about what corrupted the memory. The first step is to 
try to determine the size of the corruption by looking at the corrupted data. If the corruption is a 
single bit, it was likely caused by bad RAM. If the corruption is fairly small,  it could be caused 
by hardware or software, and finding a root cause will be nearly impossible. In the case of large 
corruptions, you can look for patterns in the corruption, like strings (for example, HTTP packet 
payloads, file contents of text-based files, and so on) or audio/video data (usually patterns of 
integers less than 1,024). Open an MP3 file in a hex editor to get an idea of what audio data looks 
like in memory. 

Note To assist in catching pool corruptions, Windows checks the consistency of a buffer’s 
pooltracking structures, and those of the buffer’s immediate neighbors, on every pool allocation 
and free operation. Thus, buffer overruns are likely to be detected shortly after the corruption and 
identified with a crash that has the BAD_POOL_HEADER stop code. 

You can generate a pool corruption crash by running Notmyfault and selecting the Buffer 
Overflow bug. This causes Myfault to allocate a buffer and then overwrite the 40 bytes following 
the buffer. There can be a significant delay between the time you click the Do Bug button and 
when a crash occurs, and you might even have to generate pool usage by exercising applications 
before a crash occurs, which highlights the distance between a corruption and its effect on system 
stability. An analysis of the resultant crash almost always reports Ntoskrnl or another driver as 
being the likely cause, which demonstrates the usefulness of a verbose analysis with its 
description of the stop code: 

1. DRIVER_CORRUPTED_EXPOOL (c5)   
2. An attempt was made to access a pageable (or completely invalid) address at an   
3. interrupt request level (IRQL) that is too high. This is   
4. caused by drivers that have corrupted the system pool. Run the driver   
5. verifier against any new (or suspect) drivers, and if that doesn’t turn up   
6. the culprit, then use gflags to enable special pool.   
7. Arguments:   
8. Arg1: 4f4f4f53, memory referenced   
9. Arg2: 00000002, IRQL   
10. Arg3: 00000001, value 0 = read operation, 1 = write operation   
11. Arg4: 81926886, address which referenced memory   

The advice in the description is to run the Driver Verifier against any new or suspect drivers 
or to use Gflags to enable special pool. Both accomplish the same thing: to have the system detect 
a potential corruption when it occurs and crash the system in a way that makes the automated 
analysis point at the driver causing the corruption. 
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If the Driver Verifier’s special pool option is enabled, verified drivers use special pool, rather 
than paged or nonpaged pool, for any allocations they make for buffers slightly less than a page in 
size. A buffer allocated from special pool is sandwiched between two invalid pages and by default 
is aligned against the top of the page. The special pool routines also fill the unused portions of the 
page in which the buffer resides with a random pattern. Figure 14-9 depicts a special pool 
allocation. 

The system detects any buffer overruns of under a page in size at the time of the overrun 
because they cause a page fault on the invalid page following the buffer. The signature serves to 
catch buffer underruns at the time the driver frees a buffer because the integrity of the pattern 
placed there at the time of allocation will have been compromised. 

  

To see how the use of special pool causes a crash that the analysis engine easily diagnoses, 
run the Driver Verifier Manager. Choose the Create Custom Settings (For Code Developers) 
option on the first page of the wizard, choose Select Individual Settings From A Full List on the 
second, and then select Special Pool. Choose the Select Drivers From A List option on the 
subsequent page, and on the page that lists drivers press the button to add unloaded drivers, and 
then type myfault.sys into the File Find dialog box. (You do not have to find myfault.sys in the 
File Find dialog box; just enter its name.) Then check the myfault.sys driver, exit the wizard, and 
reboot.  

When you run Notmyfault and cause a buffer overflow, the system will immediately crash 
and the analysis of the dump reports this: 

1. Probably caused by : myfault.sys ( myfault+3f1 )  

A verbose analysis describes the stop code like this: 

1. DRIVER_PAGE_FAULT_BEYOND_END_OF_ALLOCATION (d6)   
2. N bytes of memory was allocated and more than N bytes are being referenced.   
3. This cannot be protected by try-except.   
4. When possible, the guilty driver’s name (Unicode string) is printed on   
5. the bugcheck screen and saved in KiBugCheckDriver.   
6. Arguments:   
7. Arg1: beb50000, memory referenced   
8. Arg2: 00000001, value 0 = read operation, 1 = write operation   
9. Arg3: ec3473f1, if non-zero, the address which referenced memory.   
10. Arg4: 00000000, (reserved)  
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Special pool made an elusive bug into one that instantly reveals itself and makes the 
analysis trivial. 

14.8.2 Code Overwrite and System Code Write Protection 

A driver with a bug that causes corruption or misinterpretation of its own data structures can 
reference memory the driver doesn’t own when it interprets corrupted data as a memory pointer 
value. The target of the pointer can be anything in the virtual address space, including data 
belonging to other drivers, invalid memory, or the code of other drivers or the kernel. As with 
buffer overruns, by the time that corruption is detected and the system crashes, it’s usually 
impossible to identify the driver that caused the corruption. Enabling special pool increases the 
chance of catching wild-pointer bugs, but it does not catch code corruption.  

When you run Notmyfault and select the Code Overwrite option, the Myfault driver corrupts 
the entry point to the NtReadFile kernel function. One of two things will happen at this point: if 
your system has 255 MB or less of physical memory, you’ll get a crash for which an analysis 
points at Myfault.sys. The stop code description that a verbose analysis displays tells you that 
Myfault attempted to write to read-only memory: 

1. ATTEMPTED_WRITE_TO_READONLY_MEMORY (be)   
2. An attempt was made to write to readonly memory. The guilty driver is on the   
3. stack trace (and is typically the current instruction pointer).   
4. When possible, the guilty driver’s name (Unicode string) is printed on   
5. the bugcheck screen and saved in KiBugCheckDriver.   
6. Arguments:   
7. Arg1: 804bb7fd, Virtual address for the attempted write.   
8. Arg2: 004bb121, PTE contents.   
9. Arg3: b804db60, (reserved)   
10. Arg4: 0000000b, (reserved)  
However, if you have more than 255 MB of memory, you’ll get a different type of crash because 
the attempt to corrupt the memory isn’t caught. Because NtReadFile is a commonly executed 
system service that is used by the Windows subsystem to read keyboard and mouse input, the 
system will almost immediately crash as a thread attempts to execute the corrupted code and 
generates an illegal instruction fault. The analysis of crashes generated with this bug is always 
wrong, but it might vary, with Win32k.sys and Ntoskrnl.exe commonly being the analyzer’s best 
guess as to what’s responsible. The bugcheck description for these crashes is:  
1. KMODE_EXCEPTION_NOT_HANDLED (1e)   
2. This is a very common bugcheck. Usually the exception address pinpoints   
3. the driver/function that caused the problem. Always note this address   
4. as well as the link date of the driver/image that contains this address.   
5. Arguments:   
6. Arg1: c0000005, The exception code that was not handled   
7. Arg2: 80461885, The address that the exception occurred at   
8. Arg3: 00000000, Parameter 0 of the exception   
9. Arg4: 00000000, Parameter 1 of the exception  
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The reason for the different behaviors on different configurations relates to a mechanism called 
system code write protection. If system code write protection is enabled, the memory manager 
maps Ntoskrnl.exe, the HAL, and boot drivers using standard physical pages (4 KB on x86 and 
x64, and 8 KB on IA64). Because the granularity of protection in an image is the standard page 
size, the memory manager can write-protect code pages so that an attempt to modify them 
generates an access fault (as seen in the first crash). However, when system code write protection 
is disabled on systems with more than 255 MB of RAM, the memory manager uses large pages (4 
MB on x86, and 16 MB on IA64 and x86-64) to map Ntoskrnl.exe and the HAL.  

If system code write protection is off and crash analysis reports unlikely causes for a crash or 
you suspect code corruption, you should enable it. Verifying at least one driver with the Driver 
Verifier is the easiest way to enable it. You can also enable it manually by adding two registry 
values under HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Manage- 
ment. First, specify the amount of RAM at which the memory manager uses large pages instead of 
standard pages to map Ntoskrnl.exe as an effectively infinite value. You do this by creating a 
DWORD value called LargePageMinimum and setting it to 0xFFFFFFFF. Then add another 
DWORD value named EnforceWriteProtection and set it to 1. You must reboot for the changes to 
take effect.  

Note When the debugger has access to the image files included in a crash dump, the analysis 
internally executes the !chkimg debugger command to verify that a copy of an image in a crash 
dump matches the on-disk image and reports any differences. Note that chkimg will always report 
discrepancies in Ntoskrnl.exe if you’ve enabled the Driver Verifier. 

14.9 Advanced Crash Dump analysis 

The preceding section leverages the Driver Verifier to create crashes that the debugger’s 
automated analysis engine can resolve. You might still encounter cases where you cannot get a 
system to produce easily analyzable crashes and, if so, you will need to execute manual analysis to 
try and determine what the problem is. Here are some examples of basic commands that can 
provide clues during crash analysis. The Debugging Tools for Windows help file provides 
complete documentation on these and other commands as well as examples of how to use them 
during crash analysis: 

■ Use the !process 0 0 debugger command to look at the processes running, and make sure 
that you understand the purpose of each one. Try disabling or uninstalling unnecessary 
applications and services. 

■ Use the lm command with the kv option to list the loaded kernel-mode drivers. Make sure 
that you understand the purpose of any third-party drivers and that you have the most recent 
versions. 

■ Use the !vm command to see whether the system has exhausted virtual memory, paged 
pool, or nonpaged pool. If virtual memory is exhausted, the committed pages will be close to the 
commit limit, so try to identify a potential memory leak by examining the list of processes to see 
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which one reports high commit usage. If nonpaged pool or paged pool is exhausted (that is, the 
usage is close to the maximum), see the “Troubleshooting a Pool Leak” experiment in Chapter 9. 

There are other debugging commands that can prove useful, but more advanced knowledge is 
required to apply them. The !irp command is one of them. The next section shows the use of this 
command to identify a suspect driver. 

14.9.1 Stack Trashes 

Stack overrun or stack trashing typically results from a buffer overrun or underrun or when a 
driver passes a buffer address located on the stack to a lower driver on the device stack, which 
then performs the work asynchronously. 

In the case of a buffer overrun or underrun, instead of residing in pool, as you saw with 
Notmyfault’s buffer overrun bug, the target buffer is on the stack of the thread that executes the 
bug. This type of bug is another one that’s difficult to debug because the stack is the foundation 
for any crash dump analysis. 

In the case of passing buffers on the stack to lower drivers, if the lower driver returns to the 
caller immediately because it used a completion routine to perform the work, instead of returning 
synchronously, when the completion routine is called, it will use the stack address that was passed 
previously, which could now correspond to a different state on the caller’s stack and result in 
corruption. 

When you run Notmyfault and select Stack Trash, the Myfault driver overruns a buffer it 
allocates on the kernel stack of the thread that executes it. When Myfault tries to return control to 
the Ntoskrnl function that was invoked, it reads the return address, which is the address at which it 
should continue executing, from the stack. The address was corrupted by the stackbuffer overrun, 
so the thread continues execution at some different address in memory—an address that might not 
even contain code. An illegal exception and crash occur when the thread executes an illegal CPU 
instruction or it references invalid memory. 

The driver that the crash dump analysis of a stack overrun points the blame at will vary from 
crash to crash, but the stop code will almost always be KMODE_EXCEPTION_NOT 
_HANDLED. If you execute a verbose analysis, the stack trace looks like this: 

1. STACK_TEXT:   
2. 881fc744 81c82590 0000008e c0000005 00000000 nt!KeBugCheckEx+0x1e   
3. 881fcb14 81ca45da 881fcb30 00000000 881fcb84 nt!KiDispatchException+0x1a9  
4. 881fcb7c 81ca458e 881fcc44 00000000 badb0d00 nt!CommonDispatchException+0x4a   
5. 881fcc2c 81d07fd3 9762b658 84736e68 84736e68 nt!Kei386EoiHelper+0x186  
6. 881fcc44 81e98615 99321810 84736e68 84736ed8 nt!IofCallDriver+0x63  
7. 881fcc64 81e98dba 9762b658 99321810 00000000 nt!IopSynchronousServiceTail+0x1d9  
8. 881fcd00 81e82a8d 9762b658 84736e68 00000000 nt!IopXxxControlFile+0x6b7  
9. 881fcd34 81ca3a1a 0000007c 00000000 00000000 nt!NtDeviceIoControlFile+0x2a   
10. 881fcd34 779e9a94 0000007c 00000000 00000000 nt!KiFastCallEntry+0x12a   
11. WARNING: Frame IP not in any known module. Following frames may be wrong.   
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12. 0012f9f4 00000000 00000000 00000000 00000000 0x779e9a94  
Notice how the call to IofCallDriver leads immediately to Kei386EoiHelper and into an exception, 
instead of a driver’s IRP dispatch routine. This is consistent with the stack having been corrupted 
and the IRP dispatch routine causing an exception when attempting to return to its caller by 
referencing a corrupted return address. Unfortunately, mechanisms like special pool and system 
code write protection can’t catch this type of bug. Instead, you must take some manual analysis 
steps to determine indirectly which driver was operating at the time of the corruption. One way is 
to examine the IRPs that are in progress for the thread that was executing at the time of the stack 
trash. When a thread issues an I/O request, the I/O manager stores a pointer to the outstanding IRP 
on the IRP list of the ETHREAD structure for the thread. The !thread debugger command dumps 
the IRP list of the target thread. (If you don’t specify a thread object address, !thread dumps the 
processor’s current thread.) Then you can look at the IRP with the !irp command:  
1. lkd> !thread   
2. THREAD 858d1aa0 Cid 0248.02c0 Teb: 7ffd9000 Win32Thread: ffad4e90 RUNNING
         on processor 0  
3. IRP List:   
4. bc5a7f68: (0006,0094) Flags: 00000000 Mdl: 00000000  
5. Not impersonating   
6. Attached Process 84f45d90  
7. ...   
8. lkd> !irp bc5a7f68  
9. Irp is active with 1 stacks 1 is current (= 0x837a7ab8)   
10. No Mdl Thread 858d1aa0: Irp stack trace.   
11. cmd flg cl Device File Completion-Context   
12. >[ e, 0] 0 0 856f6378 8504f290 00000000-00000000  
13. \Driver\MYFAULT Args: 00000000 00000000 83360010 00000000  
The output shows that the IRP’s current and only stack location (designated with the “>” prefix) is 
owned by the Myfault driver. If this were a real crash, the next steps would be to ensure that the 
driver version installed is the most recent available, install the new version if it isn’t, and if it is, to 
enable the Driver Verifier on the driver (with all settings except low memory simulation).  

Manually analyzing the stack is often the most powerful technique when dealing with crashes 
such as these. Typically, this involves dumping the current stack pointer register (for example, esp 
and rsp on 32-bit and x64 respectively). However, because the code responsible for crashing the 
system itself might modify the stack in ways that make analysis difficult, the processor 
responsible for crashing the system provides a backing store for the current data in the stack, 
called KiPreBugcheckStackSaveArea, which contains a copy of the stack before any code in 
KeBugCheckEx executes. By using the dps (dump pointer with symbols) command in the 
debugger, you can dump this area (instead of the CPU’s stack pointer register) and resolve 
symbols in an attempt to discover any potential stack traces. In this crash, here’s what dumping 
the stack area eventually revealed on a 32-bit system. 

1. kd> dps KiPreBugcheckStackSaveArea KiPreBugcheckStackSaveArea+3000  
2. 81d7dd20 881fcc44  
3. 81d7dd24 98fcf406 myfault+0x406  
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4. 81d7dd28 badb0d00  
Although this data was located among many other different functions, it is of special interest 
because it mentions a function in the Myfault driver, which as we’ve seen was currently executing 
an IRP, that doesn’t show on the stack. For more information on manual stack analysis, see the 
Debugging Tools for Windows help file and the additional resources referenced later in this 
chapter. 

14.9.2 Hung or Unresponsive Systems 

If a system becomes unresponsive (that is, you are receiving no response to keyboard or 
mouse input), the mouse freezes, or you can move the mouse but the system doesn’t respond to 
clicks, the system is said to have hung. A number of things can cause the system to hang: 

■ A device driver does not return from its interrupt service (ISR) routine or deferred 
procedure call (DPC) routine 

■ A high priority real-time thread preempts the windowing system driver’s input threads 

■ A deadlock (when two threads or processors hold resources each other wants and neither 
will yield what they have) occurs in kernel mode 

You can check for deadlocks by using the Driver Verifier option called deadlock detection. 
Deadlock detection monitors the use of spinlocks, fast mutexes, and mutexes, looking for patterns 
that could result in a deadlock. (For more information on these and other synchronization 
primitives, see Chapter 3.) If one is found, the Driver Verifier crashes the system with an 
indication of which driver causes the deadlock. The simplest form of deadlock occurs when two 
threads hold resources each other thread wants and neither will yield what they have or give up 
waiting for the one they want. The first step to troubleshooting hung systems is therefore to enable 
deadlock detection on suspect drivers, then unsigned drivers, and then all drivers, until you get a 
crash that pinpoints the driver causing the deadlock.  

There are two ways to approach a hanging system so that you can apply the manual crash 
troubleshooting techniques described in this chapter to determine what driver or component is 
causing the hang: the first is to crash the hung system and hope that you get a dump that you can 
analyze, and the second is to break into the system with a kernel debugger and analyze the 
system’s activity. Both approaches require prior setup and a reboot. You use the same exploration 
of system state with both approaches to try and determine the cause of the hang. 

To manually crash a hung system, you must first add the DWORD registry value HKLM\ 
SYSTEM\CurrentControlSet\Services\i8042prt\Parameters\CrashOnCtrlScroll and set it to 1. 
After rebooting, the i8042 port driver, which is the port driver for PS2 keyboard input, monitors 
keystrokes in its ISR (discussed further in Chapter 3) looking for two presses of the scroll lock key 
while the right control key is depressed. When the driver sees that sequence, it calls 
KeBugCheckEx with the MANUALLY_INITIATED_CRASH (0xE2) stop code that indicates a 
manually initiated crash. When the system reboots, open the crash dump file and apply the 
techniques mentioned earlier to try and determine why the system was hung (for example, 
determining what thread was running when the system hung, what the kernel stack indicates was 
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happening, and so on). Note that this works for most hung system scenarios, but it won’t work if 
the i8042 port driver’s ISR doesn’t execute. (The i8042 port driver’s ISR won’t execute if all 
processors are hung as a result of their IRQL being higher than the ISR’s IRQL, or if corruption of 
system data structures extends to interrupt-related code or data.) 

Note Manually crashing a hung system by using the support provided in the i8042 port driver 
does not work with USB keyboards. It works with PS2 keyboards only. 

You can also trigger a crash if your hardware has a built-in “crash” button. (Some high-end 
servers have this.) In this case, the crash is initiated by signaling the nonmaskable interrupt (NMI) 
pin of the system’s motherboard. To enable this, set the registry DWORD value 
HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\NMICrashDump to 1. Then, when 
you press the dump switch, an NMI is delivered to the system and the kernel’s NMI interrupt 
handler calls KeBugCheckEx. This works in more cases than the i8042 port driver mechanism 
because the NMI IRQL is always higher than that of the i8042 port driver interrupt. See 
www.microsoft.com/whdc/system/sysinternals/dmpsw.mspx for more information. 

If you are unable to manually generate a crash dump, you can attempt to break into the hung 
system by first making the system boot into debugging mode. You do this in one of two ways. 
You can press the F8 key during the boot and select Debugging Mode, or you can create a 
debugging-mode boot option in the BCD by copying an existing boot entry and adding the debug 
option. When using the F8 approach, the system will use the default connection (Serial Port 
COM2 and 19200 Baud), but you can use the F10 key to display the Edit Boot Options screen to 
edit debug-related boot options. With the debug option, you must also configure the connection 
mechanism to be used between the host system running the kernel debugger and the target system 
booting in debugging mode and then configure the debugport and baudrate switches appropriately 
for the connection type. The three connection types are a null modem cable using a serial port, an 
IEEE 1394 (FireWire) cable using 1394 ports on each system, or a USB 2.0 host-to-host cable 
using USB ports on each system. For details on configuring the host and target system for kernel 
debugging, see the Debugging Tools for Windows help file. 

When booting in debugging mode, the system loads the kernel debugger at boot time and 
makes it ready for a connection from a kernel debugger running on a different computer connected 
through a serial cable, IEEE 1394 cable, or USB 2.0 host-to-host cable. Note that the kernel 
debugger’s presence does not affect performance. When the system hangs, run the WinDbg or Kd 
debugger on the connected system, establish a kernel debugging connection, and break into the 
hung system. This approach will not work if interrupts are disabled or the kernel debugger has 
become corrupted. 

Note Booting a system in debugging mode does not affect performance if it’s not connected 
to another system; however, a system that’s configured to automatically reboot after a crash will 
not do so if it’s booted with kernel debugging enabled, because the kernel debugger waits for a 
connection from another system after a crash. 

Instead of leaving the system in its halted state while you perform analysis, you can also use 
the debugger .dump command to create a crash dump file on the host debugger machine. Then you 
can reboot the hung system and analyze the crash dump offline (or submit it to Microsoft). Note 
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that this can take a long time if you are connected using a serial null modem cable or USB 2.0 
connection (versus a higher speed 1394 connection), so you might want to just capture a 
minidump using the .dump /m command. Alternatively, if the target machine is capable of writing 
a crash dump, you can force it to do so by issuing the .crash command from the debugger. This 
will cause the target machine to create a dump on its local hard drive that you can examine after 
the system reboots. 

You can cause a hang by running Notmyfault and selecting the Hang option. This causes the 
Myfault driver to queue a DPC on each processor of the system that executes an infinite loop. 
Because the IRQL of the processor while executing DPC functions is DPC/dispatch level, the 
keyboard ISR will respond to the special keyboard crashing sequence. Once you’ve broken into a 
hung system or loaded a manually generated dump from a hung system into a debugger, you 
should execute the !analyze command with the –hang option. This causes the debugger to examine 
the locks on the system and try to determine whether there’s a deadlock, and if so, what driver or 
drivers are involved. However, for a hang like the one that Notmyfault’s Hang option generates, 
the !analyze analysis command will report nothing useful. 

If the !analyze command doesn’t pinpoint the problem, execute !thread and !process in each 
of the dump’s CPU contexts to see what each processor is doing. (Switch CPU contexts with the ~ 
command—for example, use ~1 to switch to processor 1’s context.) If a thread has hung the 
system by executing in an infinite loop at an IRQL of DPC/dispatch level or higher, you’ll see the 
driver module in which it has become stuck in the stack trace of the !thread command. The stack 
trace of the crash dump you get when you crash a system experiencing the Notmyfault hang bug 
looks like this: 

1. STACK_TEXT:   
2. f9e66ed8 f9b0d681 000000e2 00000000 00000000 nt!KeBugCheckEx+0x19  
3. f9e66ef4 f9b0cefb 0069b0d8 010000c6 00000000 i8042prt!I8xProcessCrashDump  

+0x235  
4. f9e66f3c 804ebb04 81797d98 8169b020 00010009 i8042prt!I8042KeyboardInterruptS

ervice+0x21c   
5. f9e66f3c fa12e34a 81797d98 8169b020 00010009 nt!KiInterruptDispatch+0x3d   
6. WARNING: Stack unwind information not available. Following frames may be wrong.  
7. ffdff980 8169b288 f9e67000 0000210f 00000004 myfault+0x34a   
8. 8054ace4 ffdff980 804ebf58 00000000 0000319c 0x8169b288  
9. 8054ace4 ffdff980 804ebf58 00000000 0000319c 0xffdff980  
10. 8169ae9c 8054ace4 f9b12b0f 8169ac88 00000000 0xffdff980  
11. ...   
The top few lines of the stack trace reference the routines that execute when you type the i8042 
port driver’s crash key sequence. The presence of the Myfault driver indicates that it might be 
responsible for the hang. Another command that might be revealing is !locks, which dumps the 
status of all executive resource locks. By default, the command lists only resources that are under 
contention, which means that they are both owned and have at least one thread waiting to acquire 
them. Examine the thread stacks of the owners with the !thread command to see what driver they 
might be executing in. Sometimes you will find that the owner of one of the locks is waiting for an 
IRP to complete (a list of IRPs related to a thread is displayed in the !thread output). In these cases 
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it is very hard to tell why an IRP is not making forward progress. (IRPs are usually queued to 
privately managed driver queues before they are completed). One thing you can do is examine the 
IRP with the !irp command and find the driver that pended the IRP (it will have the word 
“pending” displayed in its stack location from the !irp output). Once you have the driver name, 
you can use the !stacks command to look for other threads that the driver might be running on, 
which often provides clues about what the lock-owning driver is doing. Much of the time you will 
find the driver is deadlocked or waiting on some other resource that is blocked waiting for the 
driver. 

14.9.3 When There Is No Crash Dump 

In this section, we’ll address how to troubleshoot systems that for some reason are not 
recording a crash dump. One reason why a crash dump might not be recorded is if the paging file 
on the boot volume is too small to hold the dump. This can easily be remedied by increasing the 
size of the paging file. A second reason why there might not be a crash dump recorded is because 
the kernel code and data structures needed to write the crash dump have been corrupted at the time 
of the crash. As described earlier, this data is checksummed when the system boots, and if the 
checksum made at the time of the crash does not match, the system does not even attempt to save 
the crash dump (so as not to risk corrupting data on the disk). So in this case, you need to catch the 
system as it crashes and then try to determine the reason for the crash. 

Another reason occurs when the disk subsystem for the system disk is not able to process 
disk write requests (a condition that might have triggered the system failure itself). One such 
condition would be a hardware failure in the disk controller or maybe a cabling issue near the hard 
disk. 

Yet another possibility occurs when the system has drivers that have registered to add 
secondary dump data to the dump file. When the driver callbacks are called, they might 
incorrectly access data structures located in paged memory (for example), which will lead to a 
second crash. 

One simple option is to turn off the Automatically Restart option in the Startup And 
Recovery settings so that if the system crashes, you can examine the blue screen on the console. 
However, only the most straightforward crashes can be solved from just the blue-screen text. 

To perform more in-depth analysis, you need to use the kernel debugger to look at the system 
at the time of the crash. This can be done by booting the system in debugging mode, which is 
described in the previous section. When a system is booted in debugging mode and crashes, 
instead of painting the blue screen and attempting to record the dump, it will wait forever until a 
host kernel debugger is connected. In this way, you can see the reason for the crash and perhaps 
perform some basic analysis using the kernel debugger commands described earlier. As mentioned 
in the previous section, you can use the .dump command in the debugger to save a copy of the 
crashed system’s memory space for later debugging, thus allowing you to reboot the crashed 
system and debug the problem offline. 
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The operating system code and data structures that handle processor exceptions can become 
corrupted such that a series of recursive faults occur. One example of this would be if the 
operating system trap handler got corrupted and caused a page fault. This would invoke the page 
fault handler, which would fault again, and so on. If such a situation occurred, the system would 
be hopelessly stuck. To prevent such a situation from occurring, CPUs have a builtin recursive 
fault protection mechanism, which sets a hard limit on the depth of a recursive fault. On most x86 
processors, a fault can nest to two levels deep. When the third recursive fault occurs, the processor 
resets itself and the machine reboots. This is called a triple fault. This can happen when there’s a 
faulty hardware component as well. Even a kernel debugger won’t be invoked in a triple fault 
situation. However, sometimes the mere fact that the kernel debugger doesn’t activate can confirm 
that there’s a problem with newly added hardware or drivers. 

Note You can use the kernel debugger to trigger a triple fault on a machine by setting a 
breakpoint on the kernel debugger dispatch routine KiDispatchException. This happens because 
the exception dispatcher now causes a breakpoint exception, which invokes the exception 
dispatcher, and so on. 

eXPeriMeNT: The Blue Screen Screen Saver 

A great way to remind yourself of what a blue screen looks like or to fool your office workers 
and friends is to run the Sysinternals Blue Screen screen saver from Sysinternals. The screen saver 
simulates authentic looking blue screens that reflect the version of Windows on which you run it, 
generating all blue screen text using actual system information such as the list of loaded drivers. It 
also mimics an automaticreboot, complete with the Windows startup splash screen. Note that 
unlike other screen savers, where a mouse movement dismisses them, the Blue Screen screen 
saver requires a key press. 

Using the following syntax for the Psexec tool from Sysinternals, you can even run the screen 
saver on another system: 

1. psexec \\computername –i –d "c:\sysinternalsbluescreen.scr" –s  
The command requires that you have administrative privilege on the remote system. (You can use 
the –u and –p Psexec switches to specify alternate credentials.) Make sure that your coworker has 
a sense of humor!  

14.10 Conclusion 

Although many crashes can be analyzed with some of the techniques described in this chapter, 
many require analysis that goes beyond the scope of this book. Here are some additional resources 
that may be useful if you want to learn more advanced crash analysis techniques and information: 

■ The Microsoft Platforms Global Escalation Services team blog at 
http://blogs.msdn.com/ntdebugging provides various tips and tricks and real-life scenarios 
encountered by the team. 

■ The Web site www.dumpanalysis.org provides hundreds of patterns and advanced analysis 
scenarios and hints. 
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